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Abstract

The SUMEval Workshop’s shared task in-
volved predicting performance of multilingual
PLMs across multiple languages when these
models are fine-tuned with varying amounts of
data in different languages. The training data
was provided for performances of two multilin-
gual models on four NLP tasks, and a baseline
was shared with the participants to get started.
For test data, the task had two variants for eval-
uation, non-surprise version where the perfor-
mance was to be predicted for languages seen
in the training data but with unseen configura-
tions, and surprise version where the languages
were unseen during the training. A total of five
teams participated in the shared task with 15
submissions overall. The participants proposed
addition of new features, feature engineering
techniques and trained an ensemble of regres-
sion models for the task. The best performing
team had an improvement of 64% in MAE over
the shared baseline for the non-surprise vari-
ant, and a 17% improvement for the surprise
variant.

1 Introduction

Multilingual Pre-trained Language Models (PLMs)
(Devlin et al., 2019; Conneau et al., 2020; Xue
et al., 2021; Patra et al., 2022) have been recently
gaining prominence due their surprisingly effec-
tive cross-lingual transfer capabilities (Pires et al.,
2019; Wu and Dredze, 2019). These models are
pre-trained on hundreds of languages, and when
fine-tuned for a task on a single language (pivot
language), they can obtain reasonable performance
on languages unseen during fine-tuning (but seen
during pre-training). This zero-shot transfer capa-
bility while impressive has been found to be non-
uniform across languages, and is especially worse
on low resource languages or languages that are
typologically distant from the pivot language (Wu
and Dredze, 2020; Lauscher et al., 2020). Lauscher
et al. (2020) showed that these limitations of zero-

Pre-training
Data Size

Syntactic
Distance

Sub-word
Overlap

⋮

s

Performance
Measure
E.g.,
F1-Score,
Accuracy
etc.

Figure 1: Performance prediction aims to learn a map-
ping between the factors influencing cross lingual per-
formance of multilingual PLMs like Pre-training Data
Size, Typological Relatedness

shot transfer can be addressed by collecting a small
amount of data in different languages i.e. the few-
shot setup that can substantially improve their per-
formance.

Despite the fact that these multilingual PLMs
support hundreds of languages, most standard
multilingual benchmarks (Conneau et al., 2018;
Artetxe et al., 2020; Clark et al., 2020; Ponti et al.,
2020) support evaluation for only a handful of
these, and their performance on a large fraction
of languages remain unknown. While creating
standardised test sets in all of these supported lan-
guages will be an ideal solution, it can be pro-
hibitively expensive to do so.

As pointed out in Ahuja et al. (2022a), perfor-
mance prediction can be one possible remedy to
this problem with multilingual benchmarks, by uti-
lizing the linguistic and model-specific features
influencing cross lingual performance to learn a
mapping to the observed performance across dif-
ferent languages (See Figure 1). Utilizing regres-
sion models for predicting performance on NLP
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tasks have been shown to yield meaningful esti-
mates (Xia et al., 2020; Ye et al., 2021), and have
also been shown to be effective at predicting per-
formance of multilingual PLMs (Lauscher et al.,
2020; Srinivasan et al., 2022; Ahuja et al., 2022b).

The shared task for Scaling Up Multilingual
Evaluation (SUMEval) Workshop 2022 entailed
this task of performance prediction, where the par-
ticipants were given the performance of fine-tuned
multilingual models XLM-Roberta (Conneau et al.,
2020) and the Turing Universal Language Repre-
sentation model (T-ULRv6) (Patra et al., 2022) for
different training configurations across different
languages and tasks to build their performance pre-
diction systems. For evaluation there were two ver-
sions of the held out test sets, first a non-surprise
variant where the participants were asked to pre-
dict the performance on languages for which some
performance data was given in training but with
unknown training configurations, and second a sur-
prise variant where the performance was to be pre-
dicted on languages unseen in the training data.

Participants were provided LITMUS Predictor
(Srinivasan et al., 2022) as a baseline to get started
and were asked to build better systems possibly
using additional features, and alternate prediction
algorithms. We saw a participation of five teams
for the task, with a total of 15 submissions. Dif-
ferent teams utilized new features in addition to
those provided as part of the baseline, alternate fea-
ture engineering techniques, and utilized ensemble
learning methods for building models. The best
performing team on the non-surprise variant of the
task obtained a 64% reduction in MAE over the
baseline, and for surprise variant, the best perform-
ing team saw an improvement of 17%. To encour-
age further research in this area we have also made
the baseline and datasets available publically1.

2 Task and Dataset Description

We start by formally defining the performance pre-
diction problem for the shared task. Consider a
multilingual model M pre-trained on a set of L
languages. M is then to be fine-tuned on some
task T with labelled data in P pivot languages,
and then evaluated on a set of target languages T ,
where both P ⊂ L and T ⊂ L. A training configu-
ration S, is defined by the amount of labelled data
for each pivot language p ∈ P used for fine-tuning

1https://github.com/microsoft/Litmus/
tree/main/SumEval

M. The fine-tuned model can then be evaluated
on each of the target languages t ∈ T to obtain
performance measure s, such that s is a function
of:

s = f(t,S,P,M,T) (1)

In performance prediction, the objective is to
learn this mapping f , given instances of input con-
figurations {ti,Si,Pi,Mi,Ti} and output perfor-
mance si, so that we can use this mapping to predict
performance on unknown training configurations
and languages. The input tuple {ti, Si,Pi,Mi,Ti}
is often represented using various linguistic, model,
and data specific features. For a more detailed def-
inition of the task and the features, we refer the
readers to Xia et al. (2020); Ahuja et al. (2022a).

In the shared task, we provide the participants
different training configurations and their corre-
sponding performance on target languages for 4
multilingual tasks: i) XNLI (Conneau et al., 2018)
for Natural Language Inference, ii) TyDiQA (Clark
et al., 2020) for Machine Comprehension, iii)
WikiANN (Pan et al., 2017) for Named Entity
Recognition, and iv) UDPOS (Nivre et al., 2016)
for Part Of Speech Tagging; and 2 mulitlingual
PLMs: XLM-Roberta (large) and T-ULRv6 (large).
The candidates were asked to build regression mod-
els using this performance data, and then were eval-
uated by testing on new training configurations and
languages.

2.1 Dataset

The datasets were generated by fine-tuning the
models across the 4 datasets along different training
configurations and evaluating them on the target
languages. The statistics of the datasets are given
in Table 1. Training data was released to the partic-
ipants in the beginning of the competition and the
submissions were evaluated on the two variants of
the held-out test data:
i) non-surprise: In this test split the participants
were asked to predict the performance on the lan-
guages for which there was some performance data
available in the training set but the training con-
figurations were new, i.e. for the different data
allocations of the pivot languages.
ii) surprise: In this test split the participants were
asked to predict the performance on new languages,
which were unseen in the training dataset (both as
a pivot or target language). The training configu-
rations were both new and the ones present in the

https://github.com/microsoft/Litmus/tree/main/SumEval
https://github.com/microsoft/Litmus/tree/main/SumEval
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Task T Supp Models M Dataset Split Number of Config-
urations S

∣P∣ ∣T ∣ ∣P∩T ∣

XNLI XLM-R and
T-ULRv6

Train 40 15 15 15
Test (non-surprise) 10 15 15 15
Test (surprise) 50 15 10 0

TyDiQA-ID XLM-R and
T-ULRv6

Train 26 9 9 9
Test (non-surprise) 3 9 9 9

TyDiQA-OOD XLM-R and
T-ULRv6

Train 26 9 11 3
Test (non-surprise) 3 9 11 3

WikiANN XLM-R
Train 400 39 39 39
Test (non-surprise) 100 39 39 39
Test (surprise) 500 39 17 0

UDPOS XLM-R
Train 400 30 30 30
Test (non-surprise) 100 30 30 30
Test (surprise) 500 30 30 0

Table 1: Dataset statistics for the shared-task. Note that we have 2 versions of TyDiQA: TyDiQA-ID where both
training and test set comes from the the original TyDiQA benchmark, and TyDiQA-OOD where the training data is
from TyDiQA but test data is from XQUAD (Artetxe et al., 2020).

training data.
For validation, participants were provided scripts

for performing Leave-One-Language-Out (LOLO)
and Leave-One-Configuration-Out (LOCO) cross-
validation from the training data, to help emulate
the two test splits. In LOLO, one by one the per-
formance data for each language is kept aside for
validation and rest of the data is used for training
the model. Similarly, in LOCO each unique con-
figuration is set-aside one at a time for testing and
remaining data is used for training.

3 Baseline and Submitted Systems

In this section we will describe the LITMUS pre-
dictor baseline and the top two submissions made
for the shared task.

3.1 LITMUS Predictor Baseline

The LITMUS Predictor (Srinivasan et al., 2022)
is an online open-source tool built to predict task-
specific performance of multilingual PLMs across
different languages and offering data-collection
strategies to improve their performance. The tool
utilizes the following features to represent the input
tuple {ti, Si,Pi,Mi,Ti}:
1. Pre-training Data Size of ti: Cross Lingual
performance of multilingual PLMs have been ob-
served to be dependant on the amount of data for
a language that was present during pre-training
(Hu et al., 2020; Lauscher et al., 2020), where the
low resource languages for which the amount of
data present in the pre-training corpora was low,

are found to benifit less from cross lingual trans-
fer compared to high resource languages. Hence,
while predicting the performance for a language ti
we consider the log10 of the size (in tokens) of its
pre-training corpus, given by PT-SIZE(ti) ∈ R
2. Amount of Fine-Tuning Data in Si: Fine-
tuning multilingual PLMs even with small amounts
of labelled data (few-shot-learning) has been found
to drastically improve the performance in some
cases (Lauscher et al., 2020). Hence, for the given
training configuration Si representing amount of
fine-tuning data in each pivot language in P ,
we use it as features for the predictor, given as
FT-SIZE(Si) ∈ R∣P∣.
3. Syntactic Distance between each p ∈ Pi and
ti: Target languages that are syntactically closer to
the pivot languages have been observed to benefit
greater from cross-lingual transfer than the ones
that are syntactically distant (Pires et al., 2019;
Lauscher et al., 2020). Hence, for predicting per-
formance on ti, we consider it’s syntactic distance
with each of the pivot languages p ∈ Pi, which
is computed using the syntactic features provided
in the URIEL typological database (Littell et al.,
2017). This is denoted as SYN(Pi, ti) ∈ R∣P∣

4. Sub-word Overlap between each p ∈ Pi

and ti: Finally the sub-word vocabulary overlap
between the two pivot and target languages that
has also been shown to be important for cross lin-
gual transfer (Wu and Dredze, 2019; Ahuja et al.,
2022b) is also considered as a feature, denoted by
SWO(Pi, ti) ∈ R∣P∣.
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These four family of features are then used to
represent the input configuration which is used to
estimate the performance value:

si ≈ f(PT-SIZE(ti),FT-SIZE(Si),
SYN(Pi, ti),SWO(Pi, ti))

f can be approximated using any regression al-
gorithm, and the LITMUS predictor by default uses
XGBoost (Chen and Guestrin, 2016), and trains a
separate predictor for each task T and model M
(which gives 8 predictors for our dataset).

3.2 PICT Team System
The team from Pune Insitute of Computer Technol-
ogy (Patankar et al., 2022) made submissions for
both non-surprise and surprise variants of the task.
They proposed three feature engineering methods
for the task in their submission: i) Multi-Output
: The output of the regression model is expected
to be a vector containing performance for each tar-
get language in the dataset, inputs are represented
by the fine-tuning size of each pivot language; ii)
Single-Output : Predicting performance of each
target language separately, one-hot representations
of the languages are appended to the input features;
iii) Single-Output w Language Features : Apart
from the pivot sizes, typological distance features
(from URIEL (Littell et al., 2017)) between pivot
and target pairs are also appended. The participants
train a common model for all the four tasks and the
two multilingual models by incorporating one-hot
vectors for the two as input features, and encourage
cross-task and cross-model transfer. For training
the regression models they experiment with Cat-
Boost (Prokhorenkova et al., 2018) and XGBoost.

3.3 GMU Team System
George Mason University team (Akter and Anas-
tasopoulos, 2022) builds on the baseline system
by proposing alternate feature engineering tech-
niques and included additional input features for
modelling the problem. The participants noted that
the feature representation in the existing baseline
system added a feature for each pivot language,
which may not scale well when different combina-
tions of the fine-tuning languages are used at the
test time. They proposed a fixed-size featurization
scheme which takes weighted sums of pivot-target
overlap features, where the weights are decided by
pivot sizes. Additionally, they propose two new

am as gd gu km kn ku ky mg ne or pa ps sd si so su
Target Language

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ab
s E

rro
r

Task : WikiANN, Model: XLMR
LITMUS
Pranshu

PICT GMU

Figure 2: Language wise absolute errors on surprise lan-
guages for the baseline and the four submitted systems.

features : i) Presence of Target Language in Pre-
training : A binary feature indicating whether the
target language was present during pre-training ;
ii) Target Language Writing Scripts : A binary
vector representing the writing script(s) of the tar-
get language obtained from van Esch et al. (2022).
Additionally, the GMU team also trained models
collectively for all the tasks and MMLMs, and used
an ensemble of XGBoost, Multi-Layer Perceptron
based regressors for their predictor model.

4 Results

We now compare the performance of the submis-
sions and the baseline on both non-surprise and
surprise test sets. Apart from PICT and GMU, we
received submissions from three other teams that
we identify by the usernames of the participants i.e.
Khooshrin, Viktoria, and Pranshu.

4.1 Non-Surprise Test Set

The Mean Absolute Errors (MAE) on the non-
surprise test set for the baseline and the submis-
sions are given in Table 2. On average, all the
submissions out-perform the baseline substantially,
with PICT obtaining almost 64% reduction in the
macro average error (91% in case of micro aver-
age). Analysing the task specific errors, we observe
the maximum reduction in errors comes from the
TyDiQA dataset. This might be attributed to the
fact that out of the 4 multilingual tasks, we had the
least amount of performance data for TyDiQA (26
training configurations as given in Table 1). Both
PICT and GMU use joint training for multiple tasks
which is in contrast to the baseline that trains indi-
vidual predictors for each task (and model). Hence,
the substantial drops in the errors are likely to be
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Average TyDiQA UDPOS WikiANN XNLI
System Macro Micro TULRv6 XLMR XLMR XLMR TULRv6 XLMR

LITMUS 0.018 0.131 0.351 0.381 0.005 0.017 0.026 0.003
Khooshrin 0.100 0.156 0.301 0.317 0.114 0.085 0.047 0.071
Viktoria 0.030 0.026 0.048 0.037 0.038 0.026 0.004 0.004
Pranshu 0.012 0.015 0.019 0.016 0.006 0.017 0.026 0.003
PICT 0.011 0.011 0.012 0.014 0.012 0.011 0.008 0.007
GMU 0.023 0.031 0.040 0.054 0.021 0.024 0.032 0.015

Table 2: Mean Absolute Errors (MAE) for the baseline and the submitted systems, on the non-surprise version of
the test set.

Average UDPOS WikiANN XNLI
System Macro Micro XLMR XLMR TULRv6 XLMR

LITMUS 0.088 0.055 0.044 0.135 0.025 0.017
Khooshrin 0.118 0.070 0.152 0.099 0.016 0.015
Viktoria 0.097 0.064 0.067 0.131 0.028 0.029
Pranshu 0.075 0.048 0.042 0.109 0.018 0.022
PICT 0.104 0.070 0.071 0.141 0.032 0.037
GMU 0.073 0.052 0.062 0.087 0.026 0.035

Table 3: MAEs for the baseline and the submitted systems, on the surprise version of the test set.

attributed to multi-task training which is also in
line with the observations in Ahuja et al. (2022b).

4.2 Surprise Test Set

Next, we compare the systems on the surprise lan-
guages test sets in Table 3. Here, teams GMU and
Pranshu outperform the baseline with 17% and
14% reduction in macro average errors respectively.
Maximum gains are observed for the WikiANN
dataset, where GMU team obtains a 35% reduction
in MAE. For UDPOS and XNLI tasks, GMU per-
forms slightly worse compared the baseline, while
Pranshu obtains comparable errors. We suspect
this might be explained by oberving that the er-
rors on WikiANN for the baseline are substantial
(±0.135 points F1-Score) compared to the other
two tasks, resulting in a better scope for improve-
ment in the former dataset.

We also plot the (surprise) language specific er-
rors on WikiANN dataset for the baseline and the
four systems in Figure 2. As can be seen, GMU out-
performs the other 4 systems for a majority of the
languages, with less then 0.05 error in the F1-score
for all languages except Amharic (am), Sindhi (sd),
Kyrgyz (kr), Malagasy (mg), Oriya (or), and Pushto
(ps) (6 out of 17 languages). This indicates that it
might be possible to approximate the performance

on new languages with a reasonable accuracy. How-
ever, there is still a scope of improvement as the
worst case errors are still as high as 0.25 points
F1-score for the best performing system.

5 Conclusion

In this paper we presented the findings from the
SUMEval workshop shared task on performance
prediction of multilingual PLMs. We received 15
submissions from five different teams, and most
teams were able to obtain substantial gains over the
baseline for the non-surprise test set, and two of
the teams out-performed the baseline on the sur-
prise test set with impressive gains. The strategy of
training jointly on multiple tasks and models was
utilized by multiple teams, and it lead to substantial
improvements for low-resource tasks like TyDiQA.
Additional features like the script of the target lan-
guage were also found to be useful, specially for
predicting performance of unseen languages. The
best performing system achieved an error of less
than 0.05 points F1-score for 11 out of 17 surprise
languages for which no performance data was avail-
able for training. Overall, the results indicate a
promising step towards scaling up the evaluation
of multilingual models across multiple languages.
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