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Abstract

We present a memory-augmented approach to
condition an autoregressive language model
on a knowledge graph. We represent the graph
as a collection of relation triples and re-
trieve relevant relations for a given context
to improve text generation. Experiments on
WikiText-103, WMT19, and enwik8 English
datasets demonstrate that our approach pro-
duces a better language model in terms of per-
plexity and bits per character. We also show
that relational memory improves coherence, is
complementary to token-based memory, and
enables causal interventions. Our model pro-
vides a simple yet effective way to combine an
autoregressive language model and a knowl-
edge graph for more coherent and logical
generation.

1 Introduction

A core function of language is to communicate
propositions (e.g., who did what to whom). As
such, language models need to be able to generate
this information reliably and coherently. Existing
language models (Devlin et al., 2019; Radford
et al., 2019; Brown et al., 2020) do not have ex-
plicit representations for such information and
rely on it being implicitly encoded in their param-
eters (Liu et al., 2019; Petroni et al., 2019; Wang
et al., 2020). This encoding mechanism makes
it difficult to interpret what the language mod-
els know and often leads to generating illogical
and contradictory contents. For example, Logan
et al. (2019) observe that existing language mod-
els rely heavily on word correlation and fall short
of logical reasoning. This causes the model to hal-
lucinate—for example, that Barack Obama’s wife
is Hillary Clinton based on the high co-occurrence
of the two entities. In another example, Lake and
Murphy (2020) notice that GPT-2 (Radford et al.,

∗Work completed during an internship at DeepMind.

2019) states that unicorns have four horns, directly
after speaking that unicorns have one horn.

In this work, we explore ways to combine an
autoregressive language model with a knowledge
graph. We design a memory-augmented archi-
tecture that stores relations from a knowledge
graph and investigate the effect of conditioning on
this relational memory in an autoregressive lan-
guage model. In contrast to existing token-based
memory-augmented language models that store
context-target pairs (Khandelwal et al., 2020b;
Yogatama et al., 2021), our memory stores relation
triples (head entity, relation, tail entity). Relation
triples form the basis of knowledge bases, empow-
ering a wide range of applications such as question
answering (Yasunaga et al., 2021), machine read-
ing (Yang and Mitchell, 2019), and reasoning
(Minervini et al., 2020). From a cognitive science
perspective, we can consider the neural language
model to be an instance of System 1, which per-
forms fast inference and the symbolic relational
memory as a world model to support slow and log-
ical reasoning of System 2 (Kahneman, 2011).1

We hypothesize that relational memory can im-
prove performance and coherence of an autore-
gressive language model.

Given an observed context, we first run an en-
tity tagger to identify entities in the context. We
then use tf-idf (Ramos et al., 2003) to select salient
entities. We retrieve relations (from a knowledge
base) for the selected entities and design a gat-
ing function that allows the language model to
adaptively combine information from extracted
relations and observed textual context to predict
the next token. Existing knowledge bases such as
Freebase and Wikidata can be used as a source
of information from which to retrieve relations.
However, they are often incomplete and do not
contain relations that are suitable for the particular

1This view is also advocated in a parallel work by
Nye et al. (2021), which presents a model for story generation
and instruction following.
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dataset that we want to work with. Instead of us-
ing these predefined knowledge bases, we choose
to perform open information extraction (OpenIE)
on each language modeling dataset to get relations.
As a result, our model is able to move beyond
simple co-occurrence statistics and generate text
that is more grounded on real-world relations ob-
served in a particular corpus.

Our main contributions are as follows:

• We evaluate the model on three English
language modeling datasets. We show that
our model outperforms a strong transformer-
XL baseline (Dai et al., 2019) on both
word-level (WikiText-103 and WMT19) and
character-level (enwik8) language modeling
in terms of perplexity and bits per character
respectively (§3.3).

• We conduct comprehensive ablation and
design choice studies to understand contribu-
tions of different components of our models
(§4.1).

• We measure coherence with human evalua-
tion and two automatic metrics (knowledge
perplexity and knowledge F1) and demon-
strate that relational memory improves co-
herence (§4.2).

• We study the relationship between our
method and a typical memory-augmented lan-
guage model that stores word tokens in its
memory (Yogatama et al., 2021). We show
that relational memory is complementary to
token-based memory and combining them
improves performance further (§3.3).

• We perform qualitative analysis by examin-
ing gate values and retrieved relations. In line
with our main motivation, we find that the
relational memory is particularly useful for
predicting entities. Further, we demonstrate
that such explicit propositional representa-
tions allow causal interventions and increase
interpretability of language models (§4.3).

2 Model

An autoregressive language model defines the
probability of a sequence of tokens p(x) =
p(x1, . . . , xT ). It is common to factorize this
joint probability as a product of conditional proba-

bilities with the chain rule (Jelinek, 1980; Bengio
et al., 2003):

p(x1, . . . , xT ) =
T∏

t=1

p(xt|x0, . . . , xt−1), (1)

where x0 is a special start token.
Our language model is based on transformer-XL

(§2.1) which is augmented with a relational
memory (§2.2). We discuss them in detail below.

2.1 Transformer-XL
We use transformer-XL (Dai et al., 2019)—which
is based on transformer (Vaswani et al., 2017)—
to parametrize the conditional probabilities in
Eq. 1. Transformer stacks multiple self-attention
layers to obtain contextualized representations.

Language modeling datasets usually consist
of articles of different lengths. It is impractical
to apply transformer to encode long articles, as
its computational complexity is quadratic in the
sequence length. In practice, each article is usu-
ally truncated into fixed-length text segments
{xt−N+1, . . . , xt} of length N to train and eval-
uate the model. However, this approximation
prevents transformer from capturing long-term de-
pendency beyond text segments. Transformer-XL
reuses hidden states from previous text segments
to extend the context window.

More specifically, denote the hidden state
of xt at layer � as h�

t . Given a text segment
{xt−N+1, . . . , xt} and its extended context
{xt−N−M+1, . . . , xt−N} of length M , both the
hidden states of the text segment {h�

t−N+1,
. . . ,h�

t} and the hidden states of the extended
context {h�

t−N−M+1, . . . ,h
�
t−N} are used. When

performing self-attention, each token in the text
segment can attend to the preceding tokens in
the text segment and all the tokens in the ex-
tended context, enabling longer-term dependency
compared to a vanilla transformer. Importantly,
transformer-XL does not backpropagate through
the hidden states of the extended context during
training (by adding stop gradient operators to all
the hidden states in the extended context).

2.2 Relational Memory
In this section, we first introduce how we obtain
relation triples using OpenIE (§2.2.1). We then
use tf-idf to score entities in the observed context
and retrieve relation triples related to these entities
(§2.2.2) to construct relational memory. Finally,
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Figure 1: We identify salient entities in the previous text segment and extract relations to build our relational
memory. We encode each relation with an LSTM encoder, aggregate the resulting representations into a vector,
and use a gate mechanism that allows our language model to adaptively take advantage of relational information
for predicting the next token.

we show an integrated architecture that allows
transformer-XL to incorporate the relational mem-
ory for predicting the next token (§2.2.3). We show
our architecture in Figure 1. The pseudocode of
training or evaluating with the relational memory
is demonstrated in Algorithm 1. In the pseudocode,
we use TRAIN(xc, M) and EVAL(xc, M to refer
to training with the cross entropy loss and eval-
uating (e.g., calculating perplexity) on the text
segment xc conditioned on the relational memory
M, respectively.

2.2.1 Open Information Extraction
A key challenge of utilizing relational information
for language modeling is obtaining high-quality
relation triples. There are several well-established
knowledge bases, such as Freebase (Bollacker
et al., 2007) and YAGO (Rebele et al., 2016).
However, existing knowledge bases suffer from
missing relations and often do not contain relation
triples related to observed contexts in a target
corpus, even though research on knowledge base
completion has resulted in significant advances
(Bordes et al., 2013; Trouillon et al., 2016; Zhang
et al., 2019).

In this work, we use OpenIE (Angeli et al.,
2015; Etzioni et al., 2008) to obtain relation
triples. Since OpenIE directly extracts relation
triples from each datasetD, it provides a structured
way to represent knowledge in D.2 Specifically,
we perform OpenIE on the training set of D.
Given an entity e, we retrieve a set of relation
triples Re = {r1, . . . , rO}, where e is either the

2We provide a comparison of using relations extracted
from OpenIE and Freebase in §4.1.

head entity or the tail entity in these relation triples.
Conceptually,Re consists of all the relation triples
from the one-hop subgraph centred at the entity
e in the knowledge graph constructed from D.
Therefore, Re can provide ‘‘global’’ information
about the entity.

Dynamic OpenIE. Dynamic OpenIE takes ad-
vantage of the autoregressive nature of language
modeling, where text segments are sequentially
processed. In addition to extracting relations from
the training set of D, we can also extract re-
lations from previously seen text segments of
our evaluation set. We refer to this extraction
mechanism as dynamic OpenIE. After a text seg-
ment {xt−N+1, . . . , xt} has been evaluated, for
example, after calculating perplexity on this text
segment, we perform OpenIE on it to obtain new
relation triples to be added to our knowledge
graph. Note that we only perform OpenIE on pre-
viously seen text segments and do not use unseen
text. We expect that the relation triples extracted
from seen text segments are potentially useful for
predicting the next tokens. This extraction mech-
anism will not violate the autoregressive nature
of language modeling. Metrics such as perplexity
and bits per character are calculated as usual. The
idea of using seen text segments during evalua-
tion to improve language modeling is related to
dynamic evaluation (Krause et al., 2018, 2019). In
dynamic evaluation, the model is adapted based
on recent history during evaluation via gradient
descent so that it can assign higher probabilities to
re-occurring patterns. In contrast to dynamic eval-
uation, we do not update model parameters and
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Algorithm 1 Train/Eval w/ Relational Memory
1: procedure TRAIN/EVAL SPLIT(S)
2: for each article A in S do
3: Initialise M to empty
4: for each text segment xc in A do
5: if S is train set then
6: TRAIN(xc, M)
7: else
8: EVAL(xc, M)
9: Run dynamic OpenIE on xc

10: end if
11: Perform relation retrieval with xc

12: Update M with retrieved triples
13: end for
14: end for
15: end procedure

only extract new relations from seen text segments
to enrich our corpus-specific knowledge graph.

Mismatch between Training and Evaluation.
As shown in Algorithm 1, because we do not use
dynamic OpenIE during training due to its addi-
tional efficiency overhead (see speed comparison
in §4.1), this results in a mismatch between train-
ing and evaluation. We extract all the relation
triples from the training set of each dataset D be-
fore training on D. As a result, during training we
may retrieve relation triples extracted from unseen
text of the training set when performing relation
retrieval (§2.2.2). We do not suffer from this issue
during evaluation, as we extract relations from
previously seen text of our evaluation set. We
believe this mismatch is minor given the superior
performance of our model in the experiments.

2.2.2 Relation Retrieval
Given a knowledge graph (represented as a col-
lection of triples), an ideal relational memory
consists of a set of triples that are relevant to the
observed context. There are many choices to mea-
sure the relatedness between the observed context
and relation triples in our knowledge graph—for
example, based on keyword search or dense re-
trieval (Karpukhin et al., 2020; Guu et al., 2020;
Yogatama et al., 2021).

In this work, we use keyword search because of
its simplicity and leave methods based on dense
retrieval to future work. Specifically, given the
observed context, we perform entity recognition
(Ratinov and Roth, 2009; Nadeau and Sekine,

2007) on this context and score the tagged entities
with tf-idf (Ramos et al., 2003). The top-K scored
entities (K is set to 5 in our experiments) are
used to retrieve relations {Re1 , . . . ,ReK}. These
retrieved relations are used to construct the re-
lational memory M. Note that the entities are
selected from the observed context, so that un-
seen text is not utilized. We limit the capacity
of M to P . If the number of newly retrieved
triples is larger than P , we randomly drop rela-
tions and only select P of them to be inserted into
M. Otherwise, the relational memory operates
with a first-in-first-out principle. When M is full,
older relations retrieved will be overwritten by
newly retrieved relations. The relational memory
is re-initialized to empty when an article ends.

As shown in Algorithm 1, since we update
M only after processing an entire text segment,
all the tokens in the same text segment will be
conditioned on the same relational memory. This
approach is more efficient compared to updating
M each time a new entity is encountered and is
more amenable for batch training.

2.2.3 Integration with Transformer-XL
We now show how we can integrate relational
memory with transformer-XL. We refer to our
model as RELATIONLM.

Relation Triple Encoding. We first discuss
how we encode relation triples in the relational
memory M. We treat relation triples as text and
serialize each relation triple into a sequence, for
example, (Barack Obama, president of, United
States) is converted into a sequence ‘‘Barack
Obama, president of, United States’’. This se-
quential representation can well capture the order
of head entities and tail entities and is also adopted
by KG-BERT (Yao et al., 2019) and Kepler (Wang
et al., 2021b). Because each example in a batch
corresponds to P retrieved relations, we obtain
B · P relation sequences for each batch, where B
and P denote batch size and relational memory
length, respectively. In the order of hundreds of
relation triples, this prevents us from using large
models (e.g., a multi-layer transformer) to encode
these sequences due to memory constraints. In
our preliminary experiments, we compare LSTM
(Hochreiter and Schmidhuber, 1997), GRU (Cho
et al., 2014), and a one-layer transformer and find
that LSTM performs marginally better. There-
fore, for each relation triple rp, we reuse the
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Dataset # Train # Valid # Test # Articles # Vocab # Entities # Relations # Relations/Entity
WikiText 103M 0.2M 0.2M 28,595 267,735 980K 8.9M 9.03
WMT19 151M 0.3M 0.3M 169,180 50,259 976K 7.8M 7.97
enwik8 94M 5M 5M 12,350 256 361K 2.4M 6.66

Table 1: Statistics of datasets used in our experiments. For each subset, we show the number of
(sub)words for WikiText-103 and WMT19 or the number of characters for enwik8.

transformer-XL word embedding matrix We to
map each token in the sequence to its embedding
vector. We then run LSTM to encode the sequence
and use the hidden representation of the last token
as the relation representation rp.

There are other approaches to encode relation
triples, for example, embedding-based (Bordes
et al., 2013; Trouillon et al., 2016) and graph-based
(Schlichtkrull et al., 2018; Zhang and Chen,
2018) methods. We leave a comparison of these
approaches to future work.

Integration. Given a text segment xc =
{xt−N+1, . . . , xt}, after L self-attention layers
with transformer-XL, we obtain contextualized
representations {hL

t−N+1, . . . ,h
L
t }. At each time-

step t, we use its hidden representation hL
t as the

query vector to attend over the P encoded con-
tents of M, i.e., {r1, . . . , rP }. We use a standard
scaled dot-product attention (Vaswani et al., 2017)
to aggregate all triples into a single vector:

mt =

P∑

p=1

exp(hL
t · rp/

√
d)

P∑
j=1

exp(hL
t · rj/

√
d)

rp,

where d denotes the hidden size of our
transformer-XL. Finally, we combine mt and
transformer-XL representation hL

t via a gate:

gt = σ(Wg[h
L
t ,mt])

zt = gt � hL
t + (1− gt)�mt

p(xt+1 | x≤t) = softmax(Wezt),

where σ is the sigmoid function, [, ] denotes con-
catenation of two vectors, � is element-wise
multiplication, and We is the embedding ma-
trix shared by both input and output embeddings
(Inan et al., 2016). The only new parameters in-
troduced by our method are an LSTM relation
encoder and the gate matrix Wg. This gating
mechanism allows our model to adaptively take
advantage of relational information for predicting
the next token.

3 Experiments

Our experiments seek to evaluate the effect of
augmenting language models with a relational
memory. We introduce datasets used for evalua-
tion (§3.1), discuss implementation details (§3.2),
and present our main results (§3.3). We then
show ablation studies and further analysis of our
model (§4).

3.1 Datasets and OpenIE

We use three English language modeling data-
sets: WikiText-103 (Merity et al., 2017), WMT19
(Barrault et al., 2019), and enwik8 (Hutter, 2012).
Descriptive statistics of these datasets are shown
in Table 1. WikiText-103 and WMT19 are (sub)
word-level datasets, while enwik8 is a character-
level dataset.

WikiText-103 is a knowledge-driven dataset
consisting of featured articles from English
Wikipedia. WMT19 contains English news from
the WMT19 workshop.3 The news are segmented
into months. We use the news from January to
October for training, and news in November and
December for development and test, respectively.
Compared to Wikipedia articles, news contains
more dynamic and temporal information, exposing
new challenges for utilizing relational informa-
tion. We reuse the vocabulary of GPT-2 (Radford
et al., 2019) with 50,259 tokens to tokenize this
dataset. enwik8 contains more than 100M bytes
of Wikipedia text. Character-level language mod-
eling has a much smaller vocabulary size than
(sub)word-level language modeling.

We perform OpenIE on each dataset. For en-
wik8, OpenIE is performed after detokenizing its
text into words. Statistics of extracted relations
are also included in Table 1. Each entity from
WikiText-103, WMT19, and enwik8 has 9.03,
7.97, and 6.66 relation triples on average.

3http://www.statmt.org/wmt19/.
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3.2 Implementation Details
All models are implemented with JAX4 (Bradbury
et al., 2018) and Haiku5 (Hennigan et al., 2020).
We set the hidden size to 512 and the number of
layers to 16 for all models. In (sub)word-level
language modeling, we use adaptive softmax
(Grave et al., 2017) for efficiency. We use GELU
(Hendrycks and Gimpel, 2016) as our activation
function and Adam (Kingma and Ba, 2015) as
the optimizer. For training, we use batch size
128 and train the models on 64 16GB TPUs. We
apply 4,000 warmup steps, before utilizing co-
sine annealing to decay the learning rate. Dropout
(Srivastava et al., 2014) is applied during training
with a rate of 0.25.

We set the lengths of text segment N , extended
context M , and the relational memory P to (512,
512, 300), (384, 384, 800), and (768, 1536, 400)
for WikiText-103, WMT19, and enwik8, respec-
tively. These are determined by grid searches on
development sets.

3.3 Main Results
We compare with a strong transformer-XL base-
line trained under the same setting as our model.
Our main results are shown in Table 2. We ob-
tain three observations comparing transformer-XL
and RELATIONLM. First, RELATIONLM consis-
tently outperforms transformer-XL on all three
datasets, demonstrating the effectiveness of rela-
tional memory. Note that a decrease of 0.01 is
considerable on enwik8 with the bits per character
metric. Second, relational memory not only im-
proves language modeling on knowledge-driven
articles (WikiText-103), but also generalizes to
the challenging news domain (WMT19), where
information is more dynamic and temporal. Last,
the results indicate that relational memory im-
proves both (sub)word-level and character-level
language modeling.

Complementarity to SPALM. SPALM (Yogatama
et al., 2021) is a state-of-the-art memory-augmented
language model. Instead of retrieving relation
triples, it retrieves a set of related tokens at each
timestep. Specifically, it first stores (context, the
next token) pairs from training data. It then uses
a pre-trained transformer language model to mea-
sure the similarities between the stored contexts
and the observed context during training/eval-

4https://github.com/google/jax.
5https://github.com/deepmind/dm-haiku.

Model # Params Dev Test

W
ik

iT
ex

t Transformer-XL 122M 19.0 19.9
RELATIONLM 124M 18.5 19.2
SPALM 122M 18.1 19.0
↪→ + RELATIONLM 124M 17.7 18.6

W
M

T
19

Transformer-XL 114M 21.7 21.5
RELATIONLM 116M 21.0 20.7
SPALM 114M 20.4 20.3
↪→ + RELATIONLM 116M 19.8 19.6

en
w

ik
8

Transformer-XL 93M 1.05 1.03
RELATIONLM 95M 1.04 1.02
SPALM 93M 1.04 1.02
↪→ + RELATIONLM 95M 1.03 1.01

Table 2: We use perplexity (↓) on WikiText-103
and WMT19 and bits per character (↓) on enwik8
for evaluation.

uation. The next tokens of similar contexts are
retrieved and are integrated with the observed
context via a gating mechanism for generation.

We investigate whether RELATIONLM is com-
plementary to SPALM. Because SPALM also uses
a gating mechanism for integrating the retrieved
tokens, we first apply RELATIONLM to combine
transformer-XL output hL

t with relational infor-
mation to obtain zt (as shown in §2.2.3), before
using SPALM to integrate zt with retrieved to-
kens. The results are shown in Table 2. SPALM

outperforms transformer-XL and even performs
comparably or better compared to RELATIONLM
on three datasets, demonstrating the effectiveness
of retrieving related tokens. However, integrat-
ing RELATIONLM and SPALM can further improve
the performance, indicating that these two models
are not mutually exclusive. Therefore, retrieving
relation triples brings complementary benefits to
retrieving tokens.

4 Analysis

In this section, we study several design choices
of relational memory, including its knowledge
source, input component, capacity, dynamic
OpenIE, entity scoring method used, and speed
comparison. We then show quantitative and
qualitative analysis results to better understand
our model.

4.1 Ablations and Design Choice Studies

For the ablation studies, we use the development
set of WikiText-103.
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Model Dev
Transformer-XL 19.0
RELATIONLM + Freebase 19.0
RELATIONLM + OpenIE 18.5

Table 3: RELATIONLM with OpenIE or
Freebase triples.

Model Dev
Transformer-XL 19.0
Triple - Relation - Tail 19.0
Triple - Relation 18.7
Triple 18.5

Table 4: Ablating relation and/or tail
entity from a relation triple.

Source of Relation Triples. We compare re-
lation triples extracted from Freebase or using
OpenIE. In the Freebase case, we use the Freebase
API6 to obtain relation triples for each entity. For
WikiText-103, there are 10.74 relations per entity
on average, which is comparable to OpenIE rela-
tions (9.03 relations/entity). The results are shown
in Table 3. Although Freebase relations have been
observed to improve the performance on smaller
datasets (e.g., WikiText-2; Logan et al., 2019)
and particular domains (e.g., movies and actors;
Ahn et al., 2016), we find that RELATIONLM
with Freebase relations does not improve over
transformer-XL on a much larger WikiText-103
dataset. We observe that a large portion of Free-
base relations is from infoboxes of Wikipedia
pages, which only cover information such as oc-
cupation, birth place, and religion. We believe
these triples are too general to be useful for most
contexts. The result of RELATIONLM with OpenIE
shows the advantages of extracting relations from
each dataset compared to using Freebase relations.

Ablating Relation Triples. We ablate relation
and/or tail entity from a relation triple (head en-
tity, relation, tail entity) to study the contribution
brought by each component. The results are shown
in Table 4. We find that ablating both relation and
tail entity performs comparably to transformer-
XL. As head entities are extracted from the ob-
served context, we believe the extended memory
of transformer-XL can offset the effect brought

6https://developers.google.com/freebase.

Figure 2: Perplexity on WikiText-103 with different
number of relation triples.

Figure 3: Increasing extended memory length.

by conditioning on head entities. Ablating rela-
tion performs better than transformer-XL. This
shows the advantage of introducing tail entities.
Using complete relation triples performs the best,
demonstrating the effectiveness of this triple rep-
resentation of knowledge.

Length of Relational Memory. We study how
many relation triples need to be stored in the re-
lational memory. As shown in Figure 2, we can see
that the perplexity improves with more relation
triples. However, the curve becomes flat with
more than 300 relation triples.

Length of Transformer-XL Memory. As in-
creasing the length of context window can
capture longer dependency, we study whether in-
creasing the length of extended (transformer-XL)
memory removes the performance gap between
RELATIONLM and transformer-XL. As shown in
Figure 3, the performance of both RELATIONLM
and transformer-XL improves with larger ex-
tended memory. However, RELATIONLM still out-
performs transformer-XL even with extended
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Model Wiki WMT ew8
Transformer-XL 19.0 21.7 1.05
w/o Dynamic OpenIE 18.6 21.4 1.04
w/ Dynamic OpenIE 18.5 21.0 1.04

Table 5: Perplexity with and without dynamic
OpenIE.

Model Dev
Random 19.1
Frequency 18.7
tf-idf 18.5

Table 6: Perplexity with dif-
ferent entity scoring methods.

Model Train Eval
Transformer-XL 0.51 0.31
RELATIONLM 0.76 0.65

Table 7: The unit is second/step. We use
batch size 128 and 1 per step for training
and evaluation, respectively.

memory length 3072. We conclude that relational
memory brings complementary benefits to simply
expanding extended memory, since it provides
global information about entities on each dataset.

Dynamic OpenIE. All our main results use dy-
namic OpenIE. We show results without dynamic
OpenIE in Table 5. We include the results on three
datasets for a comparison. We can see that RE-
LATIONLM with dynamic OpenIE performs com-
parably to RELATIONLM without dynamic OpenIE
on WikiText-103 and enwik8, while larger im-
provements are obtained on WMT19. This indi-
cates that dynamic OpenIE is more helpful for
the news domain, which is more dynamic and
temporal compared to knowledge-driven articles.

Entity Scoring. We study different entity scor-
ing mechanisms for relation retrieval. We consider
random selection (where entities extracted from
the observed context are randomly selected),
frequency-based scoring, and tf-idf scoring. As
shown in Table 6, tf-idf performs the best.

Speed Comparison. The wall clock time for
both training and evaluation is shown in Table 7.
RELATIONLM is 1.5 and 2.1 times slower during
training and evaluation, respectively. Evaluation
slows down some more due to dynamic OpenIE
as shown in Algorithm 1.

Dataset Subset # Entity # Non-Entity

WikiText
Dev 61.6K 155.9K
Test 65.8K 179.7K

WMT
Dev 84.9K 262.2K
Test 81.0K 256.6K

enwik8
Dev 1.7M 3.3M
Test 1.7M 3.3M

Table 8: Statistics of entity and non-entity tokens.

Metric Model Dev Test

K
no

w
le

dg
e

PP
X WikiText

Transformer-XL 47.3 52.3
RELATIONLM 45.6 50.9

WMT
Transformer-XL 77.2 77.0
RELATIONLM 73.2 73.1

enwik8
Transformer-XL 2.25 2.21
RELATIONLM 2.22 2.19

N
on

-e
nt

ity
PP

X WikiText
Transformer-XL 13.3 13.8
RELATIONLM 13.0 13.4

WMT
Transformer-XL 14.4 14.4
RELATIONLM 14.2 14.3

enwik8
Transformer-XL 1.98 1.95
RELATIONLM 1.98 1.95

Table 9: Knowledge perplexity (↓) and non-entity
perplexity (↓).

4.2 Does Relational Memory
Improve Coherence?

For evaluating coherence, we use two automatic
metrics—knowledge perplexity and knowledge
F1—to investigate whether the models can faith-
fully use entities. We further perform a human
evaluation to study whether language models can
generate coherent and knowledgeable sequences.
We believe the human evaluation is a reliable
way of evaluating coherence. This claim is advo-
cated in Barzilay and Lapata (2005). We note that
question answering is also often used to evaluate
coherence (Guu et al., 2020; Lin et al., 2021). We
leave this to future work.

Knowledge Perplexity. While vanilla perplexity
considers all words in an evaluation set, knowl-
edge perplexity only considers entities for calcu-
lating perplexity. We use it to evaluate whether
the model can assign higher probabilities for the
correct entities under different contexts. Table 8
shows the numbers of entity words and non-entity
words in our corpora. We show the results
in Table 9. We observe that the gap between
RELATIONLM and transformer-XL is larger on
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Metric Model Dev Test

WikiText
Transformer-XL 9.9 9.4
RELATIONLM 11.4 11.2

WMT
Transformer-XL 11.4 11.0
RELATIONLM 12.6 12.3

enwik8
Transformer-XL 16.0 18.9
RELATIONLM 16.6 19.4

Table 10: Knowledge F1 (↑).

knowledge perplexity. RELATIONLM only per-
forms comparably or slightly better compared
to transformer-XL on non-entity perplexity. This
shows that relational memory is helpful for
predicting entity words. Note that knowledge per-
plexity tends to be much higher than perplexity
on non-entity words, indicating the difficulty of
predicting entity words. This collection of re-
sults indicates that relational memory helps the
model use entities coherently and consistently
under different contexts.

Knowledge F1. We use knowledge F1 to ex-
plore whether our model generates tokens that are
grounded to its contexts. Given a context as in-
put, we sequentially generate 32 words (or 128
characters) for word-(character-)level language
modeling by sampling from the distribution of the
next word (character). To reduce variance, we gen-
erate 100 continuations for each context. We then
perform entity recognition for both the generated
sequences and their corresponding ground-truth
sequences and calculate an F1 score based on
these two sets of entities. For example, given the
context ‘‘...Ayola was nominated and shortlisted
for the ‘Female Performance in TV’ award’’, we
compare the generated text and the ground truth
‘‘in the 2006 Screen Nation Awards, for her role
as Kyla Tyson in Holby City...’’ to calculate F1.
The results are shown in Table 10. We notice
that RELATIONLM performs better compared to
transformer-XL. We conclude that models with
relational memory can generate more coherent
and logical text.

Human Evaluation. We conduct a human eval-
uation to study whether language models can
generate coherent and knowledgeable sequences.
We take 1,000 contexts from the test set of
WikiText-103. We show the contexts, ground-
truth sequences, and continuations generated by

Model Coherent Knowledgeable
Transformer-XL 388 416
RELATIONLM 612 584

Table 11: We show the number of contexts in
which a continuation from a particular model is
chosen by human evaluators for each evaluation
criterion. Recall that the total number of contexts
used for human evaluation is 1,000. Because we
have five annotators, we use majority voting to de-
cide the favored model for each continuation. We
use the Kappa statistic to measure inter-annotator
agreement. The statistic is 0.64, which shows
substantial agreement among the annotators.

RELATIONLM and transformer-XL to five annota-
tors. We use greedy decoding for both models.
We shuffle the order of the continuations gener-
ated by RELATIONLM and transformer-XL so that
the annotators are unaware of the sources of se-
quences. We then pose the following questions to
the annotators:

1. Coherent. Given the context and its ground-
truth continuation for reference, which gen-
erated sequence is more logical and coherent?

2. Knowledgeable. Given the context and its
ground-truth continuation, which generated
sequence provides more insights and is more
knowledgeable?

We show the results in Table 11. We find that
RELATIONLM outperforms transformer-XL in the
human evaluation. These results are consistent
with the two automatic metrics, knowledge per-
plexity and knowledge F1. This corroborates our
claim that relational memory improves coherence
in language modeling.

4.3 Qualitative Analysis
Gate Values. As we use a gating function to
integrate transformer-XL with relational informa-
tion, we study gate values in this section. The
histogram of gate values is shown in Figure 5.
We notice that the histogram concentrates around
0.9. This is expected because non-entity words,
which account for a large portion of text (accord-
ing to Table 8), benefit less from the relational
memory and mainly rely on the observed context
for prediction as shown in §4.2. We further calcu-
late the average gate values for entity words and
non-entity words. The average gate value for entity
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Figure 4: Heatmap of gate values.

Figure 5: Histogram of gate values gt.

words is 0.87, while the average value is 0.92 for
non-entity words. This confirms that entity words
rely more on relational information for prediction
compared to non-entity words. We also plot the
heatmap of gate values and a cherry-picked exam-
ple is shown in Figure 4. Note that we randomly
select 100 dimensions from 512 dimensions for
readability. We notice that the entities, Aberdeen
and Alec Flett, use more relational information
than other positions (as shown by the horizontal
blue lines). These results demonstrate that RE-
LATIONLM can adaptively incorporate relational
information for prediction.

Example. We show three cherry-picked exam-
ples in Table 12. We take the first for illustration,
which shows a text segment from the article,
Joe Biden 2008 presidential campaign7 and some
retrieved relations. We find that the first two re-
lations, (Joe Biden, senior Senator, Delaware)
and (Joe Biden presidential campaign, began,
January 7 2007), are extracted from previous text
segments, while (Joe Biden, was nominated, vice
president) and (Biden, withdrew nomination,
1987) are extracted from the other articles, Joe

7https://en.wikipedia.org/wiki/Joe Biden
2008 presidential campaign.

Table 12: Three examples of text segment
and retrieved relations (based on previous text
segments).

Biden8 and Joe Biden 1988 presidential cam-
paign,9 respectively. We notice that the relation
(Joe Biden, was nominated, vice president) is
highly predictive of the sequence, ‘‘Biden was
selected to be Democratic presidential nominee
Barack Obama’s vice presidential running mate’’.
From the observed context, the model also iden-
tifies a closely related entity, Barack Obama, and
retrieves the relation (Barack Obama, president
of, United States). Therefore, we conclude that
the relational memory can give a global picture of

8https://en.wikipedia.org/wiki/Joe Biden.
9https://en.wikipedia.org/wiki/Joe Biden

1988 presidential campaign.
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related entities and provide relevant information
for language modeling.

Causal Intervention. We use causal interven-
tion to study whether changing the contents in
the relational memory will affect language model
prediction. Given the relation (Obama, born in,
Hawaii) along with other relations about Barack
Obama, we let the model complete the sequence,
‘‘Obama was born in’’. RELATIONLM outputs
‘‘Obama was born in and raised in Hawaii.’’
with greedy decoding. However, after modifying
the relation to (Obama, born in, Kenya), we ob-
tain ‘‘Obama was born in Kenya and was the
first African-American president.’’ We further
change to (Obama, born in, Paris) and the model
outputs ‘‘Obama was born in Paris, France.’’
This indicates that RELATIONLM can take advan-
tage of relation triples for making prediction.
While we can also use prompts as intervention
for vanilla language models, it remains challeng-
ing about selecting the appropriate prompts in
different applications (Liu et al., 2021a).

5 Related Work

Knowledge-enhanced Architectures. Inject-
ing symbolic knowledge to machine learning mod-
els is widely adopted to improve the performance
of natural language understanding (Annervaz
et al., 2018; Ostendorff et al., 2019), question
answering (Zhang et al., 2018; Huang et al., 2019;
Hixon et al., 2015), dialogue systems (Zhang
et al., 2018; Moon et al., 2019; Guo et al., 2018;
Liu et al., 2021b), and recommendation systems
(Zhang et al., 2016; Wang et al., 2018a, 2019).
Different from these models, we focus on using
symbolic knowledge for language modeling. Ex-
isting language models are prone to generating
illogical and contradictory contents. We believe
that connecting language modeling and knowl-
edge graphs is a promising direction to overcome
the problem. Next we review previous knowledge-
enhanced language models.

Knowledge-enhanced Language Models. Our
model is closely related to previous work on
grounding autoregressive language models with
knowledge graphs (Ahn et al., 2016; Logan et al.,
2019; Hayashi et al., 2020; Wang et al., 2021a).
However, these models rely on complex and adhoc
preprocessing or rules to link text with knowledge
bases (e.g., Freebase and Wikidata). As a result,

previous work is more aligned with conditional
language modeling, for example, graph-to-text
generation p(x|G) in Wang et al. (2021a), which
contrasts with unconditional language modeling
p(x) considered in this work. As the graph G is
constructed with the unseen text x, predicting x
givenG is easier due to this information leakage for
Wang et al. (2021a). Also in Hayashi et al. (2020),
topic entities are required for language modeling,
which may not be available in most datasets, for
example, the news domain. We do not compare
with these previous models due to the different
settings. In contrast, we adopt OpenIE relations
and use a tf-idf search to retrieve relation triples
for connecting language models and knowledge
graphs. In the experiments, we demonstrate the
effectiveness of our approach on three datasets,
WikiText-103, WMT19, and enwik8.

There are language models incorporating entity
information, such as entity coreference annota-
tions (Ji et al., 2017; Clark et al., 2018), surface
forms of entities (Kiddon et al., 2016; Yang
et al., 2017; Cao et al., 2021), entity types
(Parvez et al., 2018; Wang et al., 2018b), and
entity descriptions (Bahdanau et al., 2017). Dif-
ferent from these models, we augment language
models with a relational memory consisting of re-
lation triples. We demonstrate the effectiveness of
using relation triples by ablating tail entities and
relations in §4.1.

Knowledge-enhanced Pretraining. Using
knowledge information for pretraining language
models (Peters et al., 2019; Sun et al., 2019;
Liu et al., 2020; Guu et al., 2020; Wang
et al., 2021b; Agarwal et al., 2021; Verga
et al., 2021) has recently grown in popularity
and has achieved substantial improvements
on knowledge-driven tasks such as question
answering and named entity recognition. Instead
of using knowledge information for improving
downstream knowledge-driven tasks, we focus on
using knowledge information for improving the
generation capability of the language model itself.

Retrieval-augmentedModels. Retrieval-augmented
models are now widely adopted in open-domain
question answering (Chen et al., 2017; Lewis
et al., 2020; de Masson d’Autume et al., 2019;
Izacard and Grave, 2021), dialogue (Dinan et al.,
2019; Fan et al., 2021; Thulke et al., 2021), and
machine translation (Bapna and Firat, 2019;
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Khandelwal et al., 2020a). We focus on retrieval
augmentation for language modeling (Merity
et al., 2017; Grave et al., 2016; Khandelwal et al.,
2020b; Yogatama et al., 2021). These algorithms
are specifically tailored for language modeling,
where related tokens are retrieved to help predict
the next token. In this work, we move beyond
token augmentation and show the benefits of
retrieving relation triples. We also demonstrate
that our model is complementary to a token
augmentation model, SPALM (Yogatama et al.,
2021), in the experiments.

6 Conclusion

We presented RELATIONLM, a language model
that is augmented with relational memory. We
showed how to obtain relevant knowledge graphs
for a given corpus and how to combine them
with a state-of-the-art language model such
as transformer-XL. We demonstrated that our
model improves performance and coherence on
WikiText-103, WMT19, and enwik8. We also
performed a comprehensive analysis to better
understand how our model works. Our model pro-
vides a way to combine an autoregressive language
model with general knowledge graphs.
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