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Abstract

Figurative language is ubiquitous in English.
Yet, the vast majority of NLP research focuses
on literal language. Existing text representa-
tions by design rely on compositionality,
while figurative language is often non-
compositional. In this paper, we study the
interpretation of two non-compositional fig-
urative languages (idioms and similes). We
collected datasets of fictional narratives con-
taining a figurative expression along with
crowd-sourced plausible and implausible con-
tinuations relying on the correct interpretation
of the expression. We then trained models
to choose or generate the plausible contin-
uation. Our experiments show that models
based solely on pre-trained language mod-
els perform substantially worse than humans
on these tasks. We additionally propose
knowledge-enhanced models, adopting human
strategies for interpreting figurative language
types: inferring meaning from the context
and relying on the constituent words’ literal
meanings. The knowledge-enhanced models
improve the performance on both the discrim-
inative and generative tasks, further bridging
the gap from human performance.

1 Introduction

Figurative language is a medium for mak-
ing language expressive, communicating ab-
stract ideas otherwise difficult to visualize, and
provoking emotions (Roberts and Kreuz, 1994;
Fussell and Moss, 1998). Despite the ubiquity of
figurative language across various forms of speech
and writing, the vast majority of NLP research fo-
cuses primarily on literal language. Figurative
language is often more challenging due to its
implicit nature and is seen as ‘‘a bottleneck in
automatic text understanding’’ (Shutova, 2011).

*Work done at the Allen Institute for Al
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In recent years, transformer-based language
models (LMs) achieved substantial performance
gains across various NLP tasks, however, they still
struggle with figurative language. In particular,
one of the challenges is that figurative expres-
sions are often non-compositional, that is, the
phrase meaning deviates from the literal mean-
ings of its constituents. For instance, the idiom
“‘chicken feed’” in Figure 1 denotes ‘‘a ridicu-
lously small sum of money’’ instead of ‘‘food
for poultry’’. By design, transformer-based LMs
compute a word representation as a function
of the representation of its context. LM-based
phrase representations encode the meanings of the
constituent words but hardly capture any mean-
ing that is introduced by the composition itself
(Yu and Ettinger, 2020). Even though LMs may
recognize when a word is used non-literally, and
potentially attend to it less, they still struggle to
represent the implied, non-literal meaning of such
phrases (Shwartz and Dagan, 2019).

While LMs potentially memorize familiar id-
ioms, we can expect them to further struggle
with similes, which are often created ad hoc
(Carston and Wearing, 2011). For example, in
Figure 1, the person is compared to ‘‘a high
mountain lake without a wind stirring it’” to imply
calmness. Many such figurative expressions com-
pose in a non-trivial way, and introduce implicit
meaning that requires multiple reasoning steps
to interpret.

In this paper we work on interpreting idioms
and similes in narratives, where they are es-
pecially abundant. Existing work on narrative
understanding focuses on literal stories, test-
ing models on their ability to answer questions
about a narrative (Kocisky et al., 2018) or con-
tinue an incomplete narrative (Story Cloze Test;
Mostafazadeh et al., 2016). We follow the latter
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Given These Narratives

The More Plausible Hypothesis is...

,Sg I ...I'11l ask you once more. How much did you Well T guess you made more for taking a i
aﬁ make by a fighter taking that dive?” dive than you could have as a fighter.
The boy hesitated. “A thousand dollars."
g o ® D . @ Next time you sell your honor and v
& Lucky Luciano laughed. “That's chicken feed”. dilemity, Czv to held eut for moEe.
“What's the point of painting it?” It's hard
t® kgep we with his mweesd chenees. “You’ze He still had this rage pent up inside
- o sl R e s him and I could feel the intensity. X
{ the chair, lowering his voice, softening his

eyes. His energy shifts once again. Now

stirring it.

Figure 1:

he

feels like a high mountain lake without a wind

human-written plausible and implausible continuations.

setup. We extracted short narratives from the
Toronto Book corpus (Zhu et al., 2015), each
containing a figurative expression, and crowd-
sourced plausible and implausible continuations
that rely on correct interpretation of the figurative
expression. We defined two tasks: a discrimi-
native setting, where the goal is to choose the
plausible continuation among two candidates, and
a generative setting, where the goal is to generate
a plausible continuation that is coherent with the
narrative and complies with the meaning of the
figurative expression.

We report the performance of an extensive
number of state-of-the-art LMs on both tasks,
in zero-shot, few-shot, and supervised settings.
Our results show that pre-trained LMs including
GPT-3 (Brown et al., 2020) perform poorly in the
zero-shot and few-shot settings. While the super-
vised model’s performance is closer to humans,
the gap is still substantial: In the discriminative
tasks, the gap from human performance was 10
and 14.6 points in accuracy for idioms and sim-
iles, respectively. In the generative tasks, there
was a striking 24 and 28 points difference in hu-
man evaluation of the plausibility of generated
continuations.

To further close this gap, we developed
knowledge-enhanced models inspired by two hu-
man strategies for interpreting unknown idioms,
as studied by Cooper (1999) and discussed in
Shwartz and Dagan (2019). The first strategy is to
infer the expression’s meaning from its context,
for which we incorporate event-centered infer-
ences from ParaCOMET (Gabriel et al., 2021b).
The second relies on the literal meanings of the
constituent words, using concept-centered knowl-
edge from COMET-ConceptNET (Hwang et al.,
2021). Additionally similes are often interpreted
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He doesn't feel the same as he did, now ./
he is more calm.

Example narratives from our datasets, containing an idiom (top) or a simile (bottom), along with

by humans using the literal property of the ve-
hicle or object of comparison and thus we use
concept-centered knowledge here as well. The
knowledge-enhanced models consistently outper-
formed other models on both datasets and settings,
with a substantial gap on the generative tasks.
Furthermore, different strategies were favored
for each case: The generative context model
performed well on idioms, in line with Cooper’s
findings, while the literal model was favored
for similes, which are by design based on a
constituent’s literal attribute (e.g., calm lake).
The knowledge-enhanced models leave room for
improvement on our dataset. We hope that future
work will use additional techniques inspired by
the properties of figurative language and human
processing of it. Our code and data are available
at https://github.com/tuhinjubcse
/FigurativeNarrativeBenchmark and
our leaderboard is available at https://
leaderboard.allenai.org/idiom—simile/.

2 Background
2.1 Idioms

Idioms are figurative expressions with a non-literal
meaning. For instance, ‘‘break a leg’” is a
good luck greeting before a performance and
shouldn’t be taken literally as wishing someone
to injure themselves. Idioms are typically non-
compositional (i.e., the meaning of an idiom is not
derived from the meanings of its constituents) and
fixed (i.e., allowing little variance in syntax and
lexical choice).! Idiomatic expressions include

'The meaning of some idioms may be derived from the
non-literal meanings of their constituents. For example, in
““‘spill the beans’’, the non-literal meaning of spill is ‘‘reveal’’
and the beans signify the secret (Sag et al., 2002).


https://github.com/tuhinjubcse/FigurativeNarrativeBenchmark
https://github.com/tuhinjubcse/FigurativeNarrativeBenchmark
https://leaderboard.allenai.org/idiom-simile/
https://leaderboard.allenai.org/idiom-simile/

proverbs (‘‘actions speak louder than words’’),
clichés (‘‘what goes around comes around’’),
euphemisms (‘‘rest in peace’’), and more.

Prior work on idioms largely focused on identi-
fying the idiomaticity of a multi-word expression.
This is a classification task, defined either at the
token-level (is the phrase idiomatic within a given
context?), or the type-level (may the phrase be
idiomatic in some context?) (Fazly et al., 2009;
Li and Sporleder, 2009; Verma and Vuppuluri,
2015; Peng and Feldman, 2016; Salton et al.,
2016; Liu and Hwa, 2017). Compared to iden-
tification, the interpretation of idioms has been
less explored. Approaches for representing id-
iomatic expressions include substituting idioms
with literal paraphrases (Liu and Hwa, 2016; Zhou
et al., 2021), representing them as a single token,
or learning to compose them at the character level
rather than the word level (Liu et al., 2017).

With the rising popularity of pre-trained LMs,
several recent papers studied their capacity to
accurately represent idioms. Shwartz and Dagan
(2019) found that while LMs excelled at detect-
ing non-literal word usage (e.g., ‘‘flea’’ in ‘‘flea
market’”), the representation of idiomatic expres-
sions was of lower quality than that of literal ones.
Yu and Ettinger (2020) showed that LMs en-
code the words that appear in a given text,
but capture little information regarding phrase
meaning. Finally, Garcia et al. (2021) studied
the compositionality of noun compounds in En-
glish and Portuguese, and found that LM-based
models did not perform well on detecting com-
positionality, and represented idiomaticity differ-
ently from humans.

2.2  Similes

Similes are a figure of speech that compares two
things, usually with the intent to make the de-
scription more emphatic or vivid, and spark the
reader’s imagination (Paul et al., 1970). Simi-
les may either be explicit, namely, specify the
topic, vehicle, and similarity property, as in ‘“The
house was cold like Antarctica’’ (where the topic
is “‘house’’, the vehicle is ‘‘Antarctica’® and
the property of comparison is ‘‘cold’’), or im-
plicit, namely, omitting the property, as in ‘‘the
house was like Antarctica’’ (Section 3.2). Most
work in NLP has focused on simile detection,
that is, distinguishing literal from figurative com-
parisons. Earlier work relied on semantic and
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syntactic characteristics, namely, higher semantic
similarity between the topic and the vehicle in
literal comparisons than in figurative comparisons
(Niculae and Danescu-Niculescu-Mizil, 2014,
Qadir et al., 2015; Mpouli, 2017), and dictionary
definitions (Qadir et al., 2016), while more recent
work is based on neural methods (Liu et al., 2018;
Zeng et al., 2020). Simile interpretation focused
on inferring the implicit property (Qadir et al.,
2016). In other lines of work, Chakrabarty et al.
(2020b) and Zhang et al. (2021) proposed
methods for generating similes from their literal
counterparts, while Chakrabarty et al. (2021a)
showed that state-of-the-art NLI models fail on
pragmatic inferences involving similes.

2.3 Human Processing of Figurative Language

The ways in which humans process figurative
language may inspire computational work on fig-
urative language interpretation. Cooper (1999)
studied how L2 English speakers interpret un-
familiar English idioms. He found that the leading
strategy was to infer the meaning from the given
context, which led to successful interpretation
57% of the time, followed by relying on the literal
meaning of the constituent words (22% success
rate). For example, a participant asked to inter-
pret ‘‘robbing the cradle’’ in the context ‘‘Robert
knew that he was robbing the cradle by dating
a sixteen-year-old girl’’ used the literal meaning
of cradle to associate the meaning with babies
and indirectly with young age, and along with
the context inferred that it meant to ‘‘date a very
young person’’. Asl (2013) repeated the same ex-
periment with stories, and concluded that longer
contexts improved people’s ability to interpret un-
known idioms. With respect to novel similes and
metaphors, they are interpreted through shared
literal attributes between the topic and vehicle
(e.g., ‘‘Antarctica is cold, can a house also be
cold?’”) (Wolff and Gentner, 2000; Carston and
Wearing, 2011).

2.4 Narrative Understanding

Early computational work on narrative un-
derstanding extracted chains of subevents and
their participants from narratives (Chambers and
Jurafsky, 2009). An alternative task is ma-
chine reading comprehension, that is, answering
multiple-choice questions based on a narrative,



such as MCTest (Richardson et al., 2013) and
NarrativeQA (Kocisky et al., 2018).

The most commonly used benchmark for
narrative understanding today is ROCStories
(Mostafazadeh et al., 2016), a collection of 50k
five-sentence commonsense stories pertaining to
everyday life. The story cloze task requires mod-
els to identify the plausible continuation sentence
among two candidate continuations in its discrimi-
native form, or generate a plausible sentence, in its
generative form. Since the release of this dataset,
many computational approaches for the task have
been developed (Chaturvedi et al., 2017; Schwartz
et al., 2017b; Cai et al., 2017; Srinivasan et al.,
2018; Lietal., 2019; Cui et al., 2020; Brown et al.,
2020, inter alia). In this paper, we follow the story
cloze benchmark setup, and collect benchmarks
particularly aimed at testing the comprehension of
figurative language in narratives.

2.5 Commonsense Knowledge Models

Many language tasks require relying on implicit
commonsense knowledge that is never mentioned
explicitly because it is assumed to be known by
everyone. To that end, commonsense knowledge
bases (KBs) record such facts. Notably, Concept-
Net (Speer et al., 2017) is a large-scale concept-
centric KB, while ATOMIC (Sap et al., 2019)
contains event-centric knowledge about causes,
effects, and the mental states of the participants.
To overcome the sparsity of KBs, knowledge
models such as COMET (Bosselut et al., 2019;
Hwang et al., 2021) fine-tuned an LM on struc-
tured KB triplets. COMET is capable of providing
inferences for new events or concepts. Para-
COMET (Gabriel et al., 2021a) is an extension
of ATOMIC-COMET that works at the paragraph
level and generates discourse-aware common-
sense knowledge. Recently, several works have
used such commonsense knowledge models for
improved natural language understanding or gen-
eration such as Bhagavatula et al. (2019) for
abductive reasoning, Shwartz et al. (2020) for
QA, Guan et al. (2019), and Ammanabrolu et al.
(2020) for story generation, Majumder et al.
(2020) for dialog generation, and Chakrabarty
et al. (2020a; 2020b; 2021b) for creative text
generation.

In our work we use the knowledge models
COMET (Hwang et al., 2021) and ParaCOMET
(Gabriel et al., 2021a), respectively, to provide

Idioms Similes

any port in a storm
been there, done that
slap on the wrist

no time like the present
lay a finger on

walk the plank

curry favour

not to be sneezed at

no peace for the wicked

like a psychic whirlpool

like a moth-eaten curtain

like a first date

like a train barreling of control

like a sodden landscape of melting snow
like a Bunsen burner flame

like a moldy old basement

like a street-bought Rolex

like an endless string of rosary beads

Table 1: Examples of idioms and similes present
in the narratives in our datasets.

more information about the literal meaning of
constituent words or the narrative context useful
to infer the figurative expressions meaning.

3 Data

We build datasets aimed at testing the understand-
ing of figurative language in narratives, focusing
on idioms (Section 3.1) and similes (Section 3.2).
We posit that a model that truly understands the
meaning of a figurative expression, like humans
do, should be able to infer or decide what happens
next in the context of a narrative. Thus, we con-
struct a dataset in the form of the story-cloze test.

3.1 Idioms

We compile a list of idioms, automatically find
narratives containing these idioms, and then elicit
plausible and implausible continuations from
crowdsourcing workers, as follows.

Collecting Idioms. We compile a list of 554
English idioms along with their definitions from
online idiom lexicons.? Table 1 presents a sample
of the collected idioms.

Collecting Narratives. We use the Toronto
Book corpus (Zhu et al., 2015), a collec-
tion of 11,038 indie ebooks extracted from
smashwords.com. We extract sentences from
the corpus containing an idiom from our list, and
prepend the 4 preceding sentences to create a nar-
rative. We manually discarded paragraphs that did
not form a coherent narrative. We extracted 1,455
narratives with an average length of 80 words,
spanning 554 distinct idioms.

2yww . theidioms. com, idioms. thefreedictionary.com.
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Collecting Continuations. We collected plausi-
ble and implausible continuations to the narrative.
We used Amazon Mechanical Turk to recruit 117
workers. We provided these workers with the
narrative along with the idiom definition, and in-
structed them to write plausible and implausible
continuations that are pertinent to the context, de-
pend on the correct interpretation of the idiom,
but that don’t explicitly give away the meaning of
the idiom. We collected continuations from 3 to
4 workers for each narrative. The average plau-
sible continuation contained 12 words, while the
implausible continuations contained 11 words.

To ensure the quality of annotations, we re-
quired that workers have an acceptance rate of
at least 99% for 10,000 prior HITs (Amazon
Mechanical Turk tasks), and pass a qualification
test. We then manually inspected the annotations
to identify workers who performed poorly in
the initial batches, disqualified them from fur-
ther working on the task, and discarded their
annotations.

Our automatic approach for collecting narra-
tives does not account for expressions that may be
used figuratively in some contexts but literally in
others. For example, the idiom ‘‘run a mile’’ (i.e.,
avoiding something in any way possible) may
also be used literally to denote running a distance
of one mile. To avoid including literal usages,
we instructed the workers to flag such examples,
which we discard from the dataset. We further
manually verified all the collected data. Overall,
we removed 12 such narratives.

The final idiom dataset contains 5,101
<narrative, continuation> tuples, exemplified in
the top part of Figure 1. We split the examples to
train (3,204), validation (355), and test (1,542)
sets. To test models’ ability to generalize to
unseen idioms, we split the data such that there
are no overlaps in idioms between train and test.

3.2 Similes

A simile is a figure of speech that usually consists
of a topic and a vehicle (typically noun phrases)
that are compared along a certain property using
comparators such as ‘‘like’” or ‘‘as’’ (Hanks,
2013; Niculae and Danescu-Niculescu-Mizil,
2014). The property may be mentioned (explicit
simile) or hidden and left for the reader to infer
(implicit simile). We focus on implicit similes,
which are less trivial to interpret than their ex-
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plicit counterparts (Qadir et al., 2016), and test a
model’s ability to recover the implicit property.

Collecting Similes. Because there are no reli-
able methods for automatically detecting implicit
similes, we first identify explicit similes based on
syntactic cues, and then deterministically convert
them to implicit similes. We look for sentences
in the Toronto Book corpus containing one of
the syntactic structures ‘‘as ADJ/ADV as’ or
““ADJ/ADV like’’ as a heuristic for identifying
explicit similes. We additionally add the con-
straint of the vehicle being a noun phrase to avoid
examples like ‘‘I worked as hard as him’’. We re-
move the adjectival property to convert the simile
to implicit, as demonstrated below:

Explicit:

He feels calm, like a high mountain lake without a wind
stirring it.

He feels as calm as a high mountain lake without a wind
stirring it.

Implicit:

He feels like a high mountain lake without a wind stirring it.

We collected 520 similes along with their as-
sociated property. We asked workers to flag any
expression that was not a simile, and manually
verified all the collected data. Table 1 presents
a sample of the collected similes. Many of the
similes are original, such as ‘‘like a street-
bought Rolex’” which implies that the subject is
fake or cheap.

Collecting Narratives. Once we identified the
explicit simile and converted it to its implicit
form, we similarly prepend the 4 previous sen-
tences to form narratives. The average length of
the narrative was 80 words.

Collecting Continuations. We repeat the same
crowdsourcing setup as for idioms, providing the
explicit simile property as the definition. Each nar-
rative was annotated by 10 workers. The average
length of continuations was identical to the idiom
dataset (12 for plausible and 11 for implausible).

The simile dataset contains 4,996 <narrative,
continuation> tuples, exemplified in the bottom
part of Figure 1. We split the examples to train
(3,100), validation (376), and test (1,520) sets with
no simile overlaps between the different sets.

4 Discriminative Task

The first task we derive from our dataset is of dis-
criminative nature in the setup of the story cloze



task. Given a narrative N and two candidate con-
tinuations {Cy, C}, the goal is to choose which
of the continuations is more plausible.

4.1 Methods

For both idioms and similes, we report the per-
formance of several zero-shot, few-shot, and
supervised methods as outlined below. Most of
our experiments were implemented using the
transformers package (Wolf et al., 2020).

Zero-shot. The first type of zero-shot mod-
els is based on standard language model score
as a proxy for plausibility. We use GPT-2 XL
(Radford et al., 2019) and GPT-3 (Brown et al.,
2020) to compute the normalized log-likelihood
score of each continuation given the narra-
tive, predicting the continuation with the highest
probability: argmax; Pras(C;|N).

We also use UnifiedQA (Khashabi et al., 2020),
a T5-3B model (Raffel et al., 2020) trained on 20
QA datasets in diverse formats. We don’t fine-tune
it on our dataset, but instead use it in a zero-shot
manner, with the assumption that the model’s
familiarity with QA format and with the narra-
tive domain through training on the NarrativeQA
dataset (Kocisky et al., 2018) would be useful. To
cast our task as a QA problem we format the input
such that the question is ‘“Which is more plausible
between the two based on the context?”’.

Few-shot. Language models like GPT-3 have
shown impressive performance after being
prompted with a small number of labelled exam-
ples. A prompting example in which the correct
continuation is the first is given in the following
format: Q: N (1) C; (2) Co A: (1).

We provided the model with as many prompting
examples as possible within the GPT-3 API limit
of 2,048 tokens, which is 6 examples. The test
examples are provided without the answer and the
model is expected to generate (1) or (2).

We also use the recently proposed Pattern
Exploiting Training model (PET; Schick and
Schiitze, 2021). PET reformulates the tasks as
a cloze question and fine-tunes smaller masked
LMs to solve it using a few training examples.?

3Specifically, ituses ALBERT XXL V2 (Lanetal., 2020),
which is 784 times smaller than GPT-3.
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We use the following input pattern: ‘““N. Cj.
You are _’° for idioms and ‘““N. C;. That
was _7° for similes. PET predicts the masked
token and maps it to the label inventory using
the verbalizer {‘‘right”’, ‘‘wrong’’} for idioms
and {“‘expected’’, ‘‘unexpected’’} for similes
respectively mapping them to {TRUE, FALSE}.* We
provide each model 100 training examples, train
it for 3 epochs, and select the model that yields
the best validation accuracy.

Supervised. We fine-tune RoBERTa-large
(Liu et al., 2019) as a multiple-choice model. For
a given instance, we feed each combination of
the narrative and a continuation separately to the
model in the following format: N < s/ > C;.

We pool the representation of the start token to
get a single vector representing each continuation,
and feed it into a classifier that predicts the contin-
uation score. The model predicts the continuation
with the higher score. We fine-tune the model for
10 epochs with a learning rate of 1e—5 and a batch
size of 8, and save the best checkpoint based on
validation accuracy.

Knowledge-Enhanced. Inspired by how hu-
mans process figurative language, we develop
RoBERTa-based models enhanced with common-
sense knowledge. We develop two models: The
first model obtains additional knowledge to bet-
ter understand the narrative (context), while the
second seeks knowledge pertaining to the literal
meaning of the constituents of the figurative ex-
pression (Section 2.3). In both cases, in addition
to the narrative and candidate continuations, the
model is also provided with a set of inferences:
{Inf, . .., Inf, } that follow from the narrative,
as detailed below and demonstrated in Figure 2.
The literal model uses the COMET model
(Hwang et al., 2021), a BART-based language
model trained to complete incomplete tuples from
ConceptNet. As opposed to extracting knowledge
from ConceptNet directly, COMET can gener-
ate inferences on demand for any textual input.
For an idiom, we retrieve knowledge pertain-
ing to the content words among its constituents,

*We also experimented with the pattern and verba-
lizer used by Schick and Schiitze (2021) for MultiRC
(Khashabi et al., 2018), with the pattern: ““N. Question:
Based on the previous passage is C; a plau-
sible next sentence? _.”” and the verbalizer {‘‘yes’’,
“no’’}, but it performed worse.



@ Knowledge Extraction

Narrative

:Isaac yelled across the cliff face to me.

iThe rush of beating the tempest had his adrenaline pumping.

IT could see he was scared, yet invigorated.

:Ok man, You're up next, he yelled out to me. A sick feeling swept over me.

previous
sentences

|

Contex

2

The narrator sweats from nerves
The narrator feels scared

Relations: xNeed , xIntent, xWant, xReact, xEffect, xAttr

The narrator wants to feel better.

content words:
{run, gauntlet}

Literal . .
Run is used for get exercise

Run has the property found on gym
Gauntlet is used as a weapon

9)

~

Relations: Desires ,CapableOf, HasProperty, AtLocation, UsedFor, MadeUpOf

Figure 2: Extracting inferences from COMET regarding the context (previous sentences in the narrative) and the
literal meaning of the content words among the idiom constituents.

@ Knowledge Integration (discriminative)

(1)
(2)

I took a deep breath, convinced it was time, and
I took a deep breath, convinced it was time, and

Inference Narrative

ran full-speed away from the cliff.
ran full-speed towards the edge of the cliff.

: Run is used to get exercise </s>Isaac yelled ... run the gauntlet. </s>

| Gauntlet is used as a weapon </s>Isaac yelled ... run the gauntlet.</s>

... full-speed away from the cliff.

I
I RoBERTa
i

... full-speed away from the cliff. | seorer

Predict |,

—> argmax; Z S
=1

S11

S1.12

Figure 3: Integrating commonsense inferences into a RoOBERTa-based discriminative model.

focusing on the following relations: UsedFor,
Desires, HasProperty, MadeUpOf, At—
Location, and CapableOf. For each content
word, we extract the top 2 inferences for each
relation using beam search. For example, given
the idiom ‘‘run the gauntlet’’, we obtain infer-
ences for ‘‘run’’ and ‘‘gauntlet’’. We convert the
inferences to natural language format based on
the templates in Guan et al. (2019). Given the
nature of the simile task, we focused solely on
the vehicle’s HasProperty relation and ob-
tain the top 12 inferences. For example, given
the simile ‘‘like a psychic whirlpool’’, we obtain
inferences for the phrase ‘“psychic whirlpool”’.

The context model is enhanced with knowledge
from ParaCOMET (Gabriel et al., 2021a), trained
on ATOMIC. We feed into ParaCOMET all but
the last sentence from the narrative, excluding
the sentence containing the figurative expres-
sion. We generate inferences along ATOMIC
dimensions pertaining to the narrator (Per sonX),
namely: xIntent, xNeed, xAttr, xWant,
xEffect, and xReact. Again, we extract
the top 2 inferences for every relation using
beam search.

In both models, as demonstrated in Figure 3,
the input format X;; for continuation C; and
inference Inf; is: Inf; <s/ > N <s/> C;.
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We compute the score of each of these state-
ments separately, and sum the scores across
inferences to get a continuation score:

12 12
5 = Z Sij = Z scorer(RoBERTa(X; ;))

J=1 J=1

where scorer is a dropout layer with dropout
probability of 0.1 followed by a linear classifier.
Finally, the model predicts the continuations with
the higher score. We fine-tune the context and
literal models for 10 epochs with a learning rate of
le—>5 and an effective batch size of 16 for idioms
and 64 for similes, and save the best checkpoint
based on validation accuracy.

4.2 Results

Table 2 shows the performance of all models
on the discriminative tasks. For both similes and
idioms, supervised models perform substantially
better than few-shot and zero-shot models, but
still leave a gap of several points of accuracy
behind human performance. Human performance
is the average accuracy of two native English
speakers on the task. We did not provide them
with the idiom definition, and we assume they
were familiar with the more common idioms. The
models performed somewhat better on idioms



Method Model Idiom Simile
Majority 50.0 50.8
GPT2-XL 53.6 53.7

Zero-shot GPT3 60.2 62.4
UnifiedQA 67.7 60.6

Few-shot GPT3 54.1 51.7
v PET 66.1 55.2

Supervised RoBERTa 82.0 80.4
upervise -narrative 65.0 67.9
Knowledge Context 82.8 79.9
Enhanced Literal 83.5* 80.6
Human Performance 92.0 95.0

Table 2: Model performance (accuracy) on the
idiom and simile discriminative tasks. * Differ-
ence is significant (v < 0.07) between the super-
vised and knowledge-enhanced models via t-test.

than on similes, possibly due to the LMs’ famil-
iarity with some common idioms as opposed to
the novel similes.

Among the zero-shot models, GPT-2 performed
worse than GPT-3 and UnifiedQA, each of which
performed best on one of the tasks. In particu-
lar, UnifiedQA performed well on idioms, likely
thanks to its familiarity with the QA format and
with the narrative domain.

In the idiom task, PET outperformed few-shot
GPT-3 by a large margin of 12 points in accuracy
for idioms and 3.5 points for simile, which we
conjecture is attributed to the different number of
training examples: 6 for GPT-3 vs. 100 for PET.
The small number of examples used to prompt
GPT-3 is a result of the API limit on the number
of tokens (2,048) as well as the setup in which
all prompting examples are concatenated as a
single input.

Overall, few-shot models performed worse than
zero-shot models on both datasets. We conjecture
that this is due to two advantages of the zero-shot
models. First, the GPT-2 and GPT-3 models per-
formed better than the majority baseline thanks to
the similarity between the task (determining which
continuation is more plausible) and the language
model objective (guessing the next word). Second,
the UnifiedQA model performed particularly well
thanks to its relevant training. At the same time,
both few-shot models had to learn a new task from
just a few examples.

The supervised models leave some room for
improvement, and the knowledge-enhanced mod-

596

els narrow the gap for idioms. For similes we
see a minor drop in the context model and nearly
comparable performance for the literal model.

Annotation Artifacts. Human-elicited texts of-
ten contain stylistic attributes (e.g., sentiment,
lexical choice) that make it easy for models to
distinguish correct from incorrect answers with-
out solving the actual task (Schwartz et al,
2017a; Cai et al., 2017; Gururangan et al., 2018;
Poliak et al., 2018). Following previous work,
we trained a continuation-only baseline, which
is a RoBERTa-based supervised model that
was trained only on the candidate continuations
without the narrative. The results in Table 2
(-narrative) show that the performance is
above majority baseline, indicating the existence
of some bias. However, the performance of this
baseline is still substantially worse than the su-
pervised baseline that has access to the full input,
with a gap of 17 points for idioms and 12 points
for similes, indicating that this bias alone is not
enough for solving the task.

4.3 Analysis

The knowledge-enhanced models provide vari-
ous types of inferences corresponding to different
relations in ConceptNet and ATOMIC. We are
interested in understanding the source of improve-
ments from the knowledge-enhanced models over
the supervised baseline, by identifying the re-
lations that were more helpful than others. To
that end, we analyze the test examples that
were incorrectly predicted by the supervised
baseline but correctly predicted by each of the
knowledge-enhanced models. We split the ex-
amples such that every example consists of a
single inference, and feed the following input
into the model to predict the plausible continua-
tion: Inf <s/> N <s/> C. We focus on the
idiom dataset, since for the literal model for sim-
iles the only used relation was HasProperty
and the context model performed slightly worse
than the baseline.

Table 3 shows the percents of successful test set
predictions for each relation type. The relations
in the context model perform similarly, with the
best relation xReact performing as well as all
of the relations (Table 2). In the literal model, it
seems that the combination of all relations is ben-
eficial, whereas the best relation, CapableOf,
performs slightly worse than the full model. For



Literal Context

HasProperty 82.3 xNeed 82.2
CapableOf 83.2 xIntent 82.6
Desires 82.5 xWant 82.2
AtLocation 82.7 xReact 82.8
UsedFor 82.4 xEffect 82.5
MadeUpOf 82.8 xAttr 82.5

Table 3: Percents of successful predictions for
each relation type for the test set examples.

a narrative snippet ‘‘Since Dominic isn’t up for
grabs anymore, I figure that I will concentrate on
something else, Carmen declares’’, the inference
“‘grabs is capable of hold on to’’ was compliant
with the meaning of ‘‘up for grabs’’ (available
or obtainable), and led to the correct prediction
of the plausible continuation ‘‘“The good news is
that there are many other available bachelors out
there’’. Conversely, the inference corresponding
to the Desires relation was ‘‘grab desires mak-
ing money’’ which was irrelevant and led to an
incorrect prediction.

5 Generative Task

In the generative task, given a narrative N, the
goal is to generate a plausible next sentence
that is coherent with the context and consistent
with the meaning of the figurative expression.
Each instance consists of a reference plausible
continuation C.

5.1 Methods

We similarly experiment with zero-shot, few-shot,
and supervised models.

Zero-shot. We use standard LMs, GPT-2 XL
and GPT-3, to generate the next sentence fol-
lowing the narrative. We let the models generate
up to 20 tokens, stopping when an end of sen-
tence token was generated. Following preliminary
experiments, for GPT-2 XL and the rest of the
models we use top-k sampling (Fan et al., 2018)
as the decoding strategy with £ = 5 and a softmax
temperature of 0.7, while for GPT-3 we use the
method provided in the API which is nucleus sam-
pling (Holtzman et al., 2020) with a cumulative
probability of p = 0.9.

Few-shot. We prompt GPT-3 with 4 training
examples of the form Q: N A: C followed
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by each individual test example, and decode
the answer.

Supervised. We fine-tune GPT-2 XL with a
language model objective for 3 epochs with a batch
size of 2. We also trained T5 large (Raffel et al.,
2020) and BART large (Lewis et al., 2020) as
encoder-decoder models. Both were trained for 5
epochs for idioms and 20 epochs for similes, with
an effective batch size of 64. For each model, we
kept the best checkpoint based on the validation
set perplexity, and used top-k decoding with k = 5
and a temperature of 0.7.

Knowledge-Enhanced. We followed the same
intuition and inferences we used for the knowledge-
enhanced discriminative models (Section 4.1). We
fine-tune the models for one epoch as the effective
data size is multiplied by the number of inferences
per sample. The overall architecture of the gen-
erative knowledge-enhanced model is depicted in
Figure 4. The models are based on GPT-2 XL
and trained with a language model objective to
predict the next sentence given the narrative and
a single inference. The input format for infer-
ence Inf; is: Inf; <sepl> N <sep2>, where
<sepl> and <sep2> are special tokens, and
the expected output is the plausible continuation
C. During inference, we combine the generations
from all inferences pertaining to a given narra-
tive. Inspired by Liu et al. (2021), who ensemble
logits from multiple LMs, we ensemble the logits
predicted for multiple input prompts using the
same model.

A standard decoding process gets at each time
step an input prompt text z; of length ¢ — 1. The
prompt is encoded and the model outputs the logits
for the next (") token, denoted by z; € RV,
where V is the vocabulary. To get a discrete
next token, z; is normalized and exponentiated
to resemble a probability distribution over the
vocabulary: P(X|z<;) = softmax(z;), and the
next token x; is sampled from P(X;|x<¢). This
token is then appended to the prompt and the
process iteratively continues until a predefined
length or until an end of sentence token had
been generated.

Our decoding process differs in that at time step
t, we compute the logits zt}il corresponding to
the prompts derived from each of the inferences:
Inf; <sepl> N <sep2> for j 1...12.
We sum the logits vectors to obtain z; = 2;2:1 2t
from which we decode the next token as usual.
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Figure 4: Integrating commonsense inferences into a GPT2-based generative model.

Idiom Simile
Method Model
R-L  B-S R-L  B-S
GPT2-XL 6.2 402 170 477
Zero-shot
GPT3 82 336 139 402
Few-shot GPT3 128 512 231 56.1
GPT2-XL 159 542 262 59.0
Supervised  T5-large 129 51.0 229 549
BART-large 124 488 26.7 584
Knowledge Context 154 526 205 551
Enhanced Literal 13.6 514 289 59.1

Table 4: Model performance on the generative
tasks in terms of automatic metrics. R-L denotes
Rouge-L and B-S denotes BERT-Score.

5.2 Results

Automatic Evaluation. Table 4 shows the per-
formance of all the models on the generative
tasks in terms of automatic metrics. We report the
performance of the recall-oriented n-gram over-
lap metric Rouge-L (Lin, 2004), typically used
for summarization tasks, and the similarity-based
BERT-Score (Zhang et al., 2019). We use the lat-
est implementation to date, which replaces BERT
with deberta-large-mnli—a DeBERTa
model (He et al.,, 2021) fine-tuned on MNLI
(Williams et al., 2018). In terms of automatic eval-
uation, the best-performing knowledge-enhanced
model (context for idioms and literal for similes)
performs similarly to the GPT-2 XL supervised
baseline, with slight preference to the baseline for
idioms and to the knowledge-enhanced model
for similes. Both types of supervised models
outperform the zero-shot and few-shot models.

Human Evaluation. Although automatic met-
rics provides an estimate of relative model
performance, these metrics were often found to
have very little correlation with human judgments
(Novikova et al., 2017; Krishna et al., 2021). To
account for this we also performed human eval-
uation of the generated texts for a sample of the
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Model Absolute Comparative
Idiom Simile Idiom Simile
GPT2-XL 56 60 15 18.6
+Context 68 68 45 16
+Literal 48 76 13 46.7
Human 80 88 — —
All — — 8 12
Neither — - 17 6.7

Table 5: Percent of times that the generation
from each of the models and human-written
references was chosen as plausible (absolute)
or preferred (comparative) by the majority of
workers.

test narratives. The human judgments were col-
lected using Amazon Mechanical Turk. Workers
were shown a narrative, the meaning of the id-
iom (or the property of the simile), and a list of
3 generated continuations, one from each of the
supervised GPT-2 model, the context model, and
the literal model. We performed two types of eval-
uations. In the absolute evaluation, we randomly
sampled 50 narratives for each task, and asked
workers to determine for each of the generated
continuations along with the human references
whether it is plausible or not. In the comparative
evaluation, we randomly sampled 100 narratives
for idioms and 75 for similes, and presented the
workers with a randomly shuffled list of continu-
ations, asking them to choose the most plausible
one (or indicate that ‘‘neither of the genera-
tions were good’’ or ‘‘all are equally good’’).
In both evaluations, workers were instructed to
consider whether the generation is sensical, co-
herent, follows the narrative, and consistent with
the meaning of the figurative expression. Each
example was judged by 3 workers and aggregated
using majority voting. The inter-annotator agree-
ment was moderate with Krippendorff’s o = 0.68
and o = 0.63 for the absolute and comparative
evaluations, respectively (Krippendorff, 2011).

In both absolute and comparative performance,
Table 5 shows that for each of the tasks,



Given These Narratives

“I ...I'1ll ask you once more. How much did you
make by a fighter taking that dive?”

The boy hesitated. “A thousand dollars."

Lucky Luciano laughed. “That's chicken feed”.

She wanted to know if it could do more damage.
"It's so hard to say," he answered. "But I

A honestly don't know how it could do more
% damage.

Maybe it could deflect the attention
to him, where it should be." "it's fine," she
said, her monotone voice an echo of his

sister. She was like a high-definition TV.

System Generated Continuations

He was lucky he made so little X GPT2
Lucky Luciano made much more money by

doing other things such as fixing cars %context
or selling drugs

It was hard to tell what she was thinking X GPT-2
Her voice was so smooth, you could hear / +iteral

every word she said

Figure 5: Narratives ending in an idiom (top) or a simile (bottom) with the continuations generated by the baseline
GPT-2 model and a knowledge-enhanced model, as preferred by human judges.

Model

Category

Example

Literal
(Simile)

Context
(Idiom)

@

Is that how you got those bruises on your face? They colored her pure white skin like
a sloppily designed ink blot test It was as if her skin was smudged with a brownie.

We stand there munching next to the evening sun-swept grass and whispering trees of
Duboce Park, where a bunch of happy-ass dogs are sprinting around in circles while
their owners stand there like a scarecrow convention. The humans were having a
great time, jumping and barking and running around.

She could hold some of her thoughts while she was a wolf.Better than the rest of us.
Not as well as Sam, but better than me.She and Derrick were thick as thieves They
would always be looking for opportunities to steal

That’s why I packed the heat. Just in case I needed some motivation for him to calm
down should he be inclined to go ballistic on me. : because I was thinking of ways to

©)

solve this problem in a peaceful way

Table 6: An example for each error category. Each example consists of a narrative, with the figurative

expression in bold and the continuation in italic.

a knowledge-enhanced model outperformed the
baseline GPT-2 model. What makes a more com-
pelling case is that the context model was favored
for idioms while the literal model was favored for
similes, complying with prior theoretical ground-
ing on these figurative language types. Figure 5
shows examples generated by the baseline and the
best model for each task. We note that 80% of the
human-written continuations for idioms and 88%
of those in the simile task were judged as plausible.
Based on our analysis, the gap from 100% may be
explained by the ambiguity of the narratives that
leaves room for subjective interpretation.

5.3 Error Analysis

We analyze the continuations labeled as implau-
sible by the annotators, for the best model in
each task: context for idioms and literal for
similes. We found the following error catego-
ries, with percent details in Table 7 and exem-
plified in Table 6:
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Cat. Literal (Simile) Context (Idioms)
) 50 72
@ 33 14
€) 17 14

Table 7: Error categories along with their
proportion (in %) among the implausible
continuations.

(D Inconsistent with the figurative expression:
The continuation is inconsistent or contradic-
tory to the figurative expression. For instance,
the simile in the first row in Table 6 is ‘‘like a
sloppily designed ink blot test’’, for which the
property of comparison is ‘‘a pattern of dark blue,
purple, and black’’, but the generated continua-
tion mentions brownie, which has a brown color.
Similarly for the idiom ‘‘thick as thieves’ the
model generates a literal continuation without



understanding its actual meaning ‘‘closest of
friends’’.

2 Inconsistent with the narrative: The con-
tinuation is inconsistent or contradictory to the
flow of the narrative. For instance, the narrative in
the second row in Table 6 states that ‘‘the owners
who are humans are standing’’, while the contin-
uation states they are jumping. The model further
predicts that the humans are barking, instead of
the dogs. In general, across multiple examples we
have found that models tend to confuse the various
characters in the narrative.

@ Spelling or grammar errors: Some gener-
ations contained spelling mistakes or introduced
grammar errors such as starting with a punc-
tuation or having extra blank spaces. Although
we instructed the crowdsourcing workers to ig-
nore such errors, they may have affected their
plausibility judgments.

6 Conclusion

We introduced a narrative understanding bench-
mark focused on interpreting figurative language,
specifically idioms and similes. Following the
story cloze test, we designed discriminative and
generative tasks with the goal of continuing a
narrative. We found that pre-trained LMs irre-
spective of their size struggle to perform well
in zero-shot and few-shot setting, and that the
supervised models while competitive are still
behind human performance by a significant mar-
gin. We further bridged some of this gap with
knowledge-enhanced models that are inspired by
the way humans interpret figurative expressions.
Our analysis reassessed known findings that al-
though LMs generate grammatical human-like
texts, they are often inconsistent and the model’s
ability to distinguish characters in a story is lim-
ited. We hope this work will spark additional
interest in the research community to further ad-
vance the representations and modeling of fig-
urative language, which is too common to ignore.
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