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Abstract

Many complex problems are naturally un-
derstood in terms of symbolic concepts. For
example, our concept of ‘‘cat’’ is related to
our concepts of ‘‘ears’’ and ‘‘whiskers’’ in a
non-arbitrary way. Fodor (1998) proposes one
theory of concepts, which emphasizes sym-
bolic representations related via constituency
structures. Whether neural networks are con-
sistent with such a theory is open for debate.
We propose unit tests for evaluating whether
a system’s behavior is consistent with several
key aspects of Fodor’s criteria. Using a sim-
ple visual concept learning task, we evaluate
several modern neural architectures against
this specification. We find that models suc-
ceed on tests of groundedness, modularity,
and reusability of concepts, but that important
questions about causality remain open. Re-
solving these will require new methods for
analyzing models’ internal states.

1 Introduction

Understanding language requires having repre-
sentations of the world to which language refers.
Prevailing theories in linguistics and cognitive sci-
ence hold that these representations, or concepts,
are structured in a compositional way—for exam-
ple, the concept of ‘‘car’’ can be combined with
other concepts (‘‘gray’’, ‘‘new’’)—and that the
meanings of composite concepts (‘‘gray car’’)
are inherited predictably from the meanings of
the parts. State-of-the-art models for natural lan-
guage processing (NLP) use neural networks
(NNs), in which internal representations are points
in high-dimensional space. Whether such repre-
sentations can in principle reflect the abstract sym-
bolic structure presupposed by theories of human
language and cognition is an open debate. This
paper maintains that the question of whether a
model contains the desired type of symbolic con-
ceptual representations is best answered at the

computation level (Marr, 2010): that is, the diag-
nostics of ‘‘symbolic concepts’’ concern what a
system does and why, rather than the details of
how that behavior is achieved (e.g., whether it
stores vectors vs. explicit symbols ‘‘on disk’’).
Even Fodor and Pylyshyn (1988), in their vocal
criticism of NNs, assert that ‘‘a connectionist
neural network can perfectly well implement a
classical architecture at the cognitive level’’,1 but
do not say how to know if such an implementa-
tion has been realized.

To this end, we propose an API-level specifi-
cation based on criteria of ‘‘what concepts have
to be’’ (Fodor, 1998). Our specification (§3) de-
fines the required behaviors and operations, but
is agnostic about implementation. We then con-
sider fully connectionist systems equipped with
modern evaluation methods (e.g., counterfactual
perturbations, probing classifiers) as candidate
systems. We present evidence that the eval-
uated models learn conceptual representations
that meet a number of the key criteria (§5–§7)
but fail on those related to causality (§8–§9).
We argue that more powerful tools for analyz-
ing NNs’ internal states may be sufficient to
close this gap (§10). Overall, our primary con-
tribution is a framework for seeking converging
evidence from multiple evaluation techniques
in order to determine whether modern neural
models are consistent with a specific theory
of concepts. Our experiments offer an updated
perspective in the debate about whether neural
networks can serve as the substrate of a linguisti-
cally competent system.

2 ‘‘What Concepts Have To Be’’

2.1 Criteria

There is no single agreed-upon standard for what
‘‘concepts’’ are (Margolis et al., 1999). We base

1Italics added. Here, classical architecture = symbolic
architecture, and cognitive level = computational level.
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our criteria on those put forth in Fodor (1998) as
part of a theory which advocates symbolic repre-
sentations and prioritizes explaining phenomena
such as syntactic productivity and semantic com-
positionality. Fodor (1998) argues for five condi-
tions required for a conceptual representation to
be viable as a model of human-level cognition:
C1: ‘‘Concepts are mental2 particulars; specif-
ically, they...function as mental causes and ef-
fects’’; C2: ‘‘Concepts...apply to things in the
world; things in the world ‘‘fall under them’’;
C3: ‘‘Concepts are constituents of thoughts and...
of one another. Mental representations inherit
their contents from the contents of their con-
stituents’’; C4: ‘‘Quite a lot of concepts [are]
learned’’; C5: ‘‘Concepts are public...to say that
two people share a concept [means] they have
tokens of literally the same concept type.’’

2.2 Assumptions and Limitations

We focus on Fodor’s (1998) criteria since they
are concordant with ideas from formal linguistics
which have recently been highlighted as weak-
nesses of NNs (Pavlick, 2022). We don’t claim
that Fodor’s theories should necessarily serve as
the standard for NLP systems (indeed, his theo-
ries face criticisms). The subset of Fodor’s criteria
on which we focus (§3) are fairly uncontroversial,
and arguably would transfer to alternative theories
of conceptual structure—for example, Bayesian
causal models (Sloman, 2005). We view our tests
as necessary but alone insufficient to meet Fodor’s
criteria. For example, our composite concepts
depend on simple conjunction and thus do not ad-
dress issues about constituency structure in which
the argument order matters. Even so, our results
offer a valuable starting point on which subse-
quent theoretical and empirical work can build.

2‘‘Mental’’ here implies that the representations are di-
vorceable from the external world. One can token a concept
in the absence of relevant perceptual stimuli. For example,
thinking ‘‘If it were raining...’’ entails thinking about ‘‘rain-
ing’’ precisely when it is not raining. This distinction is
subtle but important. Our unit tests operationalize this via the
fact, in 3 out of 4 tests, the perceptual input is held fixed
and the intervention is applied to internal state. This is only
a first step. Future work will need to explore this issue in
more detail to determine what type of perceptual-conceptual
distinction suffices to meet this criterion, and how it can be
demonstrated empirically.

3 System Specification

We translate key ideas from Fodor’s conditions
into concrete unit tests for evaluating computa-
tional models. Our mapping is not one-to-one:
We combine C2 and C5 into a single test fo-
cused on whether a concept grounds consistently
to perception; we split C3 into two tests and
leave aspects to future work; we omit C4 since
there is likely little controversy that modern NLP
systems ‘‘learn’’ concepts. Our tests apply to a
system holistically, including implementations of
diagnostic functions, not just the internal repre-
sentations. Thus, it is possible for one system to
fail our tests, but for a different system with the
same internal representation but different imple-
mentations of the functions to succeed. See dis-
cussions in §4.1.1 and §10.

3.1 Data Types and Basic Functions

Our domain consists of things in the perceptual
world (type X) to which humans assign dis-
crete words (type Y). We follow Fodor (1998)
in treating word meaning and concepts as in-
terchangeable.3 Internal concepts may be either
atomic (without an internal structure) or com-
posite, which, in our setting, means they obey
a simple conjunctive syntax over atomic con-
stituents (e.g., ‘‘ice’’|=‘‘water’’&‘‘solid’’). We
assume two ground-truth functions: gt label
which returns the name for a given thing, and
gt describewhich describes a composite con-
cept (type Y) in terms of its constituents (type
Set[Y]).

We require that the system supports anencode
operation to map X to an internal representation of
type Z, as well as a predict operation to map
Z to Y. We also require that the system imple-
ments two diagnostic functions, that is, functions
unnecessary for the system’s usual operations
(here, assigning words to inputs), but necessary
for measuring properties of the system’s internal
structure. has concept returns true if the sys-
tem considers the internal representation (Z) to
encode a concept (Y); ablate removes the part
of the internal representation considered to encode
the concept.

3This is a common assumption. Of course, in reality, there
are things for which humans may have a concept but do not
have the ability to express precisely in language.
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Figure 1: (a) and (b): Visualization of unit tests as
operations on a symbolic graphical model (c): Changes
in input features lead to expected changes in output.
(d): Internal nodes are reused across tokens of the
same type. (e): Removing one internal concept does
not damage others. (f): Removing internal concepts
impacts the model’s predictions.

3.2 Unit Tests

Our specification requires not only that a system
supports the above operations, but that its im-
plementation obeys certain constraints, which we
formalize via unit tests. Intuitively, it is helpful to
think of these unit tests by picturing a symbolic
system (e.g., a graphical model) which would pass
the tests by construction (Figure 1). In practice,
we run our tests on NNs, not graphical models.
However, if the models pass our tests, the impli-
cation is that the NN has implemented something
that, for our purposes, is functionally equivalent
to the symbolic model shown in Figure 1.

3.2.1 is grounded

Our test is grounded (analyzed in §5) is
derived from the requirements that internal
concepts are tied to the external world (C2) in
a way that is shared (C5).4 Our test requires that

4is grounded tests whether changes in the input lead
to changes in the model’s behavior. This is different from
Fodor’s criteria, which require that the concept—i.e., the in-
ternal representation–is grounded, and that the representation
(not necessarily the behavior) changes in response to external
features. We can make this shift because (1) our models’
behavior is by definition a function of its internal representa-
tion and (2) our test, is causal, requires that changes in

models respond to changes in perceptual inputs
in the same way that an (idealized) human would
respond to those changes, namely, that pre-
dict(encode(x)) == gt label(x). Ef-
fectively, this test simply requires that a model
performs well on the labeling task, but does
not care about the representations involved in
producing those labels.

3.2.2 is token of type

C3 requires that concepts have constituency struc-
ture. We define two tests which probe aspects of
this requirement (see §2.2 for caveats).

First, is token of type (evaluated in §6)
tests whether different token instances of a con-
cept evaluate to the same semantic type. Fodor
and Pylyshyn (1988) claim this property is re-
quired for systematicity and compositionality,
arguing that the inference ‘‘Turtles are slower
than rabbits1’’; ‘‘Rabbits2 are slower than Fer-
raris’’→‘‘Turtles are slower than Ferraris’’ only
follows if, among other things, ‘‘rabbits1’’ is
treated as the same as (not merely ‘‘similar to’’)
‘‘rabbits2’’. We thus require that there exists a
computational procedure for mapping models’ in-
ternal representations into a discrete space, and
that this procedure applies in the same way to all
token instances of a concept. Concretely, ∀c ∈
gt describe(gt label(x)) we require
that has concept(encode(x), c).

3.2.3 is modular

Second, is modular (evaluated in §7) is based
on requirements for productivity; for example,
for an NP (e.g., ‘‘John’’) to fit into arbi-
trarily many contexts (‘‘John loves Mary’’, ‘‘Joe
loves John’’), the representation of the NP must
be fully disentanglable from the other words and
syntax. We frame this requirement as a test of
whether representations support ‘‘slot filling’’.
That is, given a representation of a composite
concept, removal of one constituent concept
should produce an unfilled ‘‘slot’’ but otherwise

behavior are explained by changes in the internal representa-
tion. Thus success on both is causal and is grounded
entails Fodor’s criteria that those things which serve as men-
tal causes and effects are grounded. However, it is plausible
that other models could pass using a ‘‘loophole’’ in which
the behavior is grounded but the internal concepts are not, or
could fail due to a technicality in which the representation
changes but the model ‘‘decides’’ not to change it behavior
(though the latter assumes a highly competent system, see
Block [1981]).
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leave the remaining constituent concepts intact,
namely, ‘‘ loves Mary’’. Concretely, given z =
ablate(encode(x), y), we require that
has concept(z, y) is false, and that ∀c ∈
gt describe(gt label(x)) such that c�=
y, has concept(z, c) is true.

3.2.4 is causal

Finally, is causal (evaluated in §8) checks
that C1 is met by testing that internal con-
ceptual representations themselves serve as
‘‘mental causes and effects’’. As in Fodor and
Pylyshyn (1988), ‘‘state transitions in Classi-
cal machines are causally determined by the
structure–including the constituent structure–of
the symbol arrays that the machines transform:
change the symbols and the system behaves quite
differently’’. To operationalize this, we consider
the case in which a model’s behavior (e.g., its
use of a label) is assumed to be in response to
having tokened a composite concept ‘A&B’. We
require that changes in the representation, such
that the constituent concept ‘A’ is no longer to-
kened (or, that the constituent concept which is
tokened is no longer labeled as type ‘A’), result in
corresponding changes in the model’s behavior.
In practice, this amounts to requiring that ablating
a constituent concept results in expected degra-
dation in model performance. That is, predict
(ablate(encode(x),c)) should perform at
chance if c is a constituent of gt label(x),
and should perform equivalently to predict
(encode(x)) otherwise.

4 Implementation

Our code, data, and results are available at: bit
.ly/unit-concepts-drive.

4.1 Functions

We implement encode with five different mod-
els: three pretrained and two from-scratch.5 For
pretrained models, we use a residual network
trained over ImageNet (RNIMG) (He et al.,
2016) and two architectures from CLIP Radford
et al., 2021—a vision transformer (ViTCLIP)

5We do claim pretraining is analogous to human learning.
Success on our tests is interesting because it provides an
existence proof of one particular recipe by which the desired
representations arise. This is similar to work on syntax in
LMs (Linzen and Baroni, 2021), which is valuable despite
LM training being very different from how children learn.

(Dosovitskiy et al., 2020) and a residual net-
work (RNCLIP). For from-scratch models, we use
a randomly initialized residual network model
(RNNoPre) and a CNN model6 (CNNNoPre). We
use the pretrained encoders with no additional
training. For the other models, we finetune on a
classification task on our data.

To implement predict, we train linear
‘‘probing classifiers’’ (Sinha et al., 2021) over
the outputs of encode using the Adam opti-
mizer (Kingma and Ba, 2014). has concept
is also implemented with linear classifiers. Thus,
our system considers the output of encode to
‘‘have’’ a concept if a probing model can learn to
discriminate instances according to the concept.

To implement ablate, we use Iterative
Nullspace Linear Projection (INLP) (Ravfogel
et al., 2020), which repeatedly collapses direc-
tions that linearly separate the instances of one
concept from those of another. INLP has been
used to remove concepts like parts of speech from
word representations (Elazar et al., 2020).

4.1.1 Limitations
We make a few important simplifying assump-
tions in our implementations, which are necessary
in order to employ the available analysis tools
at the time of writing. First, since INLP—our
implementation for ablate—only removes lin-
ear information, we restrict our implementations
of predict and has concept to be linear
models. However, since writing, new methods
have been introduced which could in principle be
used in place of INLP in our experiments, and
would likely yield different results. We discuss
possible implications in §8.3.

Second, in most experiments, we treat the en-
code function as a block, only analyzing its
outputs, rather than ablating concepts in its inter-
nal layers. However, looking at individual layers
could tell a different story. We provide initial re-
sults in §9, but a complete investigation warrants
significant experiments and is left for future work.

Finally, INLP is iterative, each step remov-
ing a direction from the input representation. Our
experiments report the results after the first it-
eration of INLP, as it removes the most salient
direction of the concept. Again, future work may
find insights in analyzing the removal of sub-
sequent directions.

6Four layers: filters=(64, 32, 16, 8), kernels=3, stride=2;
batch norm (Ioffe and Szegedy, 2015) and ReLU activations.
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Figure 2: Dataset. Three samples from each class; the right nine classes have fuzzy borders (although this
admittedly hard to see in these small images).

4.2 Dataset

4.2.1 Description
Our default dataset is a synthetic image7 dataset
with 1000 training examples of each of 18 classes,
where each class is composed of three from a set of
eight atomic concepts {3 layouts: horizontal, ver-
tical, ring} x {3 shapes: rectangle, oval, polygon}
x {2 strokes: clean, fuzzy}. Thus, each class is a
composite concept made up of three constituent
atomic concepts. See Figure 2 for examples.8

We also create a colors dataset in which the
color of the shapes is correlated with the class
label. We do this because, in is grounded (§5),
we find very strong results in the default setting
and want to better understand the conditions under
which those results hold. The colors dataset emu-
lates a situation where there are spurious features,
making it more difficult for a model to ground
to the correct perceptual inputs. This dataset is

7Each image is saved as a PNG and resized to the high-
est resolution supported by the given model; ImgNet uses
256×256 pixels. There is exactly 1 duplicate image in the
colors dataset for seed = 10.

8This paper asks whether NNs are consistent with (key
aspects of) Fodor’s theory of concepts, not whether NNs
are equivalent to humans. Synthetic data allows us to study
models in a setting where we can guarantee that the desired
structure is ‘‘correct’’. That is, we give Fodor the benefit
of the doubt and assume his theory of concepts is correct.
Ultimately, we care about the latter question: are NN’s
human-like? However, in our view, we don’t have the data
and theories (just yet) to tackle this in a deep, meaningful
way. While Fodor’s theory is certainly not a perfect theory
of human concepts, at least some aspects of his theory are
likely to be present in whatever the ‘‘right’’ theory is, even
if not exactly as Fodor envisioned it (e.g., most credible
theories appeal to compositionality and causality). Future
work can and should relax our generous assumptions, work
on non-synthetic data, and analyze NNs through the lens of
competing theories of concepts.

not directly tied to any of Fodor’s criteria, but
allows us get a more nuanced understanding of
our is grounded results. Here, each of the 18
classes is correlated with a different color, such
that for p ∈ {RAND, 90, 99, 100}, a given in-
stance has probability p of expressing that paired
color, with remaining 1−p probability distributed
uniformly over the other colors. RAND = 5.6%
(i.e., 1/18).

4.2.2 Seen and Unseen Examples

To test the generality of a model’s representations,
we train the diagnostic functions has concept
and ablate on a subset of the full 18 classes. We
define slice to mean a set of composite concepts
that share the same atomic concepts except along
a given dimension. For instance, ‘‘dax’’, ‘‘surp’’,
‘‘slup’’ form a slice that delineates layout (i.e., the
classes differ in layout but otherwise are the same
in terms of shape and stroke). All classes that the
diagnostic functions are trained on are considered
seen and the other classes are considered unseen.
We experiment with two training settings, which,
like the colors dataset, are not directly tied to
Fodor’s criteria, but which allow us to tell a more
nuanced story about what it takes for models
to pass our tests. In the first setting (1 slice),
the probes used to implement has concept are
trained on a dataset with one class per concept. So,
in this setting, instances that fall under the concept
‘‘horizontal’’ would all be drawn from ‘‘dax’’. In
the second setting (N-1 slices), probes are trained
on many classes per concept. Here, instances of
‘‘horizontal’’ would be drawn from several classes
(‘‘blick’’, ‘‘glorp’’, etc). In §5–§8, we focus on the
results over unseen classes; performance over seen
classes is generally high across all evaluations.
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4.2.3 Human Performance
We run a Mechanical Turk study with 150 in-
dividuals. Subjects are given three exemplars of
each class (equivalent to Figure 2), and are then
asked to assign a novel instance to one of the
18 classes. Across 1500 predictions, the majority
label agrees with our ground truth label 63% of
the time (over a 5.6% random baseline). We find
that mistakes are systematic and predictable: For
example, subjects routinely confusing ‘‘gix’’ and
‘‘gip’’ as the ‘‘clean’’ versus ‘‘fuzzy’’ edge is
difficult to discern in this setting.

Thus, some of our class distinctions rely on
perceptual features that are difficult for humans
to distinguish, but which models are able to dif-
ferentiate well. This is an important discussion
point, but does not undermine the validity of the
present study. In general, conceptual representa-
tion is considered to be divorceable from percep-
tion: The fact that one might mistake a cat for a
skunk does not mean they do not have the concept
of cat. By similar logic, the fact that our models
have super-human perception in this domain need
not prevent us from analyzing the structure of the
concepts that they represent, or comparing them
to a ground truth that imagines humans to have
perfect perception.

5 Test 1: Predictions are Grounded

Is grounded requires that if, definitionally,
the difference between ‘‘dax’’ and ‘‘blick’’
is roundness, then this visual attribute should
dictate predictions.

5.1 Experimental Design
We use counterfactual minimal pairs, which have
been used in both NLP (Huang et al., 2020) and
computer vision (Goyal et al., 2019b). Our dataset
(§4.2) is generated using a set of background pa-
rameters (i.e., locations and sizes of the underlying
shapes) in addition to the atomic concepts (shape,
stroke, and layout). To generate minimal pairs, we
sample 1000 sets of these background parameters,
and then render each sampled set of parameters
for every combination of shape×stroke×layout.
This ensures the instances in a pair are equivalent
in all visual features (total surface area covered
by shapes, relative distance between shapes, etc.)
except those features which change as a direct
consequence of manipulating the target atomic
concept. We generate minimal pairs in the colors

Figure 3: Results for is grounded on the colors
dataset. Performance for all models degrades when
trained on data in which color is spuriously corre-
lated with the target concepts, and then tested on
out-of-distribution minimal pairs. However, pretrained
models still perform well above chance.

dataset (§4.2) in the same way, treating color as
another background parameter. After setting up
the minimal pairs, we measure the probability that
predict(encode(·)) == gt label(·).

If the model grounds concepts to the desired
perceptual features, then it should perform per-
fectly at classifying the images across all settings.
If the model performs poorly, we interpret this
as evidence that the model grounds the concept
to some features in a way that would not be
‘‘shared’’ with (idealized) humans, for example,
the model considers ‘‘dax’’ to ground to color
or size of shapes, rather than solely to ‘‘circle’’
&‘‘horizontal’’&‘‘smooth’’.

5.2 Results

The models perform well on the default dataset
(∼ 98%). When the classes are highly corre-
lated with a spurious color feature, performance
degrades (Figure 3). However, notably, even
when models are trained on highly imbalanced
data (e.g., with 99% of ‘‘dax’’s being red), the
pre-trained models still perform well above ran-
dom out-of-distribution (75% over a 5.6% ran-
dom baseline).

5.3 Discussion

We interpret this as a positive result: The results on
the default dataset demonstrate that the pretrained
models’ behavior is explained by the expected per-
ceptual features, satisfying is grounded. The
degradation in performance when using the col-
ors dataset raises two issues worthy of discussion.
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Figure 4: is token of type on unseen classes. The points show the accuracies over seeds and the unseen
test classes; the bar shows the mean over these points. Black arrows indicate expectations–we want to see
models performing well, as high accuracy is indicative of a reusable type representation that generalizes to
unseen concepts.

First, across our unit tests, this result is the one
of only places in which we see a real difference
between pretrained and from-scratch models.
These results suggest that the pretrained models
(which have been trained with access to linguisitic
information, i.e., category labels for ImageNet and
captions for CLIP) encode an inductive bias for
shape over color. That is, even in the setting in
which color is perfectly correlated with the class
label, the models still generalize based on shape
rather than color around half of the time. Such
findings echo previously published arguments
that pretraining can encode inductive biases that
help models learn language more efficiently
(Lovering et al., 2020; Warstadt et al., 2020;
Mueller et al., 2022).

Second, while poor out-of-distribution general-
ization is not desirable, it is important to emphasize
that it is not inconsistent with the use of symbolic
concepts. For example, a model which explicitly
represents symbols (e.g., Naive Bayes) could ex-
hibit a similar drop in performance as the prior
given the correlation in the training data makes
the correct class less likely. As written, Fodor’s
criteria do not adjudicate on this issue. Thus, with
respect to grounding, fully characterizing neural
networks in terms of their symbolic representa-
tions (or lack thereof) requires refined criteria
which can discriminate between models which
represent grounded symbols (but make errors
in learning) from models that do not represent
grounded symbols at all.

6 Test 2: Representations Encode Types

Is token of type requires that the system’s
representations of concepts can be mapped to
discrete types in a reusable way.

6.1 Experimental Design

We train has concept on a subset of the
slices from the dataset (see §4.2.2). For exam-
ple, we can train has concept to predict the
layout (‘‘vertical’’, ‘‘horizontal’’, or ‘‘ring’’) by
training it on examples of ‘‘dax’’, ‘‘surp’’ and
‘‘slup’’, which differ only in the layout con-
stituent, but are identical in the other constituents,
(‘‘oval’’, ‘‘smooth’’). We then evaluate on un-
seen classes, such as ‘‘blick’’, ‘‘gix’’, and ‘‘wug’’,
which exemplify the same variation in layout, but
do so in the context of other constituents not seen
in training (e.g., ‘‘rectangle’’).

We take good generalization as evidence that
the model’s representations of a concept can be
viewed as tokens of the same concept type. For
example, whenever the model receives an input
that falls under the concept ‘‘vertical’’, the con-
cept of ‘‘vertical’’ is tokened in the model’s inter-
nal representations in a way which can be reliably
localized by a single, fixed ‘‘vertical’’-type de-
tector. Generalization to unseen classes indicates
that the tokening of ‘‘vertical’’ is not dependent
on the other concepts that might be tokened si-
multaneously (e.g., ‘‘oval’’ or ‘‘rectangle’’). Poor
generalization suggests that models’ internal rep-
resentations are context dependent: ‘‘vertical’’ in
the context of ‘‘oval’’ is not of the same type as
‘‘vertical’’ in the context of ‘‘rectangle’’.

6.2 Results

The results are overall positive. All models show
near-perfect accuracies on seen classes (> 99%,
not shown). Over the unseen classes (Figure 4),
the models perform better in the easier N - 1 slices
setting (when generalizing from 15 seen classes to
3 unseen classes). For 1 slice, the accuracies are
lower but still well above chance—around 75%.
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Figure 5: is modular on unseen classes. Arrows indicate expectations: Performance for the ablated concepts
(top row) should be at or below random and performance on other concepts (bottom row) should be high. Points
show the accuracies over seeds and unseen test classes; the bar shows the mean.

6.3 Discussion

Overall, representations of atomic concepts appear
to be ‘‘the same’’ across contexts, generalizing
well to unseen compositions. The performance
differential between 1 slice and N - 1 slice sug-
gests (intuitively) that more varied data enables
the has concept probe to better identify the
stable, defining features of the concept: That is,
seeing ‘‘vertical’’ in the context of both ‘‘oval’’
and ‘‘rectangle’’ makes it easier to recognize
‘‘vertical’’ in the context of previously unseen
‘‘polygon’’. As was the case with the out-of-
distribution generalization results discussed in
§5.3, these results about the amount and
variety of training data required are interesting,
but do not speak directly to the question of sym-
bolic representations. Rather, our results on 1 slice
vs. N - 1 slices correspond to a question about
acquisition, and is an issue on which Fodor’s cri-
teria are silent. Other theories of concepts focus
on acquisition (Spelke and Kinzler, 2007; Carey,
2009) and make empirical predictions about the
amount and distribution of data from which cer-
tain concepts should be acquirable. Future work
could expand our unit tests to reflect such em-
pirical predictions, in addition to the in-principle
criteria proposed by Fodor.

7 Test 3: Representations are Modular

Is modular tests that removing one constituent
concept from the representation of a composite
concept does not harm the other constituents.9

9Whether concepts should be entangled, i.e., ‘‘holism’’
(Jackman, 2020), is an area of extensive debate. We make
some strong assumptions following Fodor’s ideals. See
footnote 8.

7.1 Experimental Design

We use ablate to remove a given constituent
and then assert that has concept is unable
to detect the removed concept, but still able to
detect the remaining constituents. For example,
‘‘dax’’ |= ‘‘oval’’&‘‘horizontal’’&‘‘smooth’’ is
a composite concept. We require that ablating
‘‘horizontal’’ from a tokened representation of
‘‘dax’’ results in a representation of the form
‘‘oval’’& &‘‘smooth’’, which leaves the layout
‘‘slot’’ empty, but otherwise preserves the in-
formation about the structure and type of the
composition. In our implementation, without loss
of generality, we ablate sets of atomic concepts
(e.g., ablating all three layout concepts together)
rather than a single concept at a time.

High accuracy on the ablated concept means
the system failed to implement ablate correctly.
Low accuracy on the concepts that were not ab-
lated (e.g., if removing layout means has
concept no longer can distinguish ‘‘rectangle’’
from ‘‘oval’’) means that constituent representa-
tions are entangled in a way likely incompatible
with, for example, productivity. Thus, for each
atomic concept dimension (layout, shape, stroke)
we run three tests—one to check that perfor-
mance at detecting the ablated concepts is low
and two to check that performance at detecting
the other two dimensions is high. We consider
‘‘high’’ to be >75% accuracy;10 random is 33%
for layout and shape, and 50% for stroke.

7.2 Results

All the models are largely successful (Figure 5).
Overall, performance is low on the removed

10This threshold is arbitrary, but allows us to talk in terms
of explicit pass/fail criteria for our unit tests.
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concept but high on the remaining concepts, as
desired. Performance is higher variance in the
harder 1 slice setting. For example, when layout
is ablated in ViTCLIP, the accuracy for detect-
ing layout is far below random in the N - 1
slice setting, but marginally above random in the
1-slice setting.

7.3 Discussion

Across models and training configurations, the
trends are in the expected direction: Performance
on the ablated concept is low (near random) and
performance on other concepts is high. In the
harder 1-slice setting, performance on the not-
ablated concepts sometimes degrades, meaning,
for example, its not possible to remove the con-
stituent ‘‘vertical’’ from ‘‘dax’’ without also
damaging the representation of ‘‘oval’’ to some
extent. In terms of Fodor’s criteria for con-
stituency, this suggests a problem, as the lack
of modularity would make it difficult to explain
phenomena such as infinite productivity—that is,
if ‘‘oval’’ cannot be fully divorced from ‘‘verti-
cal’’, it becomes difficult to explain how the same
‘‘oval’’ is able to combine with arbitrarily many
different layouts (‘‘horizontal’’, ‘‘ring’’, etc.).
However, the evidence is hardly damning—the
patterns are largely consistent with expectations.
As in §6.3, this represents a direction in need of
future work and discussion. These results could
become unambiguously positive if we concede
that models might require sufficient training in
order to learn modular concept representations.
Fodor’s theory does not offer criteria for what is
‘‘sufficient’’, but subsequent experiments could
draw on other theories from developmental psy-
chology to determine such criteria, and then refine
the unit tests accordingly.

8 Test 4: Representations are Not Causal

Is causal tests that the internal representations
serve as ‘‘mental causes and effects’’. Where
is token of type and is modular demon-
strated that models’ representations can be labeled
and manipulated according to discrete types, we
now test that those types are causally implicated in
model behavior—for example, if the constituent
concept ‘‘oval’’ is no longer tokened, will this
prevent the model from producing the label
‘‘dax’’? Similar to is grounded, this test re-
lies on counterfactual perturbations, but differs in

that the perturbations are applied to the model’s
internal representations, rather than to the per-
ceptual input.

8.1 Experimental Design
We evaluate predict after removing a con-
cept with ablate. We expect this to impair the
model’s ability to reason about the ablated con-
cept, but not others. For example, if we remove
the layout dimension, the model should be able
to distinguish between ‘‘blick’’ and ‘‘dax’’ (as
they differ in shape), but be unable to distinguish
between ‘‘blick’’ and ‘‘slup’’ (as they differ in
layout). We thus distinguish two measures of ac-
curacy: the rate at which the model’s predicted
concept matches the true concept along the re-
moved dimension (which should be at random),
and the rate at which the model’s predicted con-
cept matches the true concept along the other
dimensions (which should be high). We take
>75% accuracy to be high; random is 33% for
layout and shape, and 50% for stroke.

8.2 Results
All of our models fail this test (Figure 6). Ac-
curacies with respect to the ablated features stay
far above random. The pattern holds whether we
train on 1 or N - 1 slices, and whether we evaluate
on seen (not shown) or unseen classes. Increasing
the iterations of INLP (§4) (not shown) causes
performance to deteriorate for all concepts (even
those which we are not trying to ablate), a different
pattern which nonetheless constitutes a failure on
our unit test.

8.3 Discussion
These models in general pass is modular,
meaning that there exists a localizable representa-
tion of each atomic concept. Thus, this subsequent
failure suggests that predict ends up using dif-
ferent representations than those which are used
by has concept. That is, while there exists a
part of the internal representation that encodes
the atomic concepts, predict relies on a dif-
ferent part of the internal representation to make
decisions about composite concepts.

One possible explanation for this result is that
the model tokens both the atomic concepts and the
composite ones simultaneously, with each con-
cept (composite or not) represented as its own
symbol, and predict uses only the composite
ones directly. For example, observing an instance
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Figure 6: is causal on unseen classes. Arrows indicate expectations: performance for the ablated concepts
(top) should be at chance and performance on other concepts (bottom) should be high. Bars show mean accuracies
over seeds and unseen test classes. Accuracies are over classes (composite concepts).

of ‘‘dax’’ causes the model to token the atomic
‘‘oval’’ and ‘‘horizontal’’ but also a composite
concept ‘‘oval’’&‘‘horizontal’’, which is a sym-
bol in and of itself. Whether or not such behavior
is consistent with Fodor’s criteria depends on the
causal relationship between these tokenings—that
is, does tokening ‘‘oval’’&‘‘horizontal’’ entail
tokening ‘‘oval’’? Future work could answer
this question by looking more closely at the
way representations evolve during training or
across layers during processing. We present initial
investigations on the latter in §9.

Finally, as discussed in §3, our specification
applies not just to the representations, but to the
system as a whole. Thus, the implementation of
ablate (INLP in our case), is part of the eval-
uated system. When a model fails this test, we
cannot say whether there was a critical flaw with
the representation or rather that the concept ab-
lation itself failed (e.g., because of assumptions
of linearity, of treating encode as a block, etc.)
It is possible that, if new techniques are used
to instantiate ablate, the same representations
might fare better (or worse) according to our tests.
For example, since writing, new techniques for
applying non-linear perturbations (Tucker et al.,
2021; Meng et al., 2022) have been proposed.
Such methods could potentially be incorporated
into our framework to yield new insights on this
particular test.

9 Analysis: Concepts Across Layers

9.1 Hypothesis

Here, we conduct a preliminary investigation into
one hypothesis about the reason for our models’
failure on is causal. Specifically, we hypo-

thesize that the causal structure exists, but it
unfolds across layers. The constituent concepts
(e.g., ‘‘oval’’ and ‘‘horizontal’’) are tokened in
early layers, and are subsequently composed such
that the composite concept (‘‘dax’’ = ‘‘oval’’
&‘‘horizontal’’) is tokened at the final layer as
its own symbol and is the direct effect of the
model’s predicted label. Below, we investigate
two predictions of this hypothesis, and observe
mixed results.

9.2 Aggregate Analysis

If our hypothesis is true, we would expect to see 1)
that concepts should emerge in the expected order
across layers, that is, constituent concepts before
composite concepts, and 2) errors in labeling the
composite concept at a given layer should be
explained by errors in identifying the constituents
at that layer. That is, if the model cannot recognize
‘‘oval’’ vs. ‘‘rectangle’’ until layer 4, it should
not be able to differentiate ‘‘dax’’ from ‘‘blick’’
(which depend on the shape distinction) before
that layer. Moreover, if the model’s failure to
recognize ‘‘oval’’ vs. ‘‘rectangle’’ is the reason
for the mislabel, the observed error in labeling
the composite concepts should be equal to the
product of the errors the constituents. That is,
considering ‘‘dax’’, if errors in the constituents
cause errors in the composite, the model should
mislabel ‘‘dax’’ as ‘‘blick’’ exactly as often as
has concept mistakenly returns ‘‘rectangle’’
instead of ‘‘oval’’.

Figure 7 shows predictions from probing mod-
els for each concept at each layer. It also shows
the composed probe accuracy, computed by com-
bining the predictions of each of the probing
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Figure 7: Probing performance explains downstream performance across layers. Composed Probes: accuracy that
would result by directly composing the predictions of the probes for each constituent concept; Direct Classification:
accuracy of a classifier trained at the given layer to predict the composite concept. The remaining lines show the
probing performance for the constituent concepts.

Figure 8: Expected vs observed mistakes are different. Mutual information between the probing and downstream
predictions at the instance level. If there were a direct causal connection between the constituent concept and the
composite prediction, we would expect high NMI across all layers. Instead, for most models, NMI is only high at
the final layer.

classifiers, as well as the direct classification ac-
curacy, computed by measuring the performance
of a new classifier trained to predict the final
class at each layer.11 The trend is promising:
Composite concepts are recognized only after
constituents are recognized, and, for most models,
the direct classification accuracy is close to what
we expect based on composed probes (though of-
ten slightly higher, especially on the from-scratch
models).12

9.3 Instance-Level Analysis

If our hypothesis holds, not only should the error
rates be similar, but the direct class prediction
should be predicted by the composed probes. That
is, if at a given layer, the model is given an

11Because CNNs and ViTs have multiple dimensions, to
get a vector representation for a given layer, we mean across
the channels and then flatten into a vector. There are many
other possible approaches we did not evaluate.

12Note: In early layers, models make the same mistakes
people do, e.g., confusing fuzzy ovals and polygons (§4.2).

image of a ‘‘dax’’ and mistakenly detects ‘‘rect-
angle’’(according to the probe) instead of ‘‘oval’’,
then the model should label the input as ‘‘blick’’.

To quantify whether the instance-level predic-
tions behave this way, we compute the normalized
pointwise mutual information (NMI, which ranges
from 0 to 1) between the direct prediction and the
composition of the probe predictions. If the direct
prediction is indeed a function of the constituent
probes, we would expect to see high NMI (near
1.0) across the board—that is, even when the
model’s accuracy is low, the NMI would be high
if it was erring in the expected way. However,
Figure 8 shows there is relatively little mutual
information until the final layer of the network
(ViTCLIP might be an exception). In other words,
while the probing and downstream models have
similar error rate in aggregate, they make different
mistakes on individual instances.

This result is inconclusive: While high NMI
would have been suggestive of a causal connection
between the probes and the classifier, low NMI
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doesn’t necessarily mean such a link does not ex-
ist. For example, if a model is altogether failing to
differentiate ‘‘rectangle’’s and ‘‘oval’’s, and thus
failing to differentiate ‘‘dax’’s and ‘‘blicks’’s,
then both the probe and the classifier might resort
to pure guessing between these labels, and thus
appear to disagree even though they in fact de-
pend on the same (underdetermined) conceptual
representation.

10 Summary

Overall, our experiments suggest that models
exhibit grounded behavior and possess con-
ceptual representations that encode modular,
context-independent types. However, we don’t
find evidence of a direct causal connection be-
tween the representations of constituent concepts
and those of composite concepts, an essential fea-
ture of Fodor’s theory on which our specification
is based. Our discussions of each individual exper-
iment (§5.3, §6.3, §7.3, §8.3) together raise several
general themes.

First, success on our tests often depends on
granting assumptions about how concepts are ac-
quired: How should concepts be learned in the face
of spurious correlations, how many training exam-
ples are necessary, and so forth? While Fodor does
not focus on acquisition in his criteria, other theo-
ries exist which make empirical predictions about
how and when specific conceptual representations
develop in humans (Spelke and Kinzler, 2007;
Carey, 2009). Future work could translate such
predictions into additional unit tests (measuring
learning curves, processing times, etc.), in order
to diagnose whether current models’ errors should
be interpreted as failures vs. expected signatures
of conceptual learning.

Second, our proposed tests evaluate a system
as a whole. Thus, our ability to make claims
about neural networks as an implementation of
conceptual reasoning is dependent on the quality
of the tools available for inspecting neural net-
works’ internals. A particularly fruitful area for
future work is finding alternative implementations
of ablate. Recent work by Tucker et al. (2021)
and Meng et al. (2022) could be promising places
to start.

Finally, we observe interesting trends about
the effect of pretraining on conceptual repre-
sentations. The models we evaluate share the
same architecture but have different pretraining

regimes. Only for is grounded, and possibly
in our layerwise analysis, was there a clear ben-
efit from pretraining. Our results suggested that
the pretrained models had an inductive bias for
shape over color, and may show more promise
in subsequent studies of causality. On other tests,
pretraining did not translate to a clear improve-
ment in conceptual structure.

11 Related Work

Our study follows work on distributional models
of semantics, which seeks to interpret compu-
tational models based on vectors and neural
networks in terms of linguistic and cognitive the-
ories (Erk, 2012; Lenci, 2018; Boleda, 2020).
However, we do not take a stand on how vector
spaces compare to symbols as models of human
language/cognition at the computational level.
Rather, our study assumes that one prefers a
symbolic model at the computational level, and
asks whether neural networks could serve as the
implementation of such a model.

Closely related is recent work which seeks to
answer whether neural networks exhibit proper-
ties such as systematicity and compositionality
both in NLP (Lake and Baroni, 2018; Yanaka et al.,
2019; Goodwin et al., 2020; Kim and Linzen,
2020) and in computer vision (Johnson et al., 2017;
Andreas et al., 2016). In contrast to these studies,
which assess the final model behavior (analogous
to predict), we have additional criteria for how
the representations behave (like is modular).
Also related is prior work which attempts to
define mappings between humans’ and neural
networks’ conceptual spaces, for example, by de-
fining measures of compositionality or grounded-
ness based on how well similarity in vector space
reflects similarity according to a symbolic repre-
sentation (Andreas, 2019; Chrupała and Alishahi,
2019; Merrill et al., 2021). Our work differs in
that we use a multifaceted suite of evaluation
techniques in order to operationalize a specific
theory of concepts.

We use techniques from the broad area of in-
terpretability and analysis of neutral networks.
First, work on identifying concepts in neural
networks seeks interpretable patterns in the ac-
tivations and gradients of neural networks, for
example, that unsupervised CNNs encode con-
cepts such as edges (Sermanet et al., 2013; Le,
2013). Many techniques have been proposed in
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order to determine which input features are ‘‘im-
portant’’ to model decisions (Ribeiro et al., 2016;
Sundararajan et al., 2017; Kim et al., 2018;
Wiegreffe and Pinter, 2019). We employ the
method of ‘‘diagnostic classifiers’’ (Veldhoen
et al., 2016; Ettinger et al., 2016; Adi et al.,
2017; Hupkes et al., 2018), with the goal of find-
ing high-level concepts which are not directly
reducible to input features (Kim et al., 2018;
Tenney et al., 2019). Second, work on counter-
factual perturbations attempts to provide causal
explanations of model predictions in terms of in-
put features or concepts. Most such work relies on
controlled perturbations of the model’s input—
for example, manipulating pixels in an image
(Fong and Vedaldi, 2017; Chang et al., 2018;
Goyal et al., 2019a,b) or tokens in a string of
text (Ribeiro et al., 2018; Webster et al., 2020;
Huang et al., 2020), though recent methods op-
erate on models’ internal representations (Vig
et al., 2020; Ravfogel et al., 2020; Tucker et al.,
2021; Meng et al., 2022). We employ both types
of counterfactual manipulations (we manipulate
inputs in §5 and representations in §8). Unlike
prior work, which often treats these counter-
factual manipulations as different measures of
the same thing, we connect each evaluation to
a different aspect of Fodor’s theory of concepts.
Finally, our work uses the idea of unit testing for
neural networks (Adebayo et al., 2020; Ribeiro
et al., 2020).

12 Conclusion

We introduce a specification for symbolic con-
ceptual reasoning based on Fodor’s theory of
concepts. We find evidence that current neural
network models are consistent with many pre-
dictions of this theory but don’t demonstrate a
causal connection between the representations
of constituent concepts and those of composite
concepts. Further investigation into methods for
manipulating models’ internal representations
may illuminate whether this inconsistency is fun-
damental to neural networks, or rather a limitation
of current analysis tools.
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