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Abstract

This paper suggests a direction of corefer-
ence resolution for online decoding on actively
generated input such as dialogue, where the
model accepts an utterance and its past con-
text, then finds mentions in the current utter-
ance as well as their referents, upon each dia-
logue turn. A baseline and four incremental-
updated models adapted from the mention-
linking paradigm are proposed for this new set-
ting, which address different aspects includ-
ing the singletons, speaker-grounded encod-
ing and cross-turn mention contextualization.
Our approach is assessed on three datasets:
Friends, OntoNotes, and BOLT. Results show
that each aspect brings out steady improve-
ment, and our best models outperform the
baseline by over 10%, presenting an effective
system for this setting. Further analysis high-
lights the task characteristics, such as the sig-
nificance of addressing the mention recall.

1 Introduction

It has been made practical recently to apply coref-
erence resolution to assist a broad scope of NLP
tasks (Peng et al., 2017; Sahu et al., 2019; Gao
et al., 2019), especially with the advent of neural
end-to-end decoding and contextualized encoding
(Lee et al., 2017, 2018; Joshi et al., 2019, 2020;
Wu et al., 2020). However, it is quite limited to use
existing coreference models in real-time dialogue
processing systems, as most of them are not trained
to handle an online decoding environment. In the
dialogue domain, recent efforts have focused on
ellipsis recovery and query rewriting (Quan et al.,
2019; Tseng et al., 2021); in this work, we target
to address a new perspective specifically for the
online decoding, where the model sequentially ac-
cepts utterances in a dialogue and spits out valid
mentions as well as their referent links for each
latest utterance turn upon arrival, to be consumed
by the downstream dialogue processing (Figure 1).
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( John: | visited my mom in her house yesterday. )

( Ella: Nice! Did you: also take her to any restaurant? )

(

)

John:
u;

‘es! The BBQ place nearby!

Uzy

Figure 1: Illustration of the online setting. Predictions
upon each turn are made immediately and ready for
consumption by downstream applications. New men-
tions at each turn are marked by boldface in orange.

More formally, let u; be the current (¢’th) utter-
ance in a dialogue (uy, .., u;, ..); M; be the men-
tions in u;; M*~! be the mentions from previously
predicted clusters till u;_1. The objective upon ¢’th
turn is to: (1) identify M; (2) identify conference
links among M, as well as from M, to M?~1. We
do not allow updates on M later, since that would
be equivalent to general coreference resolution; in
this work, we specifically target this underexplored
online scenario under this setting, which requires
accurate predictions upon each turn that could be
directly consumed by downstream applications.

Several quasi-online coreference models have
been proposed that maintain and update referents
sequentially (Clark and Manning, 2015, 2016; Liu
etal., 2019; Toshniwal et al., 2020; Xia et al., 2020).
However, these models differ from our real online
setting in two ways. First, only the latest utter-
ance and its past sequence are visible in our set-
ting, so that decisions need to be made without
knowing the unseen future. Second, the decision
of whether a span should be extracted or linked to
others needs to be made immediately at each utter-
ance turn, while quasi-online models can maintain
an internal pool of candidates and make one final
prediction after the entire document is processed.

For this task, we first introduce our baseline
adapted from the classic mention-linking (ML) ap-
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proach (Wiseman et al., 2015; Lee et al., 2017),
and then propose four models where each one does
an incremental update upon the previous model
and addresses a specific perspective of this task,
including the online inference, singletons, speaker-
grounded encoding, and mention contextualization
across utterance turns. For our approach, we do
not use models that maintain explicit entities, be-
cause: (1) it has been shown that higher-order fea-
tures from entity representation provide negative
to marginal positive impact over ML counterparts
despite their complexities (Xu and Choi, 2020; Xia
et al., 2020; Toshniwal et al., 2020); (2) ML models
are “stateless” so that they do not need to maintain
decision states for previous mentions, which makes
it more adaptable to applications in practice.

All models are evaluated on three datasets to
test the generalizability of our approach, and the
best model obtains over 10% improvement over
the baseline on all datasets. Results and further
analysis suggest that each aforementioned aspect
can bring out steady improvement under the online
setting, and highlight the singleton recovery to be
the most critical component.

2 Approach

End-to-End Resolution Our model backbone is
based on the end-to-end coreference resolution
(Lee et al., 2018) with a Transformers encoder
(Joshi et al., 2020). It scores every span for being a
mention, and extracts top spans as mention candi-
dates. Pairwise scoring is then performed among
all candidates to determine the coreference links.
Details of the model architecture can be referred
by the paper from Lee et al. (2018), and we denote
the original coreference loss as L..

Baseline (BL) We first present our baseline that
takes the end-to-end model and trains in the exact
same non-online way as prior work, but adapts the
decoding to fit in our online inference setting.

Let u; be the 7’th utterance in the dialogue, and
|u;| be its length (number of tokens). During online
decoding upon u;, this model takes an utterance
sequence with past context as input, denoted by
U, = (ug,..,u;); k € [1,i) is dynamically de-
termined by Z;Zk |uj| < Y where T is the max
number of tokens that the encoder accepts. Differ-
ent from Lee et al. (2018), the mention candidates
now consist of two parts: (1) the extracted top can-
didates solely from u;, denoted as A&j; (2) mentions
from previously predicted clusters from U,i_l, de-

noted as M?l. Thereby the final candidate set
X can be denoted as X; U MZ_I. The same pair-
wise scoring as prior work is then performed on all
candidates X. Since we do not modify previous
decisions in our setting, we keep coreference links
among X;, or from & to MZ_I, but not among
Mz_l. The predicted clusters after u; will be up-
dated in the same way by picking the referent an-
tecedents according to coreference links.

Singleton Recovery (SR) SR is built upon BL to
address the singleton problem. In BL, after pro-
cessing each utterance sequence Z/{,i, the model fil-
ters out mention candidates from X that are not
referent to any other candidates, according to the
mention-linking paradigm. However, it results on
losing non-anaphoric mentions that do not have
referents in u;, and yields a critical issue for online
inference because mentions in u; that are currently
singletons but potentially will find referents in later
utterances can get discarded too early.

To address this issue, we adopt a simple strat-
egy similar to (Xu and Choi, 2021) that preserves
any candidates whose mention scores are larger
than a threshold of 0, denoted as s,, > 0, and cre-
ates a singleton cluster for each of which have not
yet found any referent (intermediate singletons).
However, as many annotation schemes do not re-
quire annotating singletons, e.g. CoNLL 2012,
we may not have “true” gold labels covering every
valid mentions, similar to the “misguidance of unla-
beled entities” problem in named entity recognition
(NER) (Li et al., 2021). Let ¥, be the set of s,
of gold candidates according to the annotation, and
W be the set of s, of other candidates that may
also contain certain valid mentions (singletons).
We mitigate the false negative issue of unlabeled
mentions by applying dynamic negative sampling
on ¥ denoted as ®,,, where | U | ~ |®, |. Bi-
nary cross-entropy (BCE) loss is then used for this
optimization to aid the threshold requirement:

L = BCE(T;,, ©p) (1)
L=aoac Loty Ly (2)

The final loss £ is estimated by the weighted sum of
Ly, and L. using the hyperparameters o and oy,.

Online Resolution (OR) OR is designed specif-
ically for online inference on dialogues. Distin-
guished from BL that takes the whole document
as input in training, OR takes Z/{,i as input for both
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training and decoding, closing the gap. To cap-
ture subtle nuances from different speakers in the
dialogue, we collect speaker names within each
dialogue and assign a special token of position-
based ID to each speaker (e.g. Si, S2) based on
speaking orders, which is then prepended to its cor-
responding utterance (Wu et al., 2020). We also
add [SEP] before u; to signal the latest utterance.
The following sequence is used as input for OR:

{Sk}ﬁu; - { [SEP] }A{Si}f\ui 3)
During training upon the ¢’th turn, gold mentions
in L{,ifl are used as M;:l; the losses £, and L.
are estimated only on candidates from u;. Gradient
accumulation is applied across multiple utterance
turns, and we warm-start OR by initializing from
the parameters of SR, followed by the online train-
ing described above. The decoding step for OR is
kept the same as BL and SR.

Speaker-Grounding (SG) SG adds a speaker-
grounding subtask upon OR, which is to facilitate
the encoding of multi-speaker interaction which is
an important aspect in dialogues. In OR, although
each input token is conditioned on speaker tokens
as in Eq (3), it is not obvious to the model that
each token is from which speaker, which can be
a barrier to learn the speaker interaction. To ex-
plicitly regularize the speaker encoding, we add
a subtask to predict whether two candidates are
from the same speaker based on their embeddings:
the model gives a same-speaker score s, such that
pairs from the same speaker have s; > 0 and others
ss < 0, forcing the semantic representation to fuse
the speaker interaction. Let U be the set of s, of
pairs from the same speaker; ¥ be the set of s,
of other pairs. We optimize s; by BCE, adding the
loss in addition to L. and L,,:

55(2,Y) = Ws - [gz D gy D (gz © gy) © (92 — gy)]
L, =BCE(Y], ) “)
L=oc Let+ - Ly + o, Ly )

g/ gy denotes the representation of a candidate and
wy 18 the scoring parameter. & denotes concatena-
tion and o is the element-wise multiplication. We
also apply negative sampling to keep || ~ [P .

Span-Level Self-Attention (SA) SA is also
added upon OR to achieve candidate contextual-
ization. For each input [}, the representation of

all candidates X" is contextualized on the token-
level because of Transformers’ encoding. How-
ever, M;;l is not used until the pairwise scoring.
Therefore, A& is not explicitly conditioned on the
previously extracted mentions (M 2_1) on the span-
level. To capture the dependency among all men-
tion candidates across utterances, we pass X’ to
a scaled dot-product self-attention layer (Vaswani
et al., 2017) before the pairwise scoring:

(GWy) (GWi)"
Vd

where G € RI*1*? i the embedding matrix of all
candidates, d is the embedding size, W, Wy, W,
are the parameters. G’ is the new candidate-aware
embedding matrix, which provides enhanced can-
didate representation for the pairwise scoring.

G’ = softmax ( J(GWy),  (6)

3 Experiments

Datasets All models are experimented on the fol-
lowing three datasets. Friends contains transcripts
from the TV show in which personal mentions are
annotated for entity linking. Each scene is consid-
ered an independent dialogue where utterances and
speaker IDs are provided. We adapt the data split
suggested by Zhou and Choi (2018). Onto-Conv
consists of documents in three genres selected from
OntoNotes 5.0: broadcasting and telephone conver-
sations, and web text including discussion forums.
We adapt the data split provided by Pradhan et al.
(2012) and treat each document as a dialogue and
every sentence as an utterance. BOLT follows the
same annotation guideline as OntoNotes although
documents are from discussion forums, SNS chats,
and telephone conversations (Li et al., 2016). Since
this is the first work using BOLT for this task, we
create a new data split for future replicability (see
A.1). Out of these three datasets, only Friends
provides annotation of singletons.

The numbers of documents in the training, devel-
opment, and test set of Friends, Onto-Conv, BOLT
are provided in Table 2, along with the averaged
numbers of speakers, entity clusters and utterances
per document of each dataset. More details regard-
ing the datasets are provided in Appendix A.1.

Settings Our implementation are based on the
PyTorch coreference models from Xu and Choi
(2020), and SpanBERTgasE is adopted as the en-
coder. The implementation and trained models
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Friends ‘ Onto-Conv ‘ BOLT
MUC B® CEAF;,  AvgFl |MUC B’ CEAF,  AvgFl |MUC B3 CEAF,  AvgFl
BL 81.9 622 545  662(x£07) | 705 548 439  564(£02) | 733 612 511 61.9(£0.3)
SR 855 683 617 71.8(x£0.5 | 775 632 552  652(£0.6) | 796 718 617  TLO(+04)
OR 858 719 657 745(+£05 | 780 63.6 556  657(£03)| 795 720 632  715(£03)
+SG 857 736 670 753(£04)| 78.1 643 565 663(£03)| 799 723 634  7T1.8(+03)
+SG+sA 864 737 682  76.1(£0.1)| 789 643 569 668 (+0.1) | 799 727 641  72.3(£02)

Table 1: Results of all models in Section 2 on the evaluation sets of Friends, Onto-Conv, and BOLT datasets. MUC,
B3, and CEAF,, show the F1 scores of the corresponding metrics, and their macro-average score (Avg F1) is
used as the main evaluation metric. All scores presented here are the averaged scores over 3 repeated experiments;
the standard deviations of Avg F1 scores are provided in the parentheses.

shows the results of mention precision and recall

| TRN DEV TST | NS NC NU

F 987 122 192 | 3.7 4.6 18.7

O | 566 100 95 24 162 495

B 943 117 117 | 2.9 9.2 18.1
Table 2: Statistics of the dataset Friends (F), Onto-

Conv (0), BOLT (B). TRN, DEV, TST are the numbers
of documents in the training, development, and test set
of each dataset. NS, NC, NU are the averaged numbers
of speakers, entity clusters, utterances per document of
each dataset.

have been partially integrated with the open source
project ELIT! (He et al., 2021).

During inference, all predicted clusters are col-
lected and merged accordingly across utterances,
and get evaluated by comparing them to the ground
truth (all gold non-singleton clusters) at the end of
each dialogue, in the same way as the CoNLL’12
shared task protocol. Detailed experimental set-
tings are provided in Appendix A.2.

Results Table 1 describes the performance of all
models on the test sets in the three datasets. These
results are averaged across 3 repeated experiments;
Avg-F1 is used as the main evaluation metric. Each
proposed model gives steady improvement, and the
best result is achieved by the OR+SG+SA model,
surpassing the BL model on all datasets by sig-
nificant margins of ~10%. Among these models,
singleton recovery contributes the most upon BL,
demonstrating that albeit simple and intuitive, the
training and inference of intermediate singletons is
essential in online coreference resolution.

3.1 Analysis on Online Inference

To identify how model predictions are affected by
online inference, all mentions in the predicted clus-
ters are examined against the gold clusters. Table 3

"https://github.com/emorynlp/elit

from the four experimental settings.

Friends Onto-Conv BOLT

P R P R P R
N:BL 92.0 92.5 88.1 83.6 85.2 82.8
0:BL 92.5 853 92.1 60.6 89.0 64.8
0:SR 92,5 932 89.4 78.8 874 783
0:SR- 92,5 925 90.4 74.8 88.4 76.7

Table 3: The Precision and Recall of all mentions in the
predicted clusters on the test sets in the three datasets.
N is Non-online inference as in CoNLL’ 12 shared task,
O is Online inference as in this work. SR- is the
Singleton Recovery (SR) model without applying neg-
ative sampling on the mention loss in training.

Following observations are drawn by this analysis:
(1) Comparing N: BL and O : BL, online inference
indeed leads to a large drop on the mention recall
as expected, without as much increase on precision,
due to the omission of intermediate singletons.

(2) Comparing O:BL and O: SR, singleton recov-
ery (SR) significantly improves the mention recall
(8% for Friends and 13+% for others) without sac-
rificing much precision. However, notice that the
recall of O: SR for Friends is even higher than that
of non-online inference (N : BL), but the recall for
Onto-Conv and BOLT is still 4+% lower than that
of N : BL. This is due to the fact that Friends does
have singletons annotated while the other two do
not. Thus, O: SR for Friends does not suffer from
the “misguidance of unlabeled entities” problem.
(3) Comparing O: SR and O : SR, it illustrates the
positive impact of applying negative sampling on
mentions to alleviate the false-negative issue of
unlabeled mentions, which improves recall while
maintaining similar precision for online inference.

3.2 Analysis on Utterance Interaction

As we aim to build a robust online resolution model
in the dialogue domain, understanding of individual
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speakers is important especially in multi-party inter-
action. In comparison to the binary indicator used
in BL and SR that can handle only up to two speak-
ers, adding the subtask for speaker-grounded en-
coding is shown to perform better for multi-speaker
dialogues: the improvement of OR+SG over SR is
3.5% F1 for Friends, but around 1% F1 for the
other two. Our statistics show that 43% dialogues
in Friends have at least 4 speakers, while being
only 15% and 24% for the other two, suggesting
that the multi-speaker environment indeed benefits
more from the new speaker encoding scheme.

In addition, the percentages of pronouns in the
gold mentions are 80.3%, 53.5%, and 63.5% in
Friends, Onto-Conv, and BOLT respectively, which
also highlights the importance of a better encod-
ing scheme to handle a large portion of pronouns
present in dialogue. Thus, we suggest to employ
a more advanced dialogue encoding that utilizes
the speaker interaction clues as one of the future
research direction for this online-decoding task.

4 Conclusion

This paper presents a new coreference resolution
direction that aims towards an online decoding set-
ting for dialogue processing. A baseline and four
incremental-updated models are proposed and eval-
uated on three datasets of the dialogue domain, and
the best-performing model shows significant im-
provement over the baseline by ~10% F1. Further
analysis suggests the importance of mention recall
and speaker encoding, which could serve as the
next future directions of this online setting.

References

Kevin Clark and Christopher D. Manning. 2015.
Entity-centric coreference resolution with model
stacking. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1405-1415, Beijing, China. Association for
Computational Linguistics.

Kevin Clark and Christopher D. Manning. 2016. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 643-653, Berlin, Germany. Association for
Computational Linguistics.

Yifan Gao, Piji Li, Irwin King, and Michael R. Lyu.
2019. Interconnected question generation with

coreference alignment and conversation flow mod-
eling. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 4853—4862, Florence, Italy. Association
for Computational Linguistics.
Han He, Liyan Xu, and Jinho D. Choi. 2021. Elit:
Emory language and information toolkit.

Mandar Joshi, Danqgi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
Spanbert: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64-77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 58035808, Hong Kong,
China. Association for Computational Linguistics.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188—-197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687-692, New Orleans, Louisiana. Association for
Computational Linguistics.

Xuansong Li, Martha Palmer, Nianwen Xue, Lance
Ramshaw, Mohamed Maamouri, Ann Bies, Kathryn
Conger, Stephen Grimes, and Stephanie Strassel.
2016. Large multi-lingual, multi-level and multi-
genre annotation corpus. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation (LREC’16), pages 906-913,
Portoroz, Slovenia. European Language Resources
Association (ELRA).

Yangming Li, lemao liu, and Shuming Shi. 2021.
Empirical analysis of unlabeled entity problem in
named entity recognition. In International Confer-
ence on Learning Representations.

Fei Liu, Luke Zettlemoyer, and Jacob Eisenstein. 2019.
The referential reader: A recurrent entity network
for anaphora resolution. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5918-5925, Florence, Italy.
Association for Computational Linguistics.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence

345


https://doi.org/10.3115/v1/P15-1136
https://doi.org/10.3115/v1/P15-1136
https://doi.org/10.18653/v1/P16-1061
https://doi.org/10.18653/v1/P16-1061
https://doi.org/10.18653/v1/P16-1061
https://doi.org/10.18653/v1/P19-1480
https://doi.org/10.18653/v1/P19-1480
https://doi.org/10.18653/v1/P19-1480
http://arxiv.org/abs/2109.03903
http://arxiv.org/abs/2109.03903
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108
https://www.aclweb.org/anthology/L16-1145
https://www.aclweb.org/anthology/L16-1145
https://openreview.net/forum?id=5jRVa89sZk
https://openreview.net/forum?id=5jRVa89sZk
https://doi.org/10.18653/v1/P19-1593
https://doi.org/10.18653/v1/P19-1593
https://doi.org/10.1162/tacl_a_00049

n-ary relation extraction with graph LSTMs. Trans-
actions of the Association for Computational Lin-
guistics, 5:101-115.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,

Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task, pages
1-40, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Jun Quan, Deyi Xiong, Bonnie Webber, and Changjian
Hu. 2019. GECOR: An end-to-end generative el-
lipsis and co-reference resolution model for task-
oriented dialogue. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 4547-4557, Hong Kong, China. As-
sociation for Computational Linguistics.

Sunil Kumar Sahu, Fenia Christopoulou, Makoto
Miwa, and Sophia Ananiadou. 2019. Inter-sentence
relation extraction with document-level graph con-
volutional neural network. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4309—4316, Florence,
Italy. Association for Computational Linguistics.

Shubham Toshniwal, Sam Wiseman, Allyson Ettinger,
Karen Livescu, and Kevin Gimpel. 2020. Learn-
ing to Ignore: Long Document Coreference with
Bounded Memory Neural Networks. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8519-8526, Online. Association for Computational
Linguistics.

Bo-Hsiang Tseng, Shruti Bhargava, Jiarui Lu, Joel
Ruben Antony Moniz, Dhivya Piraviperumal, Lin
Li, and Hong Yu. 2021. CREAD: Combined reso-
lution of ellipses and anaphora in dialogues. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3390-3406, Online. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998—6008. Cur-
ran Associates, Inc.

Sam Wiseman, Alexander M. Rush, Stuart Shieber, and

Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1416-1426, Beijing, China. Association for Compu-
tational Linguistics.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Ji-

wei Li. 2020. CorefQA: Coreference resolution as
query-based span prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6953—-6963, Online. As-
sociation for Computational Linguistics.

Patrick Xia, Jodo Sedoc, and Benjamin Van Durme.

2020. Incremental neural coreference resolution in
constant memory. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8617-8624, Online. As-
sociation for Computational Linguistics.

Liyan Xu and Jinho D. Choi. 2020. Revealing the myth

Liyan Xu and Jinho D. Choi. 2021.

of higher-order inference in coreference resolution.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8527-8533, Online. Association for Computa-
tional Linguistics.

Adapted end-
to-end coreference resolution system for anaphoric
identities in dialogues. In Proceedings of the CODI-
CRAC 2021 Shared Task on Anaphora, Bridging,
and Discourse Deixis in Dialogue, pages 55-62,
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Ethan Zhou and Jinho D. Choi. 2018. They exist! in-

346

troducing plural mentions to coreference resolution
and entity linking. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 24-34, Santa Fe, New Mexico, USA. Associ-
ation for Computational Linguistics.


https://doi.org/10.1162/tacl_a_00049
https://www.aclweb.org/anthology/W12-4501
https://www.aclweb.org/anthology/W12-4501
https://www.aclweb.org/anthology/W12-4501
https://doi.org/10.18653/v1/D19-1462
https://doi.org/10.18653/v1/D19-1462
https://doi.org/10.18653/v1/D19-1462
https://doi.org/10.18653/v1/P19-1423
https://doi.org/10.18653/v1/P19-1423
https://doi.org/10.18653/v1/P19-1423
https://www.aclweb.org/anthology/2020.emnlp-main.685
https://www.aclweb.org/anthology/2020.emnlp-main.685
https://www.aclweb.org/anthology/2020.emnlp-main.685
https://doi.org/10.18653/v1/2021.naacl-main.265
https://doi.org/10.18653/v1/2021.naacl-main.265
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.3115/v1/P15-1137
https://doi.org/10.3115/v1/P15-1137
https://doi.org/10.18653/v1/2020.acl-main.622
https://doi.org/10.18653/v1/2020.acl-main.622
https://www.aclweb.org/anthology/2020.emnlp-main.695
https://www.aclweb.org/anthology/2020.emnlp-main.695
https://www.aclweb.org/anthology/2020.emnlp-main.686
https://www.aclweb.org/anthology/2020.emnlp-main.686
https://doi.org/10.18653/v1/2021.codi-sharedtask.6
https://doi.org/10.18653/v1/2021.codi-sharedtask.6
https://doi.org/10.18653/v1/2021.codi-sharedtask.6
https://www.aclweb.org/anthology/C18-1003
https://www.aclweb.org/anthology/C18-1003
https://www.aclweb.org/anthology/C18-1003

A Appendix
A.1 Dataset

The annotation in Friends includes plural links
where a mention can belong to more than one en-
tity clusters. We discard those mentions with plural
links in our experiments and leave them as future
work. All remaining mentions for Friends are per-
sonal mentions.

BOLT does not come with a predefined
train/dev/test split. We use a random split of 80%,
10%, 10% of documents in each genre for the
train/dev/test split. In addition, we only use gen-
res “en” and “sm” in BOLT, as other genres cur-
rently do not have user IDs provided and only con-
stitute less than 5% documents of entire dataset.
The details of our split are provided in https:
//github.com/lxucs/online-bolt.

A.2 Implementation

For training on entire dialogue contexts as docu-
ment input (BL and SR), we follow the similar hy-
perparameter settings as Joshi et al. (2019, 2020);
Xu and Choi (2020), where long documents are
split into independent segments with the maximum
sequence length of 384 for SpanBERTgEAsg. We
employ the learning rate of 2 x 10~° for BERT pa-
rameters and 2 x 10~ for task parameters with the
dropout rate as 0.3. Maximum span length is set
to 6 for Friends and 25 for Onto-Conv and BOLT.
In the coarse pruning stage, we keep a maximum
number of antecedents as 20 for Friends and 50 for
Onto-Conv and BOLT.

For online training and inference on the utter-
ance sequence input (OR, +SG, +SA), we use one
BERT segment so that the length of current utter-
ance with past context does not exceed 384 tokens
in our experiments. Gradient accumulation of 16
steps is applied during online training. We use the
same learning rates and training epochs, similar as
training on document input. Our best model has
a. = 1,a,, = 0.1,y = 0.1 for the multi-task
learning.

All experiments are conducted on NVIDIA TI-
TAN RTX GPUs with 24GB memory. Training on
document input takes around 3 hours and training
on online input takes around 8-12 hours. All pro-
posed methods have similar inference time, as they
follow similar architecture and all operate on the
online inference for prediction.
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