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Abstract

Many facts come with an expiration date, from

the name of the President to the basketball

team Lebron James plays for. However, most

language models (LMs) are trained on snap-

shots of data collected at a specific moment in

time. This can limit their utility, especially in

the closed-book setting where the pretraining

corpus must contain the facts the model should

memorize. We introduce a diagnostic dataset

aimed at probing LMs for factual knowledge

that changes over time and highlight problems

with LMs at either end of the spectrum—those

trained on specific slices of temporal data, as

well as those trained on a wide range of tempo-

ral data. To mitigate these problems, we pro-

pose a simple technique for jointly modeling

text with its timestamp. This improves mem-

orization of seen facts from the training time

period, as well as calibration on predictions

about unseen facts from future time periods.

We also show that models trained with tem-

poral context can be efficiently ‘‘refreshed’’

as new data arrives, without the need for re-

training from scratch.

1 Introduction

Language models (LMs) have been suggested

as repositories of real-world knowledge (Petroni

et al., 2019) and there is much interest in using

them for tasks such as closed-book question an-

swering (QA; Roberts et al., 2020), fact verifica-

tion (Lee et al., 2020), and dialogue (Adiwardana

et al., 2020). Many facts, however, change with

time. This raises two questions: Do pretrained

LMs learn the appropriate temporal scope for

the facts they encode? And what is the best way

to update temporally scoped knowledge in pre-

trained models?

∗Equal contribution.
∗∗Also affiliated with Duke University, work done at

Google.

Pretraining corpora for models such as BERT

(Devlin et al., 2019), RoBERTa (Liu et al., 2019),

and GPT (Radford et al., 2019) are typically de-

rived from a snapshot of the web crawled at a

specific moment in time (Raffel et al., 2020).

While the impact on language modeling itself has

been highlighted in recent work (e.g., Lazaridou

et al., 2021; Röttger and Pierrehumbert, 2021;

Hombaiah et al., 2021), there are several poten-

tial problems specific to the encoding of factual

knowledge:

• Averaging: For temporally scoped knowl-

edge, the model may see conflicting informa-

tion, for example, ‘‘Lebron James plays for

the Cavaliers / Lakers.’’ Because LM train-

ing generally ignores temporal metadata, this

can lead to an averaging effect, in which

the model has low confidence in any of the

correct answers.

• Forgetting: Corpora such as Wikipedia and

web crawls are constantly growing, with

documents distributed non-uniformly across

time: There are more recent documents than

older ones, both because old documents can

be updated and because more web documents

are generated recently than in the past. As a

result, the model may fail to memorize facts

that were valid only during underrepresented

periods of time, and therefore do worse when

asked questions about the more distant past.

• Poor temporal calibration: As language

models become ‘‘stale’’, they are increas-

ingly likely to be queried about facts outside

the temporal scope of their training data.

While it may seem undesirable for a model to

guess the answer to such questions, in many

cases it is perfectly reasonable to assume that
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the future will be like the present: for exam-

ple, in twenty years the capital of Alaska is

unlikely to change, even though the gover-

nor of Alaska is nearly impossible to pre-

dict. Ideally, the confidence with which the

model responds to such queries should reflect

this difficulty.

Temporally scoped facts are common in prac-

tice; however, QA datasets such as SQuAD

(Rajpurkar et al., 2018) or Natural Questions

(Kwiatkowski et al., 2019) focus on a single time

period, even for questions whose answers are tem-

porally scoped. Thus, our first contribution in this

paper is a diagnostic dataset, TEMPLAMA (short

for TEMPoral LAnguage Model Analysis), of

fill-in-the-blank queries for probing time-sensitive

knowledge in LMs. The queries in TEMPLAMA

are chosen such that the answer varies with time

(§ 2.1). Using this dataset, we find empirical evi-

dence of the problems mentioned above (§ 3).

As a first step towards addressing these prob-

lems, we propose a lightweight modification to

pretraining. We parametrize the masked language

modeling objective (MLM; Devlin et al., 2019)

with temporal information, P (y|x, t; θ), where y

is a masked token or span, x is the textual context,

and t is the time (§ 2.3). The parameters θ must

learn a representation of both text and time. In the

T5 framework (Raffel et al., 2020), this can be ac-

complished by prefixing the input x with a string

representation of t, for example, ‘‘year: 2018’’.

In addition, we pretrain from documents that

are uniformly sampled from the timespan of the

training corpus which, in our case, consists of

news articles ranging from 2010–2018 (Lazaridou

et al., 2021) (§ 2.1). These interventions accom-

plish two goals: the model is exposed to facts

from the entire time range instead of just the

most recent one, which avoids forgetting certain

temporally scoped facts, and it prevents averag-

ing because the facts are assigned to different time

buckets (in our case years). This leads to improved

recall of facts from the timespan of the training

corpus (§ 3.1).

These interventions also improve the model’s

temporal calibration. We find that jointly model-

ing text and time improves perplexity on future

years unseen during training. On TEMPLAMA,

the joint model degrades more gracefully than

a model unaware of time. We also examine the

model’s calibration farther into the future using

hand-crafted sets of queries whose answer is likely

to change frequently, rarely, or never. We find

qualitative evidence that the entropy of models

trained uniformly across the training timespan in-

creases most rapidly for the frequently changing

facts (§ 3.2).

While calibration is desirable, models should

be refreshed with new data when it becomes

available. A standard practice for doing this is

to combine the new and old data and retrain the

model from scratch (e.g., Liu et al., 2021), but

retraining can be costly for large-scale models

(Strubell et al., 2019). On the other hand, finetun-

ing only on the new data leads to catastrophic

forgetting of the old data (Zhu et al., 2020),

since standard LMs have no knowledge of what is

‘‘new’’ and what is ‘‘old’’, unlike a model trained

with temporal context. We show that our tempo-

rally scoped pretraining procedure makes LMs

more amenable to post-hoc finetuning, as the

data is implicitly bucketed into non-overlapping

time slices. We observe a similar performance to

models retrained from scratch with 30× fewer

steps, and without degradation on the knowledge

encoded by the older data (§ 3.3).

Summary of Contributions: (1) We offer

TEMPLAMA, a new dataset of temporally scoped

knowledge probes. (2) We propose a simple mod-

ification to pretraining that facilitates the acqui-

sition of temporal knowledge. (3) We conduct

evaluations that demonstrate the impact of tem-

poral shift on the knowledge encoded by existing

LMs and the improvements offered by temporally

scoped pretraining. (4) We perform a qualitative

analysis of temporal calibration into the future,

again demonstrating the positive impact of tem-

porally scoped pretraining. (5) We show that tem-

porally scoped pretraining also facilitates efficient

updates to existing pretrained LMs.

2 Methods

We probe factual knowledge in masked LMs using

span prediction—given an input statement x with

a span y replaced by a special character, the

task is to reconstruct that span. Additionally, we

assume that each (x, y) pair has a timestamp t

denoting the time at which it was written or a

point in time at which its assertion is valid. In

this paper, we discretize t into yearly buckets

and leave more fine-grained groupings (e.g., at
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the level of months or days) for future work. For

simplicity and efficiency, all of our models are

text-to-text Transformers (Vaswani et al., 2017)

initialized from publicly available T5 checkpoints

(Raffel et al., 2020) and then adapted to more

time-dependent datasets. We first describe these

datasets, followed by the approaches for jointly

modeling text and time.

2.1 Datasets

We experiment with a large-scale news corpus

(CUSTOMNEWS) for pretraining our models, com-

bined with a smaller diagnostic dataset of factual

queries (TEMPLAMA) for evaluation.

CUSTOMNEWS The CUSTOMNEWS dataset is a sub-

set of web documents that are determined to be

news (Lazaridou et al., 2021) and have an as-

sociated date either extracted from the article’s

URL or from its html by looking for a publication

date. We adapt this dataset in two main ways.

First, we focus on a subset created by randomly

sampling 1M news articles from each of the years

2010–2020 which had the maximum number of ar-

ticles. Second, while Lazaridou et al. (2021) used

this data for classic autoregressive language mod-

eling, we instead adapt it for the MLM objective.

Specifically, we split the articles into sentences x

and then identify salient spans y in the text corre-

sponding to named entities and dates. The salient

span masking (SSM) paradigm improves question

answering performance in both open-book (Guu

et al., 2020) and closed-book settings (Roberts

et al., 2020). SSM restricts the inputs to those

which have a higher chance of requiring world

knowledge and better aligns with our objective

of measuring the factual knowledge captured by

the LMs. Following Guu et al. (2020), we iden-

tify named entities using a BERT-based tagger

trained on CoNLL-2003 data (Tjong Kim Sang

and De Meulder, 2003) and a regular expression

for dates.

TEMPLAMA We also construct a more targeted

masked LM evaluation for probing temporally

sensitive knowledge. Starting with the November

2020 Wikidata snapshot (Vrandečić and Krötzsch,

2014), we first identify all facts that have either

a start or an end date after 2010 and whose sub-

jects and objects are both entities with Wikipedia

pages.1 Among these 482K facts, we identify sub-

1We use SLING (Ringgaard et al., 2017) for

preprocessing.

Year Input Target

CUSTOMNEWS

2017
The pound faces pressure from the US

French
but the X election could hit euro

2020
X accused Liverpool of ‘crossing the Frank

line’ during win over his Chelsea side. Lampard

TEMPLAMA

2012 Cristiano Ronaldo plays for X . Real Madrid

2019 Cristiano Ronaldo plays for X . Juventus FC

Table 1: Examples from CUSTOMNEWS, which

masks named entities and dates from news ar-

ticles, and TEMPLAMA, a novel synthethic dataset

of temporally scoped factual statements built from

Wikidata.

ject and relation pairs that have multiple objects at

different times and select nine relations with the

most such subjects. For these relations we manu-

ally write template cloze queries (e.g., ‘‘Subject

works for X .’’) and populate them with the

1000 most frequent subjects per relation. For each

subject and each relation we gather all the objects

with their associated time interval and construct

a separate query for each year in that interval.

When intervals for the object entities overlap, we

add all of them to the list of correct answers. The

query and the corresponding year form the inputs

x and t, while the object entity is the target y.

In total we construct 50,310 queries across 11

years.2 Note that these type of cloze-style ques-

tions naturally follow the salient span masking

paradigm, where the answer to the question is the

span to be masked. Table 1 shows examples from

both CUSTOMNEWS and TEMPLAMA. A full list

of the relations in TEMPLAMA and their template

queries is included in Appendix A.

2.2 Training and Evaluation

We train and evaluate each of our models on a

mixture of CUSTOMNEWS and TEMPLAMA. All

models are initialized from a public T5 check-

point, and then further adapted for 300K steps on

our data. From CUSTOMNEWS we hold out 2000

articles each for validation and testing from each

of the yearly subsets. From TEMPLAMA we re-

serve 10% and 70% of the queries from each

of the yearly subsets for validation and testing,

respectively, ensuring that none of the subject en-

tities overlap between train, validation, or test sets.

2The TEMPLAMA data is available at https://

github.com/google-research/language/tree

/master/language/templama.
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Figure 1: Three training setups to train T5 on CUSTOMNEWS: The Uniform model (left) is trained on all the data

without explicit time information. The Yearly model (middle) avoids averaging over similar contexts by training

separate models depending on the year, while the Temporal model (right) prepends a time prefix to each example.

Splitting along subject entities ensures that none

of the facts required to answer the test queries are

seen during training on TEMPLAMA (Lewis et al.,

2021). Instead they must be learned in an unsu-

pervised manner either from the T5 pretraining or

when adapting to CUSTOMNEWS. We train over the

combination of the two training sets such that for

every 1000 inputs from CUSTOMNEWS, the model

sees 1 input from TEMPLAMA. Finetuning on a

small disjoint set of queries from TEMPLAMA

in this manner avoids issues due to suboptimal

prompts (Jiang et al., 2020b; Logan et al., 2021)

by allowing the model to learn the expected for-

mat of queries and answers (e.g., ‘‘Liverpool

F.C.’’ vs ‘‘Liverpool’’).

We also partition the data into two groups based

on the year: 2010–18 and 2019–20. Models are

trained only on the former, but tested on both

to measure their performance for both seen and

future time periods. This split was informed by the

fact that the T5 checkpoints were pretrained on

web text extracted in April 2019. The main metric

for evaluation is a token-level F1 score between

the predicted and ground truth targets, computed

in the same way as for the SQuAD benchmark

(Rajpurkar et al., 2018). For TEMPLAMA queries

with multiple targets we take the max F1.

2.3 Jointly Modeling Text and Time

Given a dataset of (x, y, t) triples we model

P (y|x, t; θ) using variants of the T5 model where,

given x as the input sequence, we maximize the

likelihood of the target sequence y. We compare

two approaches to condition the predictions on the

time t (also see Figure 1).

Yearly In the first approach we use the temporal

context by training separate models specialized

to different time buckets (in our case years), so

P (y|x, t; θ) = P (y|x; θt). Hence, we train an

ensemble of nine T5 models adapted to each

year between 2010 and 2018 for an additional

300K steps. When provided with a test input, this

approach routes it to the appropriate yearly expert

based on its timestamp. If the timestamp falls

outside 2010–18, we use the closest yearly expert

(e.g., 2018 for all test inputs ≥ 2018).

Temporal Training a separate expert for each

time slice reduces the averaging across conflict-

ing contexts (§ 1), but keeping an ensemble of

large-scale LMs is undesirable in practice. More-

over, there are regularities in how often facts

change (e.g., the FIFA World Cup happens every

4 years, whereas NBA Championships happen ev-

ery year), which a model specialized to a single

time slice might not be able to learn. Hence we

also train a single T5 model on the entire dataset

from 2010–2018 for 300K steps. In this model,

the time t is concatenated to the input, that is,

P (y|x, t; θ) = P (y|t⊕x; θ), using a simple string

representation of t as a prefix for the input x, for

example, ‘‘year: 2014’’.

Baselines The T5 checkpoints released by

Raffel et al. (2020) are pretrained on long inputs

with multiple masks and cannot directly be tested

using our factual knowledge probes. Instead, we

establish a baseline on the datasets introduced

above using the pretrained models from Roberts

et al. (2020), which were trained using SSM on

Wikipedia for an additional 100K steps. This is

referred to as T5-CBQA (closed-book question

answering). We also experiment with additionally

finetuning this model on TEMPLAMA for 5K steps

(T5-CBQA-ft).

To isolate the effect of time-aware pretraining,

we also train a Uniform model, which trains on
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Model #Parameters
CustomNews TempLAMA

2010–18 2019–20 Overall 2010–18 2019–20 Overall

T5-CBQA 737M 20.2 19.8 20.1 5.4 4.3 5.2

T5-CBQA-ft 737M 15.2 15.7 15.3 17.8 15.3 17.3

Uniform 737M 30.6 27.8 30.1 28.1 19.8 26.6

Yearly 6.6B 33.4 26.7 32.2 28.5 21.8 27.3

Temporal 737M 32.1 29.5 31.6 29.6 22.2 28.2

Table 2: F1 scores of Large-sized model variants for salient span mask prediction on CUSTOMNEWS

and TEMPLAMA. T5-CBQA is the pretrained model from Roberts et al. (2020), and T5-CBQA-ft is

further finetuned on TEMPLAMA. The Yearly model is an ensemble of 9 models each finetuned on

a yearly slice of the training data between 2010 and 2018. We use the 2018 model when testing on

2019–20. The Uniform and Temporal models are trained on the entire data from 2010–18, and the latter

has additional temporal context. The F1 scores are macro-averaged across the evaluation years. The

Temporal model performs better on TEMPLAMA, which is focused only on temporally scoped facts, as

well as on the unseen years for CUSTOMNEWS.

the same uniformly sampled data as Temporal for

the same number of steps, but without the time

provided as an input. During training, examples

are shuffled rather than presented in chronological

order. Note that there are many ways of sampling

training data across time, and the optimal choice

likely depends on the relative importance of mem-

orizing old versus recent facts. Here we assume

all time slices in the training data are equally

important and hence focus on uniform sampling.

Hyperparameters We primarily focus on the

Large-sized T5 models with 770M parameters,

but we also investigate the scaling with size by

comparing to the Small (110M) and XXL (11B)

versions. We use the same set of hyperparameters

as Raffel et al. (2020), with a batch size of 2048,

a fixed learning rate of 0.001, and a dropout rate

of 0.1. All our models are trained for a fixed

number of 300K steps, except when adapting to

new data (§ 3.3), and then evaluated on the test

set. We found the loss on held out CUSTOMNEWS

was still improving at the end of 300K steps,

but the overall trends were stable; to limit the

experimentation time we did not explore longer

training runs.

3 Experiments

We design several experiments to highlight the

problems around temporally scoped knowledge in

LMs and to test whether they can be addressed by

joint models of text and time.

3.1 Memorizing Facts Across Time

To understand the interplay of memorization and

time, we examine the TEMPLAMA and CUSTOM-

NEWS performance on the 2010–18 slice. This

permits us to analyze the forgetting and averaging

effects discussed in § 1 by comparing models

trained on different slices of the data and with or

without the temporal context.

Results Table 2 shows performance on the

2010–18 test sets of CUSTOMNEWS and TEMP-

LAMA. T5-CBQA and T5-CBQA-ft fare signifi-

cantly worse on TEMPLAMA (17.8) than the more

standard Natural Questions benchmark (28.5; c.f.

Roberts et al., 2020). In particular, we find that

training on the news domain leads to signif-

icant improvements on the temporally scoped

knowledge required by TEMPLAMA (comparing

T5-CBQA-ft and Uniform). The two approaches

that condition the predictions on time, Yearly and

Temporal, improve over Uniform, which trains

on the same data but without temporal context.

The Yearly ensemble, however, has linearly more

parameters and requires linearly more compute

to train. For 2010–18, the Yearly model performs

better on CUSTOMNEWS, which is far more likely

to describe short-lived facts, but the Temporal

model is better on TEMPLAMA, where the facts

typically span multiple years. We further investi-

gate the relationship between fact durations and

model performance below.

We show empirical evidence of averaging and

forgetting effects in Figure 2, which plots the F1
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Figure 2: F1 score of models trained on data from a specific year on CUSTOMNEWS (Left) and TEMPLAMA (Middle)

as the gap between test and train years varies. Negative gaps indicate that the model is tested on data from before

the slice on which it was trained. The F1-score is macro-averaged across all possible pairs of train/test years

between 2010 and 2018. For comparison we also show the F1 score of Uniform and Temporal models averaged

across 2010–18. Shaded area shows the 95% confidence interval around the macro-average. The performance

drop on both sides shows the forgetting effect. (Right) F1 scores on TEMPLAMA grouped by the number of years

for which the answer to a query persists. Shaded area shows the 95% confidence interval using bootstrap.

score of the year-specific models as we vary the

gap between test and train years. The performance

drops quickly on both sides, showing forgetting;

however, the decline is larger for future years.

The right plot compares F1-scores on TEMPLAMA

for queries grouped by the number of years for

which their answer is valid.3 This is computed

from the duration of their corresponding facts

in Wikidata. The uniformly trained model has

higher performance on queries whose answers

persist for a long time, but it does worse on quer-

ies whose answers persist for less than 5 years.

The opposite is true for the year-specific models,

which is intuitive due to the averaging effect of

training on data from long periods of time. Add-

ing temporal context strikes a trade-off between

these two extremes, leading to the overall higher

F1 in Table 2.

Qualitatively, examining the TEMPLAMA ques-

tions that the Temporal model answers correctly

while the Uniform model answers incorrectly sup-

ports our hypothesis that the Uniform model is

averaging over possible choices: It frequently an-

swers with an entity that was more salient during

our training period (see Table 5).

Scaling Table 3 shows the effect of increasing

model size on the overall F1 scores on CUSTOM-

NEWS and TEMPLAMA. In general, larger model

sizes lead to a bigger improvement when training

with temporal context.

Longer Time Span. Table 6 compares the

Large-sized Uniform and Temporal models when

3For multiple answers we pick the duration of the

first one.

Size
CustomNews TempLAMA

Uniform Temporal Uniform Temporal

Small 21.1 21.9 20.7 20.5

Large 30.1 31.6 26.6 28.2

XXL 32.3 33.8 28.4 30.5

Table 3: Overall F1-score averaged from 2010–20

for Uniform and Temporal models for different

model sizes. Larger models benefit more from the

temporal context.

trained on a wider time period from 2004 to

2018.4 While the Temporal model still outper-

forms Uniform, the gap is smaller between the two

compared to when training on 2010–18. In gen-

eral increasing the time period entails memorizing

more facts for the Temporal model. Hence, this

result suggests that the model size should also be

increased when training on longer time spans.

CronQuestions To explore whether the im-

proved memorization of facts translates to

downstream tasks, we finetune the Uniform and

Temporal models on CronQuestions, a dataset of

410K time-dependent questions based on tempo-

ral knowledge graphs (Saxena et al., 2021). It

consists of questions where the answer is either

an entity or a temporal expression. Similar to

TEMPLAMA, the questions are based on Wikidata

across time. We focus on a closed-book version

of the task, similar to the setup in Roberts et al.

(2020), where the model is trained to predict the

4CUSTOMNEWS only has a small number of articles from

2003 and before.
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Size Model EM F1

Small

None 3.63 9.51

Uniform 4.01 10.27

Temporal 4.05 10.20

Large

None 4.10 10.78

2018 4.39 10.87

Uniform 4.70 11.34

Temporal 5.13 11.93

XXL

None 5.44 12.19

Uniform 5.71 12.61

Temporal 5.81 12.88

Table 4: Test set results for models fine-

tuned on the CronQuestions dataset in a

closed-book manner. ‘‘None’’ refers to

finetuning the T5 baseline; the ‘‘2018’’

model is adapted to the 2018 slice of

CUSTOMNEWS.

first answer in the list of correct answers for an

input question. During evaluation, it is compared

to each answer in the set of correct answers, and

we take the maximum score among them. Table 4

lists the SQuAD-based EM and F1 metrics on the

test set. We see an improvement in memorization

for the Uniform and Temporal models, with the

latter doing slightly better on the Large and XXL

model sizes.

3.2 Better Calibration in the Future

We examine the model’s performance on future

slices of data at two different time scales. In the

first, we look at graceful degradation, mimicking

the life-cycle of a model that has been deployed,

and thus has not seen the newest slices of data

yet. In the second, we ask the models to predict

relations in the more distant future. While this

may seem unreasonable, it is possible to articulate

coherent intuitions about the future: For example,

the capitals of U.S. states change far less fre-

quently than their governors, and the probabilities

emitted by language models should reflect this.

3.2.1 Graceful Degradation

Here we examine the TEMPLAMA and CUSTOM-

NEWS performance on the 2019–20 slices. Note

that none of the models were pretrained or adapted

to this slice, so these experiments allow us to

measure degradation. We additionally look at the

perplexity of the masked LM, which we com-

pute as:

ppl = exp−

∑
(x,y,t) logP (y|x, t; θ)

∑
y len(y)

.

Following Lazaridou et al. (2021), we expect per-

plexity to increase for slices that are not covered

in the training data, but we expect the temporally

conditioned model to be relatively more robust.

Results Comparing the Uniform and Tempo-

ral models in Table 2, we can see that training

with temporal context improves F1 scores on the

2019–20 slices. The Yearly ensemble, which uses

the latest 2018 model when tested on 2019–20,

is significantly worse on CUSTOMNEWS but com-

parable on TEMPLAMA; potentially because some

of the answers remain the same. A closer look

at the model predictions reveals that, unsurpris-

ingly, none of the models are able to predict the

TEMPLAMA facts that change after the training

period. Adding temporal context simply allows

the Temporal model to persist the unchanged facts

to 2019–20. On CUSTOMNEWS it has higher per-

formance on the SSM objective, which includes

both dates and entities in articles from an unseen

time period.

Table 7 shows MLM perplexity on the CUSTOM-

NEWS test set. The Temporal model has lowest

perplexities on both the seen and unseen slices

of evaluation data. The Uniform model has lower

perplexity than the Yearly one, especially on the

future slices where we use the 2018 expert for the

latter. This suggests that, for language modeling,

training on more data outweighs the benefit of

training on the specific temporal distribution of

test data.

Do the models learn how soon an answer is

likely to change in the future? We do a qual-

itative analysis by partitioning the TEMPLAMA

test queries where each model was correct in the

2018 evaluation into two sets: those with Single or

Multiple answers across 2010–20. Then we mea-

sure the log-likelihood of that correct answer as

we change the input year t from 2019 to 2029,

and plot the change in log-likelihood relative to

2018 in Figure 3. For the T5-CBQA-ft and Uni-

form models, we vary the input years by prefixing

queries with ‘‘Inyear,...’’. The confidence for all

models decreases as we get into the future, which

is reasonable since all relations in TEMPLAMA
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Input Year Uniform Temporal

X is the chair of Federal Reserve System. 2019 Janet L. Yellen Jerome Powell

Nigel Farage is a member of the X . 2019 UK Independence Party Brexit Party

Mark Sanford holds the position of X . 2017 Governor of South Carolina United States representative

X is the head of the government of New York City. 2016 Michael Bloomberg Bill de Blasio

X is the head coach of Real Madrid CF. 2015 Zinedine Zidane Carlo Ancelotti

Theresa May holds the position of X . 2014 Prime Minister of Great Britain Home Secretary

Peyton Manning plays for X . 2014 Indianapolis Colts Denver Broncos

X is the head of the government of United Kingdom. 2011 Theresa May David Cameron

Marissa Mayer works for X . 2011 Yahoo Google

Rahm Emanuel holds the position of X . 2010 Mayor of Chicago White House Chief of Staff

Table 5: Examples comparing the Uniform and Temporal models on TEMPLAMA. The former fre-

quently predicts a more common or newsworthy answer from the range of the training data, without

taking the year into account.

Model 2004–09 2010–18 2019–20

Uniform 34.8 (+6.3) 29.8 (–0.8) 27.4 (–0.4)

Temporal 36.3 (+5.2) 31.1 (–1.0) 28.8 (–0.7)

Table 6: F1 scores on different evaluation slices

of CUSTOMNEWS for models trained on data from

2004–18. Numbers in the parentheses show the

absolute difference from the same model trained

on data from 2010–18.

Model 2010–18 2019–20

T5-CBQA 26.11 29.22

Uniform 11.68 14.37

Yearly 13.62 23.30

Temporal 11.33 13.58

Table 7: Masked language modeling per-

plexity on CUSTOMNEWS (lower is better).

The Temporal model degrades less when

evaluated on the future time slice.

are time-sensitive. However, the confidence of

the Temporal model decreases more rapidly for

queries with multiple answers, reflecting the in-

tuition that facts which have changed in the past

are likely to change again in the future.

3.2.2 Future Relations

To further probe the models’ understanding of

expected versus unexpected changes in the future,

we curate a small diagnostic dataset of queries

about future relations. We restrict the queries such

that the answer is always either one of the 200

largest US cities or one of the 249 countries in

the world. This allows us to compute the entropy

of the predictions over a fixed set. To relate model

Figure 3: Change in log-likelihood over time of the

most recent answer (from 2018) for TEMPLAMA

queries with Single or Multiple answers. The difference

is taken from the value for the 2018 answer. The Tem-

poral model exhibits a more pronounced confidence

gap for facts that changed in the past.

predictions to commonsense intuitions, we con-

struct three sets of queries based on how frequently

they are expected to change: frequent, rare, and

never. For example, the location of an awards

show might change every year, while the city

an athlete plays in changes every few years, and

the location of a landmark almost never changes.

Then, given queries like ‘‘In 2022, the Space

Needle will be in X ’’ and ‘‘In 2022, the NBA

All-Star Game will be in X .’’, a model with

a reasonable representation of time should have

lower entropy for the former rather than the lat-

ter. Moreover, the entropy should increase with

time as the queries address the more distant fu-

ture, and the rate of increase should be greatest

for frequently-changing relations. Note that we do

not expect models to provide the correct answers
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Figure 4: Entropy over time for frequent, rare, and

never-changing queries. The Temporal model is more

uncertain about frequently changing queries as time

passes, and has a flatter entropy for constant facts.

for these queries (which we do not know anyway),

but only assign confidence in a manner consistent

with human intuitions. In total, we constructed 86

queries across the three sets, which are included

in Appendix B.

Results Figure 4 shows the entropy of differ-

ent model variants averaged across the three sets

of queries and plotted over time. The baseline

T5-CBQA-ft model has a low constant entropy

throughout, irrespective of the query type. Com-

bined with its low accuracy on future slices from

Table 2, this suggests it remains confidently in-

correct and has poor calibration about which facts

are likely to change. Both the Uniform and Tem-

poral models have increasing uncertainty in the

future, which is ordered correctly according to

intuition: highest for the queries of frequently

changing facts, and lowest for queries whose an-

swers are expected not to change. Interestingly,

the Temporal model has a largely constant en-

tropy for rare- and never-changing queries until

2022, after which it begins to increase. While this

agrees with intuition, ideally a model should have

low entropy on the never-changing set further into

the future.

Overall, these results suggests that: (1) mod-

els trained uniformly over a wide range of time-

sensitive data show improved calibration about

expected changes in the future; and (2) training

with temporal context further improves this cali-

bration for the first few years beyond the training

period, in our case from 2019 to 2022. We also

note the limitations with this evaluation, however:

(1) due to manual curation by the authors there

are only 86 queries in these sets, and are likely to

be biased in the facts they probe; and (2) entropy

mixes different kinds of uncertainty: that which is

inherent in the query (e.g., there are more distinct

countries than cities with NFL teams), as well as

that due to the lack of confidence in the model.

We are interested in the latter, but our evaluation

does not disentangle the two effects.

3.3 Cheaper Adaptation to New Data

Improved calibration about the future can help

minimize mistakes after the training time period

(e.g., by abstaining), but eventually models need

to be refreshed as the world changes and new data

arrives. In this section, we consider the setting

where we have an already trained model on the

2010–18 slices, as well as new data from the 2019

slice. We attempt to update the model on this new

data (as measured by the combined performance

on 2019–20 held out data) without forgetting the

2010–18 slices. These experiments are similar

to the task posed by Lazaridou et al. (2020),

but we compare the impact of adapting versus

retraining from scratch. Finetuning only on the

newest data (2019) is suboptimal as the model

forgets facts about the past (Figure 5), which

was also observed by Zhu et al. (2020). Here

we explore a simple alternative—training on a

mixture which samples a data point from the new

slice (2019) with probability α and a data point

from the old slices (2010–18) with probability

1−α. We finetune both the Temporal and Uniform

models on this mixture for an additional 50K steps

and compare the resulting performance to models

retrained from scratch for 300K steps on data

sampled uniformly from all slices (2010–19). Note

that the latter strategy can be costly for large-scale

LMs (Strubell et al., 2019).

Results Figure 5 shows the F1-score on CUSTOM-

NEWS and TEMPLAMA as we vary α. Across all

values of α, the Uniform model improves sig-

nificantly on the 2019 slice, but this comes at

the cost of degrading on the 2010–18 slices.

The Temporal model also adapts to 2019, but

shows minimal degradation on the 2010–18

slice up to α = 0.6. For α = 0.5 we found

that its performance with 10K additional steps

matches that of the Temporal model trained from

scratch for 300K steps, suggesting that models
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Figure 5: CUSTOMNEWS (left) and TEMPLAMA (right) F1 score as models are adapted to new data from 2019 for

50K steps. α denotes the fraction of training examples which come from the 2019 slice (remaining examples come

from the 2010–18 slices). Dotted lines indicate models retrained from scratch for 300K steps on equal proportions

of all data from 2010–19. The Temporal model degrades less than Uniform on the 2010–18 slice when adapted.

trained with temporal context can be efficiently

adapted to new data without forgetting facts from

the old data.

4 Discussion and Limitations

Our experiments have shown that current models

have practical limitations in their ability to mem-

orize the past and reasonably estimate the future.

These limitations can be mitigated by providing

the model the date at which a text was created.

While our results show consistent advantages, they

also represent a narrow understanding of time. In

particular, the publication date of a news articles

does not necessarily correspond to the temporal

scope of all events described in the article. For

example, articles may talk about historical events

or discuss events scheduled to happen in the future.

In CUSTOMNEWS around 3.9% sentences explicitly

mention a year between 2010 and 2018, and 2.1%
mention the same year as the publication date of

the article. This fraction is likely responsible for

the improvement of the Uniform model. The Tem-

poral model further assigns an approximate scope

to the remaining 96% sentences and it is encour-

aging to see improvements from that. One avenue

for future work is to explore better strategies for

assigning dates to these sentences.

We have focused on closed-book question an-

swering, but temporal staleness of language mod-

els may have impacts in other applications as well.

For example, in open-book question answering, it

is still necessary to align the question with rele-

vant text in the retrieved passage, and this could be

challenging when the question cannot be properly

encoded by a stale LM: For example, the query

‘‘which countries were affected by the 2020 hurri-

cane season?’’ would not match the passage ‘‘Iota

caused damages of $564 million in Nicaragua’’ in

an LM that did not have access to training data

mentioning ‘‘Iota’’ as a hurricane.

Another limitation of our work is that TEMP-

LAMA is constructed in a synthetic manner from

WikiData. Incomplete or incorrect facts in the KB

can result in incorrect queries in TEMPLAMA; for

instance, we assume a missing start date implies

the fact is valid from the beginning of our time

period of interest. We partition the TEMPLAMA

and CUSTOMNEWS dataset on the same yearly slices

despite the nature of the datasets being quite

different. Moreover, we did not investigate using

longer or shorter temporal partitions. Additionally,

we did not test the ability to model temporal

expressions such as ‘‘before’’ or ‘‘during’’, and

we did not investigate temporal commonsense

(e.g., Zhou et al. 2019), temporal ordering (e.g.,

Ning et al. 2020), or events (e.g., Zhou et al. 2021).

Lastly, it is worth noting that like all closed-

book models the models presented in this paper are

also likely to only memorize common facts about

popular entities. This has the danger of reinforc-

ing stereotypes and leading to unfair outcomes.

Additionally, training the multitude of large-scale

language models presented in this paper required

the use of 32 Cloud TPU v3 cores for several
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hundred hours, which has a significant environ-

mental impact (Strubell et al., 2019). However,

our hope is that efficient schemes for updating

temporally sensitive knowledge in LMs will even-

tually save energy costs in the long run.

5 Related Work

There is extensive prior work on learning di-

achronic embeddings of individual words (e.g.,

Wijaya and Yeniterzi, 2011; Hamilton et al., 2016;

Bamler and Mandt, 2017). Particularly related is

the approach of Dubossarsky et al. (2019), who

learn time-sensitive embeddings by concatenat-

ing each word token with the decade in which

it appears. As contextualized embedding models

have largely replaced non-contextual word em-

beddings (Peters et al., 2018; Devlin et al., 2019),

the main application of diachronic word embed-

dings is to detect and model lexical semantic

changes (e.g., Frermann and Lapata, 2016), rather

than to improve temporal awareness on down-

stream tasks. Our work fills this gap by adding a

temporal component to T5, a pretrained language

model that can complete multi-token spans. While

Giulianelli et al. (2020) use contextualized em-

beddings from BERT to model lexical semantic

changes post hoc, they do not add a time-sensitive

component to the language model itself. Thus,

their approach cannot support time-aware fact

completion.

Several studies have focused on degradation of

models on test data from a different time period

than their training data (Huang and Paul, 2018,

2019; Jaidka et al., 2018; Lukes and Søgaard,

2018; Florio et al., 2020). Delasalles et al. (2019)

introduced an LSTM language model that con-

ditions on dynamic author representations com-

puted separately, and showed that it improves

perplexity on both seen and unseen (future) time

periods. Most recently, Röttger and Pierrehumbert

(2021) analyzed the interplay between temporal

adaptation during pretraining and finetuning, and

concluded that while both stages benefit from

adaptation separately, adaptation during pretrain-

ing does not help the downstream task. Here

we show that the benefits of adaptation can be

achieved using a single model that conditions

on time. We further show that the benefits of

adaptation come, at least in part, from better

memorization of time-sensitive facts.

In production contexts, an important form of

temporal generalization is the deployment of

models trained on data up to a certain time T

but applied on data after T : that is, the present.

Lazaridou et al. (2021) show that language mod-

els gradually degrade in performance under such a

time-stratified setting, and propose dynamic eval-

uation (Krause et al., 2018) as a potential mitiga-

tion. However, LMs are frequently applied to past

data as well, for example, for extracting represen-

tations, and here we show that updating on only

the new data degrades performance on old data.

Our approach of conditioning on the temporal

context alleviates this issue.

A related line of work has explored editing

neural predictions after training given a dataset

of revised input and output pairs (Sinitsin et al.,

2020; Zhu et al., 2020; De Cao et al., 2021).

Here we introduce a different setting where we

have access to new unlabeled text after model

training, which must be used implicitly to update

the factual predictions of the model. In this case the

update procedure also needs to figure out which

facts must be updated and which ones remain

the same.

Petroni et al. (2019) introduced the LAMA

benchmark for probing the factual knowledge

memorized by LMs, which consists of cloze

queries about facts, for example, ‘‘Dante was

born in X ’’. Follow up studies have introduced

improved prompts for eliciting such knowledge

(Jiang et al., 2020b) as well as multilingual ver-

sions (Jiang et al., 2020a; Kassner et al., 2021).

However, all these benchmarks assume a static

view of the knowledge inside an LM, and con-

sider all answers across time to be correct for a

given query. The TEMPLAMA dataset instead fo-

cuses on relations where the answers change with

time and uses temporal scopes to determine the

correct answer.

TEMPLAMA is similar in spirit to KB-QA

benchmarks which focus on temporal reasoning

such as TempQuestions (Jia et al., 2018) and

CronQuestions (Saxena et al., 2021). Its format,

however, mimics the masked LM task typically

used in pretraining, since it is intended as a

zero/few-shot probe. Unlike those datasets, we

further restrict the queries to subject and relation

pairs for which multiple objects exist at different

points in time, and ensure a balanced distribu-

tion over the entire time period of interest from

2010–2020.
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WikiData ID Relation # Queries Template

P54 member of sports team 9033 <subject> plays for <object>.

P39 position held 7343 <subject> holds the position of <object>.

P108 employer 9049 <subject> works for <object>.

P102 political party 7324 <subject> is a member of the <object>.

P286 head coach 4886 <object> is the head coach of <subject>.

P69 educated at 1672 <subject> attended <object>.

P488 chairperson 4190 <object> is the chair of <subject>.

P6 head of government 4125 <object> is the head of the government of <subject>.

P127 owned by 2688 <subject> is owned by <object>.

Table 8: Templates used for converting WikiData facts into natural language queries.

6 Conclusion

Though temporally scoped facts are common in

practice, there has been little prior work explor-

ing how these are encoded in pretrained LMs.

We show that T5 does poorly on such facts and

training on the news domain improves it signifi-

cantly. However, simply training on more data is

sub-optimal; conditioning on the temporal context

of the data improves memorization of facts fur-

ther. Hence, we propose a time-aware language

model which conditions on string prefixes of time.

Other benefits of time-aware LMs include a bet-

ter calibration of expected changes in the future,

and a cheaper adaptation to new slices of time-

stamped data.
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Supplementary Material

A TEMPLAMA Templates

Table 8 lists the 9 WikiData relations used for

constructing TEMPLAMA. We instantiate the tem-

plate for the relation in each fact by replacing

‘‘<subject>’’ with the name of the subject entity,

and ‘‘<object>’’ with ‘‘ X ’’. The answer to the

query is the name of the corresponding object en-

tity. We construct a separate query for each year

that the fact is valid.

B Future Relations

Table 9 shows the queries used as part of the Fu-

ture Relations experiment in § 3.2. These queries

were constructed by searching for lists of events,

popular athletes, and issuing targeted queries to

the WikiData Query Service.
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Frequent Rare Never

Cities

The Super Bowl will take place in X . Visa Inc.’s headquarters are located in X . South by Southwest will take place in X .

The NCAA Men’s Final Four will take place in X . SEGA of America’s headquarters are located in X . Lollapalooza will take place in X .

The first game of the World Series will take place in X . Barack Obama lives in X . Summerfest will take place in X .

The US PGA Championship will take place in X . Hillary Clinton lives in X . Outside Lands will take place in X .

The golf US Open will take place in X . Donald Trump works in X . Spoleto Festival USA will take place in X .

The NBA all-star game will take place in X . The Chargers play their home games in X . CMA Music Festival will take place in X .

The NFL Draft will take place in X . The Raiders play their home games in X . Made in America Festival will take place in X .

The Netroots Nation conference will take place in X . The Rams play their home games in X . The US Open Tennis Championships will take place in X .

The MLB all-star game will take place in X . General Electric’s headquarters are located in X . The Masters tournament will take place in X .

The team from X won the NBA championship. Toyota’s US headquarters are located in X . The Kentucky Derby will take place in X .

The team from X won the Stanley Cup. Nestle’s headquarters are located in X . The capital of Washington state is X .

The team from X won the World Series. Tesla’s headquarters are located in X . The capital of California state is X .

The team from X won the Super Bowl. Lebron James plays in X . The capital of Texas is X .

The golf US Women’s Open will take place in X . Tom Brady plays in X . The capital of Florida is X .

Wrestlemania will take place in X . Kevin Durant plays in X . The Space Needle is located in X .

Stephen Curry plays in X . The Statue of Liberty is located in X .

Sidney Crosby plays in X . Golden Gate Bridge is located in X .

Mike Trout plays in X . The White House is located in X .

The Democratic National Convention will next take place in X . The Liberty Bell is located in X .

The Republican National Convention will next take place in X .

Countries

The Six Nations Championship will be held in X . The UN Secretary general is from X . The Oxford Literary Festival will take place in X .

The Association for Computational Linguistics will meet in X . The Pope hails from X . Wimbledon will take place in X .

The Neural Information Processing Systems conference will be held in X . The FIFA world cup was lest held in X . Tomorrowland will take place in X .

The Palme d’Or winner is from X . The Cricket world cup was last held in X . Hajj will take place in X .

The Tour De France winner is from X . The UEFA European Football Championship was last held in X . The Eiffel Tower is located in X .

The Wimbledon Men’s Singles winner is from X . The Olympics were last held in X . The Taj Mahal is located in X .

The UEFA Champions League final will take place in X . The Winter Olympics were last held in X . Burj Khalifa is located in X .

The G20 summit will be held in X . The FIFA world cup was last won by X . Machu Picchu is located in X .

The G7 summit will be held in X . The Cricket world cup was last won by X . Stonehenge is located in X .

The United Nations Climate Change conference will take place in X . X won the most gold medals in the last Olympics. The world’s largest country by land area is X .

The world’s longest river is in X .

The world’s tallest mountain is in X .

Table 9: The Future Relations dataset used to test model calibration over future years. The three columns represent queries whose answers, intuitively,

change frequently or every year, rarely or once every few years, and never. The top section includes queries whose answer is a US city, while the bottom

section includes queries whose answer is a country.

2
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