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Abstract

In this paper, we present and implement a multi-
dimensional, modular framework for perform-
ing deep argument analysis (DeepA2) using
current pre-trained language models (PTLMs).
ArgumentAnalyst – a T5 model (Raffel et al.,
2020) set up and trained within DeepA2 – re-
constructs argumentative texts, which advance
an informal argumentation, as valid arguments:
It inserts, e.g., missing premises and conclu-
sions, formalizes inferences, and coherently
links the logical reconstruction to the source
text. We create a synthetic corpus for deep
argument analysis, and evaluate ArgumentAna-
lyst on this new dataset as well as on exist-
ing data, specifically EntailmentBank (Dalvi
et al., 2021). Our empirical findings vindicate
the overall framework and highlight the advan-
tages of a modular design, in particular its abil-
ity to emulate established heuristics (such as
hermeneutic cycles), to explore the model’s un-
certainty, to cope with the plurality of correct
solutions (underdetermination), and to exploit
higher-order evidence.

[ Demo] [ Model] [ Datasets]

1 Introduction

Argumentative text analysis is an interpretation
method for clarifying arguments (Fisher, 2004).
Being studied in argumentation theory, logic, or
epistemology, it is widely taught and applied as
a key critical thinking skill in, e.g., law (Alexy,
1989), the humanities (Bruce and Barbone, 2011),
social sciences (Fairclough and Fairclough, 2012),
policy advice (Hansson and Hirsch-Hadorn, 2016),
or public debate (Beck et al., 2019). This paper
presents a computational approach for deep argu-
ment analysis, i.e., for reconstructing natural-
language arguments from a given text, as in the
following example (adapted from Siegel, 2018):

source text ; reconstructed argument
It is unethical to destroy hu-
man embryos. The most ba-
sic argument supporting this
claim just stresses that it is
wrong to intentionally kill in-
nocent human beings.

(P1) It is impermissible to
kill innocent human beings.
(P2) The human embryo is an
innocent human being.
(C) THUS: It is impermissi-
ble to kill the human embryo.

The literature on argument reconstruction (cf.
Feldman, 1998; Scholz, 2000; Lau, 2011; Bowell
and Kemp, 2014; Brun, 2014; Brun and Betz, 2016)
characterizes deep argument analysis as:

• a complex task involving a variety of sub-
tasks, such as identifying reasons and conclu-
sions in a text, formalizing sentences, check-
ing validity of an inference, logical streamlin-
ing, or explicating implicit premises.

• a non-conservative, creative task that goes
beyond mere text annotation and essentially
generates a new, more transparent text.

• an iterative process through which recon-
structions are built and revised step-by-step,
and the solution space is gradually explored.

• a hermeneutical task, guided by the principle
of charity, which urges one to come up with
an interpretation (reconstruction) as strong
and plausible as possible.

• assuming a normative background theory
about what constitutes a strong and plausible
argument in the first place.

• being affected by severe underdetermina-
tion, both in terms of the process and the final
outcome; in particular, there typically exist
rival, yet equally legitimate reconstructions of
one and the same text.

Given these special characteristics, deep argu-
ment analysis poses many challenges for machine
models of natural language understanding. In this
paper, we introduce a novel modular modeling ap-
proach for analysing complex argumentation that
builds on recent pre-trained text2text transformers
(Raffel et al., 2020). Our approach – DeepA2 (il-
lustrated in Figure 1) – works by systematically
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decomposing a complex reconstruction problem to
smaller text2text sub-tasks (see Section 3), which
allows for emulating the types of interpretation
strategies and heuristics studied in argument theory.
Referring to the different components of a com-
prehensive argumentative analysis, we may also
define tailor-made metrics for assessing argument
reconstructions. To demonstrate the benefits of
our approach, we construct a new argumentation
dataset (AAAC) that exhibits several complex inter-
pretive dimensions, show how to map other existing
datasets into our framework (Section 4), and train
and evaluate our main model, referred to as Argu-
mentAnalyst, within DeepA2 (Section 5).

Our empirical results show:
1. ArgumentAnalyst generates – out-of-domain –

semantically meaningful argument reconstructions,
70% of which are logically valid. By pooling alter-
native reconstructions, virtually every source text
in the synthetic dataset can be reconstructed as a
valid argument.

2. Modular generation chains which emulate
iterative reconstruction strategies are highly suc-
cessful: they yield, in particular, a more coherent
interpretation of an argumentative text, exploit the
text more thoroughly, and generally outperform
one-step generation as soon as problems become
difficult.

3. ArgumentAnalyst outperforms Entailmen-
tWriter (Dalvi et al., 2021) on difficult Entailment-
Bank problems with respect to telling apart relevant
premises from distractors.

4. ArgumentAnalyst generates reliable higher-
order evidence (Christensen, 2010) which can be
used for diagnosing logical fallacies – despite the
fact that ArgumentAnalyst is maximally charitable
and is trained to reconstruct any input whatsoever
as a logically valid argument, even if the input
argument, taken at face value, is painstakingly fal-
lacious.

In concluding this paper, we sum-up and in-
terpret these findings as general vindication of
DeepA2’s modular, multi-angular design (Sec-
tion 6).

2 Related Work

Taking transformers as soft reasoners, recent
work, pioneered by Clark et al. (2020), has shown
that pre-trained language models (PTLMs) possess
basic deductive and abductive reasoning capabili-
ties on diverse domains (Banerjee and Baral, 2020;

Betz et al., 2021; Bostrom et al., 2021), but are
equally prone to fallacies and biases (Kassner and
Schütze, 2020; Talmor et al., 2020). Besides draw-
ing the correct conclusion, transformers are able
to generate correct reasoning chains that justify
an answer, which in turn further increases answer
accuracy (Saha et al., 2020; Tafjord et al., 2020;
Gontier et al., 2020; Saha et al., 2021; Dalvi et al.,
2021).

Neural semantic parsing uses sequence mod-
els to formalize natural language sentences (Ka-
math and Das, 2019). Shin et al. (2021) show that
PTLMs are zero-shot parsers, and that intermediate
steps which rephrase and streamline the original in-
put before parsing it to a formal language improve
accuracy.

Argument mining is an active research field
that studies computational methods for retriev-
ing argumentative components from a text corpus
(Wachsmuth et al., 2017; Moens, 2018; Potthast
et al., 2019; Lawrence and Reed, 2020). Recently,
work in this field has started to use PTLMs: Ein-
Dor et al. (2020) and Gretz et al. (2020) succeed
in retrieving relevant pro- or con-arguments for a
given topic from a large corpus with a fine-tuned
BERT model (Devlin et al., 2019). Using BERT,
Bar-Haim et al. (2020) map argumentative texts
to key points that succinctly summarize the argu-
ment’s gist. Akiki and Potthast (2020) explore
abstractive argument retrieval by means of text gen-
eration with GPT2 (Radford et al., 2019). Similarly,
Syed et al. (2021) deploy BART (Lewis et al., 2019)
to generate conclusions of argumentative texts on a
challenging corpus compiled from Reddit and vari-
ous online debate corpora. Rodrigues et al. (2020),
revisiting the argument comprehension task (Haber-
nal et al., 2014, 2018), demonstrate that identifying
implicit premises – and deep argument analysis a
fortiori – remains a hard, unsolved task. Recently,
Chakrabarty et al. (2021) have shown that augment-
ing training data with discourse-aware common-
sense knowledge improves the plausibility of au-
tomatically identified implicit premises. Such a
knowledge-driven perspective is orthogonal to, and
may eventually complement the logical approach
adopted in this paper.

3 Framework

3.1 Problem Definition

Deep argument analysis of a given text seeks to
answer the following central question: Can we
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conjectures: source:
Socrates is mortal because
every human is.

argdown: source: Socrates
is mortal because every human
is. conjectures: Socrates is
mortal

formalize: premises:
Socrates is human | If someone
is human, then they are mortal

Argument-
Analyst

(1) Socrates is human.
(2) If someone is human, then
they are mortal.
---
(3) Socrates is mortal.

Socrates is mortal

F a | (x): F x -> G x

Figure 1: Example text-to-text tasks for deep argument analysis, defined by DeepA2.

make sense of the text as a presentation of a rational
argument? And if so, what exactly is the argument;
and how precisely is it related to the text?

In carrying out a deep argument analysis, one
explicates, rephrases and rebuilds – even repairs
– the text’s argument in one’s own words. That
is why deep argument analysis is also referred to
as rational reconstruction (cf. Leitgeb and Carus,
2021). The reconstructed argument forms, together
with details about its logical properties and about
its relation to the source text, a comprehensive ar-
gumentative analysis of a text. The latter can be
seen as an interpretative hypothesis that is abduc-
tively inferred from a source text by means of an
inference to the best explanation. Here is another
example that illustrates how far a reconstruction
may deviate from the original text that presents the
argument (adapted from Brun and Betz, 2016):

source text ; reconstructed argument
So, the researcher’s central
dilemma exists in an espe-
cially acute form in psychol-
ogy: either the animal is not
like us, in which case there
is no reason for performing
the experiment; or else the
animal is like us, in which
case we ought not to perform
on the animal an experiment
that would be considered out-
rageous if performed on one
of us.

(P1) If the animal is not like
us, it is wrong to perform the
experiment.
(P2) If the animal is like us,
it is wrong to perform the ex-
periment.
(C) THUS (with classical di-
lemma): It is wrong to per-
form the experiment.

A compelling argumentative analysis yields (i) a
rational argument that is (ii) closely related to the
source text. Deep argument analysis is, accordingly,
guided by a dual goal (cf. Brun and Betz, 2016).
An argument reconstruction should both be

(i) systematically correct, i.e., the reconstructed
argument itself is, e.g., transparent, deduc-
tively valid, non-circular, or doesn’t contain
irrelevant premises; and

(ii) exegetically adequate, i.e., the reconstructed

argument accounts for the original text, be-
cause, e.g., its premises merely reformulate
parts of the text, or because its overall inferen-
tial structure can be traced within the source
text.

The fact that there typically exists – regarding a
specific text – a trade-off between these two goals
is one major reason for the underdetermination of
deep argument analysis and the plurality of legiti-
mate reconstructions of a given text (cf. Brun and
Betz, 2016).

Against this background, we may finally define
the problem of

Deep artificial argument analysis: Describe,
analyse and implement an effective computa-
tional system for deep argument analysis!

3.2 Multi-angular Data

The DeepA2 framework is built upon a multi-
angular data structure (Tafjord and Clark, 2021)
whose dimensions represent the essential compo-
nents of a comprehensive argumentative analysis
(see Section 3.1). Structured argumentative data is
rendered as plain text (cf. Voigt, 2014). The differ-
ent data dimensions, which are related as shown in
Figure 2, are (with an illustrating example):

argument source text (S)
It is unethical to destroy human embryos. The basic
argument supporting this claim just stresses that it is
wrong to intentionally kill innocent human beings.

verbatim reason statements in source text (R)
it is wrong to intentionally kill innocent human beings
(ref: (1))

verbatim conjectures in the source text (J)
It is unethical to destroy human embryos (ref: (3))

argument reconstruction (A)
(1) It is impermissible to kill innocent human beings.
(2) The human embryo is an innocent human being.
– with hypothetical syllogism from (1) (2) –
(3) It is impermissible to kill the human embryo.
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Figure 2: Relationships between dimensions of the
multi-angular argumentative data.

premises of the reconstructed argument (P)
It is impermissible to kill innocent human beings | The
human embryo is an innocent human being

final conclusion of reconstr. argument (C)
It is impermissible to kill the human embryo

formalizations of premises (F)
(x): F x → G x | (x): H x → F x

formalization of conclusion (O)
(x): H x → G x

keys for the formalizations’ constants (K)
F: innocent human being | G: must not be killed | H:
human embryo

Each record in a DeepA2 dataset contains a
source text plus a legitimate comprehensive argu-
mentative analysis, which is, given underdetermi-
nation, not necessarily the only compelling recon-
struction of the text; moreover, a dataset may con-
tain different records with one and the same source
text analysed in several ways. So, for example, an
alternative, equally legitimate argument reconstruc-
tion of the above source text (S) may read:

argument reconstruction (A)
(1) If it is wrong to kill innocent human beings, then it
is wrong to kill a human embryo.
(2) It is wrong to kill innocent human beings.
– with modus ponens from (1) (2) –
(3) It is wrong to kill a human embryo.

Beyond this structural and functional character-
ization, DeepA2 is agnostic about the nature and
origin of the argumentative data. Synthetically gen-
erated, automatically retrieved, manually created
datasets as well as translations of other databases
are all compatible with the framework and can be
used side by side.

3.3 Generative Modes and Chains
Given DeepA2’s multi-dimensional data structure
described in the previous section, a generative
mode maps data from some input dimensions to
a target dimension. For example, the mode S;A

takes a source text (S) as input and outputs an argu-
ment reconstruction (A), the mode RJ;A recon-
structs the argument (A) given the verbatim reasons
(R) and conjectures (J). All in all, we define and

investigate 21 different generative modes (see Ap-
pendix B). Every mode represents a task on which
a text-to-text model can be trained.

By taking some mode’s output as another mode’s
input, modes can be concatenated into generative
chains. For example, the output of modes S;R

and S;J (reasons and conjectures from source)
can be fed into mode RJ;A to reconstruct an
argument. Such generative chains allow us to em-
ulate different strategies (heuristics) for analysing
a given argumentative text (see Appendix C for
technical details).

Three generative chains which model distinct
interpretative strategies, taking a source text (S) as
sole input, are:

straight
S;A S;R S;J

hermeneutic cycle
S;A SA;R SA;J RJ;A

logical streamlining
S;A A;P A;C C;O CO;K

OK;C PC;A SA;R SA;J

While the chain straight, where no output ever
serves as input to another mode, represents a simple
baseline, hermeneutic cycle and logical streamlin-
ing mimic prominent, equally-named methods in ar-
gument analysis (cf. Bowell and Kemp, 2014; Brun
and Betz, 2016). One goes through a hermeneutic
cycle, generally speaking, if one revisits a text in
view of its previous interpretation, as, for example,
in steps SA;R SA;J , where the source text (S)
is re-interpreted (identifying reason statements and
conjectures) given the previously reconstructed ar-
gument (A), so as to subsequently re-reconstruct the
argument itself (step RJ;A ). To logically stream-
line a reconstruction means to rephrase its con-
clusion or premises in order to make their logico-
semantic structure more transparent. Such seman-
tic clarification can be emulated by (i) formalizing
a statement (e.g., A;C C;O CO;K ) and (ii)
using the keys (K) to retrieve the original statement
from the generated logical formulas (such as in
OK;C ), from which the argument can be re-built

(step PC;A ).
For evaluation, we append to each generative

chain the following sub-chain that formalizes the
reconstructed argument:

formalization
A;P A;C P;F CPF;O PFCO;K
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A generative chain can be construed as hy-
pergraph on the dimensions of DeepA2’s multi-
angular datasets, with each of its modes represent-
ing a directed hyper-edge. Summing up the num-
ber of input dimensions (except S) over all modes
yields a simple graph centrality measure, which
gauges a chain’s sophistication. Thus, straight,
hermeneutic cycle and logical streamlining display
a sophistication of 0, 4, and 11, respectively.

3.4 Metrics
As discussed in Section 3.1, an argument recon-
struction should both be sound and make sense
of the text to-be-interpreted. In line with the dual
goal of argument analysis, we propose metrics both
for the systematic correctness and for the exegetic
adequacy of a given analysis. The following met-
rics measure the degree to which a given generated
argument is systematically correct:

SYS-PP 1 if the argument is not a petitio principii
(i.e., if no premise is identical with its final
conclusion), 0 otherwise;

SYS-RP 1 if the argument has no redundant
premises (i.e., if no premise occurs more than
once), 0 otherwise;

SYS-RC 1 if the argument has no redundant conclu-
sions (i.e., if no conclusion – intermediary or
final – occurs more than once), 0 otherwise;

SYS-US 1 if all statements in the argument other
than the final conclusion are explicitly used in
an inference, 0 otherwise;

SYS-SCH ratio of sub-arguments which correctly
instantiate the explicitly stated inference
scheme (e.g., hypothetical syllogism);

SYS-VAL 1 if the argument is globally valid (i.e., if
the final conclusion deductively follows from
the premises), 0 otherwise;

All six systematic metrics can be computed au-
tomatically (SYS-SCH tries to parse the argument
based on the inference schemes and templates used
to construct the synthetic dataset in the first place;
SYS-VAL passes the model-generated formalizations
of premises and conclusion to a symbolic theorem
prover (De Moura and Bjørner, 2008); and the re-
maining metrics check for string identity).

Whereas systematic metrics apply primarily to
the generated argument (A), a reconstruction’s in-
terpretative adequacy will also depend on how rea-
sons (R) and conjectures (J) coherently link the
argument’s components to the original text. As a
first set of exegetic metrics, we thus propose

EXE-MEQ 1 if the reasons and conjectures are
mutually exclusive verbatim quotes from the
source text, 0 otherwise;

EXE-RSS semantic similiarity (BLEURT, see Sel-
lam et al., 2020) of each reason statement and
its counterpart premise in the reconstructed
argument (if such exists, -1 otherwise);

EXE-JSS semantic similiarity (see EXE-RSS) of each
conjecture statement and its counterpart in
the reconstructed argument (if such exists, -1
otherwise).

Each source text presents (more or less faithfully)
an underlying target argument, which in turn marks
some of the text’s statements as ‘target’ reasons,
others as ‘target’ conjectures. The following two
metrics assess the degree to which a comprehen-
sive argumentative analysis correctly predicts (R,
J) those target reasons and conjectures.

EXE-PPR predictive performance (F1-score) for
identifying (target) reason statements in the
source text;

EXE-PPJ predictive performance (F1-score) for
identifying (target) conjecture statements in
the source text.

An argument’s final conclusion may be implicit or
explicit in a given text. The ability to fully exploit
a text can be measured by verifying whether the re-
constructed argument’s final conclusion is implicit
(= prediction) if and only if the target argument’s
one is.

EXE-TE text exploitation, as measured by ability
(F1-score) to reconstruct arguments with ex-
plicit final conclusions (prediction) if and only
if the target final conclusions are explicit.

3.5 Models

Any text-to-text language model is compatible with
the proposed DeepA2 framework. We refer to mod-
els used within the framework as ArgumentAna-
lyst. In this study, we train and evaluate the trans-
former model T5 (Raffel et al., 2020) with 770M
parameters as implemented by (Wolf et al., 2020).

3.6 Limitations

In the DeepA2 framework, arguments are recon-
structed from relatively short and isolated texts,
disregarding both the broader context of the argu-
ment and domain-specific background knowledge.
This limits the framework, as presented here, in
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important ways: Implicit premises that are expli-
cated in an argument reconstruction can neither
be checked for plausibility nor for agreement with
the author’s broader convictions. In addition, the
framework cannot assess an argument’s dialectic
function in a wider debate. It seems worthwhile to
explore according extensions of the framework in
future research.

4 Datasets

For the experiments reported below, we syntheti-
cally create two artificial argument analysis corpora
that comply with the DeepA2 framework (see also
Appendix A): AAAC01 and AAAC02. In addition,
we translate the synthetic RuleTaker (Clark et al.,
2020) and the manually compiled EntailmentBank
(Dalvi et al., 2021) datasets into our framework.

In argument analysis, one proceeds from a source
text to its reconstruction. Creating the synthetic
corpora, we reverse-engineer this process:

Step 1. We sample, first of all, a possibly com-
plex argument (A) from a set of valid inference
schemes. In doing so, we use a multi-step templat-
ing strategy (inspired by Betz et al., 2021) to trans-
late symbolic forms into natural language schemes
(which were generated by local domain experts)
and to substitute natural language terms for place-
holders. Premises (P), conclusion (C) and their
formalization (F, O, K) are side-products of such a
construction of an argument.

Step 2. Given the fully explicit argument (A), we
compose a text (S) that presents the argument in a
more or less transparent and faithful way. Such text
creation involves: rendering the argument tree as
a linear story, leaving out premises or conclusions
(implicit premises and conclusions), inserting ir-
relevant material (distractors), using templates that
obfuscate the logical form of a sentence, limiting
the use of premise and conclusion indicators (such
as “therefore”), applying rule-based and automatic
paraphrasing. In composing the argumentative text
(S), we may record its reasons (R) and conjectures
(J).

Given the synthetic and controlled nature of our
dataset, which involved eliciting rule templates
from a group of local domain experts, all data is
assumed to be correct by construction. As an addi-
tional check of correctness on the logic of our exam-
ples, we ran a symbolic theorem prover (De Moura
and Bjørner, 2008) over the argument formaliza-
tions to verify their validity. To ensure the fluency

of the underlying language templates, all templates
were hand verified by the authors.

Our two datasets AAAC01 and AAAC02 differ in
the following ways:

1. predicates and names are sampled from dif-
ferent, disjunct domains (texts are about, e.g.,
allergies and family relations versus, e.g., bad-
minton and cooking) to test a model’s robust-
ness to lexical diversity (Rozen et al., 2019);

2. similarly, AAAC01 applies automatic para-
phrasing (Alisetti, 2021) to the final source
text whereas AAAC02 doesn’t;

3. AAAC02 allows for imprecise renditions of log-
ical formulas, while AAAC01 sticks to plain
formulations to test robustness to variations in
description of rules.

Each dataset contains diverse texts and argu-
ments. Broadly speaking, data records may dif-
fer in terms of properties of the argument (step
1 above) and properties of the argument’s presen-
tation (step 2). Along these two dimensions, we
define five homogeneous subsets of the data:

simple inference: arguments with a single infer-
ence step that neither involves negation nor
compositional predicates;

complex inference: arguments with four infer-
ence steps that heavily rely on syntactically
intricate schemes (e.g., transposition, or de
Morgan);

plain presentation: all premises and conclusions
are explicit in the source text which, in addi-
tion, contains no distractors;

mutilated presentation: at least two premises
and one conclusion are implicit, while the text
contains two distractors and explicitly states
the final conclusion;

C&M: the argument’s inference is complex, plus
the text contains at least two distractors.

The RuleTaker and EntailmentBank datasets con-
tain multi-hop inference trees (A). To import these
into the DeepA2 framework, we create source texts
(S) for the given arguments by means of simple
templates (such as “{theory} All this entails: {hy-
pothesis}”) and record reasons (R) and conjectures
(J) on the fly. Unlike AAAC and EntailmentBank,
RuleTaker (as updated in Tafjord et al., 2020) con-
tains an equal share of arguments for which (i)
the conclusion follows from the premises, (ii) the
conclusion contradicts the premises, (iii) the con-
clusion is independent of the premises.
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5 Experiments and Results

As first and main experiment we train our
base model (see Section 3.5) on the AAAC01 cor-
pus, and evaluate the resulting ArgumentAnalyst
model out-of-domain on AAAC02. ArgumentAna-
lyst undergoes multi-task training on 21 genera-
tive modes, which are interpreted as sequence-to-
sequence tasks (the training set-up is further de-
scribed in Appendix B).

The evaluation of ArgumentAnalyst on AAAC02

proceeds in two steps: (1.) prediction: produces
output in accordance with 16 different generative
chains (Appendix C); (2.) metrics application:
assesses the quality of the generated output by
means of the systematic and exegetic metrics of
the DeepA2 framework (see Section 3.4).

Table 1 reports the ability of ArgumentAnalyst
to generate systematically correct and exegetically
adequate argument reconstructions. We obtain sim-
ilar global results with the three chains straight,
hermeneutic cycle, and logical streamlining, whose
generated reconstructions mainly differ in terms
of internal coherence (EXE-RSS, EXE-JSS) and text
exploitation (EXE-TE). However, the different gen-
erative chains complement each other, as shown by
pooling, which does not only outperform individual
chains, but nearly attains oracle performance.

Moreover, ArgumentAnalyst produces much bet-
ter reconstructions of simple inferences and plain
presentations – compared to complex inferences
and mutilated presentations, i.e., difficult problems
(cf. Table 5 in App. D). In addition, within one
and the same subset, substantial differences show
up between the three generative chains. Globally
speaking, hermeneutic cycle outperforms the other
two chains for difficult problems.

Is ArgumentAnalyst capable of reliable self-
evaluation? We have validated the logic metric
(SYS-VAL), which passes on a self-generated formal-
ization of the reconstructed argument to a theorem
prover, in three ways: First of all, ArgumentAna-
lyst correctly recognizes target arguments as valid
(with accuracy 92.7%), which has been verified
by running the formalization subchain on target
data. Secondly, virtually every generated argument
with all-correct scheme instantiations (i.e., SYS-

SCH = 1) is also – and correctly – recognized as
logically valid. Thirdly, a manual analysis (human-
in-the-loop) of 100 generated arguments with in-
correct scheme instantiation (i.e., SYS-SCH < 1)
reveals a high rate of false negatives: roughly one

half of all inferences that are not automatically
identified as an instantiation of the given scheme
actually do correctly instantiate it. The accordingly
adjusted global ratio of correct scheme instanti-
ations (Table 1) equals roughly 0.65 (rather than
0.31–0.33), which is consistent with the ratio of
logically valid arguments being 0.72–0.73.

Do reconstructed arguments exhibit basic seman-
tic flaws? Regarding the full dataset, Argument-
Analyst produces nearly flawless argument re-
constructions, committing basic errors (petitio,
redundancy, unused statements) only very rarely
(Table 1). And even for very difficult problems,
two thirds of all generated arguments display no
basic flaw whatsoever (Table 5, SYS-PP & SYS-RP &

SYS-RC & SYS-US).

Are reconstructed arguments logically valid?
Roughly 70% of all arguments generated by one of
the three chains are logically valid (Table 1). More
importantly, though, for virtually every source
text in the dataset, there is at least one chain
(out of 16) which reconstructs the text as a valid
argument (pooling). Given that logical validity
can be automatically assessed, the pooled system
may thus guarantee to yield a valid reconstruc-
tion. Concerning different problem types (Table 5),
hermeneutic cycle clearly outperforms the other
chains as soon as the problem gets difficult. Ad-
ditional analysis shows that ArgumentAnalyst can
also cope with underdetermination, as 68% of all
generated arguments whose final conclusion differs
(BLEU ≤ .8) from the target argument’s one – i.e.,
arguments that are not reconstructed as expected
given the target data – are still logically valid.

Are the generated interpretations internally coher-
ent? The generative chain hermeneutic cycle yields
comprehensive argument reconstructions where
premises (P) and conclusions (C) fit much better
to detected reasons (R) and conjectures (J) than
straight or logical streamlining (EXE-RSS, EXE-JSS).
This holds globally (Table 1), as well as for easy,
and for difficult problems (Table 5). Note that the
oracle baseline for metrics EXE-RSS, EXE-JSS is well
below 1, which reflects the fact that source texts
may present arguments in highly mutilated ways;
it is nearly attained by pooling the 16 different
generative chains (Table 1).

Can ArgumentAnalyst detect reasons and conjec-
tures, and fully exploit the text? The evaluation
demonstrates that reason/conjecture detection on
AAAC02 is a relatively easy task (EXE-PPR, EXE-PPJ).
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systematic metrics (SYS-*) exegetic metrics (EXE-*)

chain PP RP RC US SCH VAL MEQ RSS JSS PPR PPJ TE

straight .95 .97 .96 .96 .33 .73 .80 -.08 -.10 .93 .93 .63
herm. cy. .95 .98 .95 .93 .31 .72 .82 .16 .12 .93 .92 .71
logic. str. .95 .97 .96 .95 .32 .72 .82 .11 .00 .93 .92 .69
pooling 1.0 1.0 1.0 1.0 .73 1.0 1.0 .26 .29 .96 .96 .97
oracle 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .30 .37 1.0 1.0 1.0

Table 1: Performance of ArgumentAnalyst on the AAAC02 data as measured by systematic and exegetic metrics.
Rows display results for three illustrative generative chains (straight, hermeneutic cycle, logical streamlining), for
the item-wise best performing generative chain out of all 16 chains (pooling), and for oracle performance (oracle),
which one obtains by applying the metrics to the target data itself.

ArgAnEB ArgAnAAAC,EB EntWr

steps straight herm.
cycle

straight herm.
cycle

1 .863 .866 .816 .871 .951
2 .798 .815 .813 .826 .886
3 .812 .815 .826 .806 .858
4 .757 .791 .820 .822 .838
≥ 5 .795 .811 .786 .773 .742
any .819 .830 .816 .834 .879

Table 2: Predictive performance of ArgumentAnalyst
(ArgAnEB, ArgAnAAAC,EB) and EntailmentWriter (En-
tWr) for identifying reason statements in an input text
(metric SYS-PPR) on the EntailmentBank task2 dataset.

In contrast, fully exploiting a text (i.e., generating
an argument with implicit final conclusion if and
only if the underlying target argument has an im-
plicit final conclusion, EXE-TE) is seemingly more
challenging (Table 1). Again, hermeneutic cycle
achieves best text exploitation, performing, how-
ever, clearly below oracle baseline – which may
simply reflect the degree of underdetermination in
the AAAC02 corpus.

In a second experiment we train two models
on the imported EntailmentBank (task1 and task2)
dataset (see Section 4), namely: (1.) our base
model (T5), which yields ArgumentAnalystEB; (2.)
the ArgumentAnalyst model pretrained on AAAC02

(resulting in an intermediary pre-training set-up
similar to Phang et al., 2018; Geva et al., 2020),
which yields ArgumentAnalystAAAC,EB.

Since the EntailmentBank data doesn’t contain
formalizations, we can only train on 14 modes,
which are interpreted as sequence-to-sequence
tasks (see Appendix B). We evaluate the models
on task2 of EntailmentBank only, which contains
problems with a relatively large number of distrac-
tors, and proceed in two steps as before: prediction
(with 11 different generative chains) and metrics

application. Dalvi et al. (2021) report the ability of
EntailmentWriter (a fine-tuned T5-11b model) to
correctly distinguish relevant premises of an argu-
ment from distractors in terms of a F1-score, which
corresponds to our metric EXE-PPR. That’s why the
sole focus in this second experiment is on EXE-PPR.

Table 2 describes the ability of ArgumentAna-
lyst models to correctly tell apart relevant premises
from mere distractors in the EntailmentBank task2
dataset for two generative chains (straight, which
directly outputs reason statements, and hermeneu-
tic cycle, which tries to reconstruct the argument
first and uses both source text and argument to
identify reasons), and compares this with the per-
formance of EntailmentWriter (scores from Dalvi
et al., 2021). The results, shown separately for ar-
guments with a specific number of inference steps,
let us draw three conclusions:

First, ArgumentAnalyst outperforms Entailmen-
tWriter on difficult problems with more than 4 in-
ference steps / sub-arguments.

Second, using the sophisticated chain hermeneu-
tic cycle improves predictive performance com-
pared to the simple straight chain.

Third, the chain hermeneutic cycle (unlike
straight) generally benefits from intermediary pre-
training on AAAC – caveat: not so for arguments
with more than 4 steps. This latter observation
might be due to the fact that the AAAC02 corpus, by
construction, doesn’t contain arguments with more
than 4 steps, so that pre-training biases the model
towards shorter arguments.

In a third experiment we explore the following
hypothesis:

Informative higher-order evidence. The degree
to which ArgumentAnalyst struggles in recon-
structing a given argument (presented in the
source text) as logically valid is a reliable in-
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dicator for whether the original argument is
fallacious or not.

To test this hypothesis, we apply ArgumentAnalyst
(trained on AAAC02, see above) to the RuleTaker
data as imported into the DeepA2 framework (see
Section 4): ArgumentAnalyst produces – by means
of 13 generative chains – comprehensive recon-
structions, to which the systematic and exegetic
metrics are applied. RuleTaker contains an equal
share of arguments whose conclusions follow from
(label=valid), contradict (label=contradiction), or
are independent of (label=neutral) the correspond-
ing premises. Now, informative higher-order ev-
idence would allow us to correctly predict these
labels. And this is exactly what we observe: First,
if reconstructions of one and the same source text
which are independently generated with different
chains agree (disagree), then the original argument
tends to be valid (invalid). Second, by training
simple classifiers on our argumentative metrics and
further properties of the reconstructions, we ro-
bustly achieve a predictive accuracy 10% above
the random baseline. While this is far below the
SOTA results of tailor-made RuleTaker (Clark et al.,
2020) and ProofWriter (Tafjord et al., 2020) mod-
els on this data, our findings nonetheless confirm
the above hypothesis.

6 Conclusion

In this paper, we have presented and implemented
a multi-angular, modular framework for deep ar-
gument analysis (DeepA2). It allows for defining
a large variety of generative modes by combining
different dimensions of the data. These modes, in
turn, can be concatenated into complex generative
chains. ArgumentAnalyst – a text-to-text model
set up and trained within the DeepA2 framework –
yields plausible reconstructions of argumentative
texts. Our empirical findings vindicate the overall
framework and highlight the following advantages
of a multi-angular, modular design in general:
First of all, modular chains may emulate estab-
lished, well-proven, typically piece-meal, schol-
arly techniques for text analysis (heuristics), which
hence may provide normative, methodological
guidance in setting up NLP systems. Secondly,
by defining and implementing different modular
chains, and investigating the plurality of gener-
ated solutions, one can systematically explore the
system’s uncertainty as well as the tasks’s un-
derdetermination. Thirdly, monitoring the sys-

tem during modular computation yields diagnosti-
cally useful information (e.g., intermediary results)
which not only describes the model’s performance
on the given problem, but which additionally al-
lows us – as higher-order evidence – to character-
ize (e.g., classify) the original problem in the first
place. Fourthly, breaking down a complex task into
sub-tasks with intermediary results that can be fur-
ther processed and re-combined helps to overcome
input size limitations of neural language models.
Fifthly, modular generation with meaningful modes
allows users to follow the system, comprehend gen-
erated solutions, verify sub-steps and detect errors
– the NLP system becomes a transparent, explain-
able AI (Miller, 2019). Finally, modular NLP sys-
tems as described by DeepA2 may be connected
to a user-interface which promises fine-grained
interactive control of modular generations and
seamless cognitive cooperation of AI and human
experts in analysing texts.
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one distracting statement and a simple (one-step)
argument (formatted as presented to the model):
source: It is not the case that Tracy
is not an admirer of Fullerton and Tracy
has seen La Habra. Plus, if someone
loves Chico, then they haven’t visited
Monterey, owing to the fact that loving
Laguna Beach is sufficient for not
having visited Monterey.
reasons: loving Laguna Beach is
sufficient for not having visited
Monterey (ref: (2))
conjectures: if someone loves Chico,
then they haven’t visited Monterey (ref:
(4))
argdown:
(1) If someone is an admirer of Chico,
then they are an admirer of Laguna Beach
or a visitor of Stockton.
(2) If someone admires Laguna Beach,
then they haven’t visited Monterey.
(3) If someone has visited Stockton,
then they haven’t visited Monterey.
-
with generalized dilemma (neg variant)
from (1) (2) (3)
-
(4) If someone admires Chico, then they
haven’t visited Monterey.
premises: If someone is an admirer
of Chico, then they are an admirer of
Laguna Beach or a visitor of Stockton.
(ref: (1)) | If someone admires Laguna
Beach, then they haven’t visited
Monterey. (ref: (2)) | If someone
has visited Stockton, then they haven’t
visited Monterey. (ref: (3))
conclusion: If someone admires Chico,
then they haven’t visited Monterey.
(ref: (4))
premises_form: (x): Fx -> (G x v H x)
(ref: (1)) | (x): G x -> not I x (ref:
(2)) | (x): H x -> not I x (ref: (3))
conclusion_form: (x): F x -> not I x
(ref: (4))
keys: F: admirer of Chico | G: admirer
of Laguna Beach | H: visitor of Stockton
| I: visitor of Monterey

B Training Set-up

By interpreting a generative mode as a sequence-
to-sequence task, we may translate a multi-angular
DeepA2 dataset (e.g., AAAC01) into a multi-task
sequence-to-sequence format, on which a sequence-
to-sequence model can be trained. For each record
in the multi-angular DeepA2 dataset, we randomly
sample 14 modes in accordance with the weights
provided in Table 3 and add, for each mode, a corre-
sponding sequence-to-sequence record to the train-
ing data. This results, for AAAC01, in a sequence-to-
sequence training dataset with 14×16.000 records.

Our models (base model T5-large with 770M
parameters, and pretrained ArgumentAnalyst) are

mode w1w2 mode w1w2 mode w1w2

S;A 1. 1. S;R 1. 1. P;F .7 –
SR;A 1. 1. SJ;R 1. 1. PCO;F .7 –
SJ;A 1. 1. SA;R 1. 1. C;O .7 –
SRJ;A 1. 1. S;J 1. 1. CPF;O .7 –
RJ;A 1. 1. SR;J 1. 1. PF;K .7 –
PC;A 1. 1. SA;J 1. 1. CO;K .7 –
A;P .2 .2 A;C .2 .2 PFCO;K .7 –
FK;P .7 – OK;C .7 –

Table 3: 21 generative modes with corresponding
weights in AAAC (w1) and EntailmentBank (w2) train-
ing data.

trained with batch-size 2 and learning rate 0.00001.
For AAAC01, eval loss starts to increase at epoch 8;
with EntailmentBank data, eval loss increases from
epoch 2 onwards.

C Iterative Prediction with Generative
Chains

Generative chains are implemented with a dynamic
dictionary (9 keys, corresp. to the dimensions of
DeepA2 data), which is initialized with the source
text, provides input for the generative modes, and is
updated after each generative step with the mode’s
generated output. Output is generated with beam
search decoding and beam width 2.

Table 4 displays all generative chains we resort
to in this study, all of which are used in the first
experiment. The second experiment makes use of
chains 1–11. The third experiment deploys chains
1–13.

D Additional Results

Table 5 assesses ArgumentAnalyst’s reconstruc-
tions on specific subsets of the AAAC02 dataset (de-
fined in Section 4) for three representative genera-
tive chains.

Table 6 details the performance of Argument-
Analyst on the entire AAAC02 dataset as measured
by tailor-made argumentative metrics. Table 7
shows the corresponding performance on out-of
-sample eval data AAAC01.

Distinguishing four mutually exclusive subsets
of AAAC02, Tables 8–11 detail the the quality of
ArgumentAnalyst’s reconstruction for easy and
difficult problems. Tables 12–15 present the
corresponding out-of-sample performance on the
equally partitioned AAAC01 dataset (eval split).
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# mode sequence len. soph.

1 S;A S;R S;J 3 0

2 S;J S;R SJ;A 3 1

3 S;J S;R SR;A 3 1

4 S;J S;R RJ;A 3 2

5 S;J SJ;R RJ;A 3 3

6 S;J SJ;R SRJ;A 3 3

7 S;R SR;J RJ;A 3 3

8 S;R SR;J SRJ;A 3 3

9 S;A SA;R SA;J RJ;A 4 4

10 S;A SA;R SA;J SRJ;A 4 4

11 S;A SA;R SA;J SRJ;A

SA;R SA;J SRJ;A

7 8

12 S;A A;P A;C P;F

PF;K FK;P PC;A

SA;R SA;J

9 11

13 S;A A;P A;C C;O

CO;K OK;C PC;A

SA;R SA;J

9 11

14 S;A A;P A;C C;O

CO;K OK;C PC;A A;P

A;C P;F PF;K FK;P

PC;A SA;R SA;J

15 20

15 S;A A;P A;C P;F

CPF;O PFCO;K FK;P

OK;C PC;A SA;R

SA;J

11 18

16 S;A A;P A;C P;F

CPF;O PCO;F PFCO;K

FK;P OK;C PC;A

SA;R SA;J

12 21

Table 4: 16 generative chains (without final formal-
ization sub-sequences) evaluated in this study. The
illustrative chains highlighted in the main paper are
#1 (straight), #9 (hermeneutic cycle), and #13 (logical
streamlining).

inference presentation

simple compl. plain mutil. C&M
chain N=1274 N=180 N=330 N=114 N=70

SYS-PP & SYS-RP & SYS-RC & SYS-US
straight .95 .72 .98 .61 .69
herm. c. .94 .68 .96 .67 .61
log. str. .95 .68 .98 .64 .61

SYS-VAL
straight .84 .48 .88 .40 .34
herm. c. .83 .56 .84 .49 .50
log. str. .82 .47 .86 .46 .37

EXE-RSS
straight .03 -.25 .05 -.31 -.30
herm. c. .20 .08 .15 .08 .11
log. str. .17 -.01 .13 .01 -.06

EXE-JSS
straight .06 -.32 .10 -.37 -.37
herm. c. .23 -.06 .21 -.03 -.21
log. str. .13 -.26 .07 -.26 -.40

Table 5: Performance of ArgumentAnalyst on specific
subsets (columns) of the AAAC02 data as measured by
selected systematic and exegetic metrics (sub-tables).
Rows display results for three illustrative generative
chains (straight, hermeneutic cycle, logical streamlin-
ing).
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systematic metrics (SYS-*) exegetic metrics (EXE-*)

chain PP RP RC US SCH VAL MEQ RSS JSS PPR PPJ TE

#1 0.95 0.97 0.96 0.96 0.33 0.73 0.80 -0.08 -0.10 0.93 0.93 0.63
#2 0.95 0.97 0.94 0.94 0.33 0.71 0.80 -0.09 0.04 0.93 0.93 0.67
#3 0.95 0.98 0.95 0.93 0.31 0.70 0.80 0.10 -0.11 0.93 0.93 0.62
#4 0.94 0.97 0.94 0.92 0.30 0.70 0.80 0.12 -0.00 0.93 0.93 0.66
#5 0.94 0.97 0.95 0.91 0.30 0.70 0.83 0.13 0.05 0.94 0.93 0.69
#6 0.94 0.97 0.95 0.93 0.31 0.70 0.83 0.10 0.03 0.94 0.93 0.67
#7 0.93 0.97 0.95 0.92 0.29 0.70 0.83 0.13 0.05 0.93 0.92 0.68
#8 0.94 0.97 0.95 0.93 0.30 0.69 0.83 0.10 0.02 0.93 0.92 0.67
#9 0.95 0.98 0.95 0.93 0.31 0.72 0.82 0.16 0.12 0.93 0.92 0.71
#10 0.96 0.98 0.96 0.94 0.32 0.71 0.82 0.14 0.09 0.93 0.92 0.69
#11 0.96 0.98 0.96 0.93 0.32 0.71 0.82 0.15 0.11 0.93 0.92 0.71
#12 0.93 0.95 0.94 0.94 0.32 0.71 0.81 -0.17 -0.08 0.93 0.92 0.68
#13 0.95 0.97 0.96 0.95 0.32 0.72 0.82 0.11 -0.00 0.93 0.92 0.69
#14 0.93 0.95 0.94 0.94 0.32 0.70 0.81 -0.18 -0.14 0.93 0.92 0.66
#15 0.92 0.96 0.94 0.95 0.33 0.71 0.81 -0.20 -0.19 0.93 0.92 0.65
#16 0.92 0.96 0.94 0.94 0.33 0.72 0.81 -0.20 -0.19 0.93 0.92 0.65

Table 6: Performance of ArgumentAnalyst for systematic and exegetic metrics on the entire OOD eval data
(AAAC02). Rows display mean results for each of the 16 generative chains.

systematic metrics (SYS-*) exegetic metrics (EXE-*)

chain PP RP RC US SCH VAL MEQ RSS JSS PPR PPJ TE

#1 0.97 0.98 0.97 0.98 0.61 0.87 0.78 0.08 0.13 0.95 0.95 0.64
#2 0.97 0.98 0.96 0.97 0.60 0.87 0.78 0.09 0.24 0.95 0.95 0.68
#3 0.96 0.98 0.96 0.97 0.58 0.86 0.78 0.26 0.12 0.95 0.95 0.64
#4 0.95 0.98 0.95 0.96 0.57 0.85 0.78 0.26 0.20 0.95 0.95 0.67
#5 0.96 0.98 0.95 0.96 0.57 0.84 0.80 0.27 0.27 0.96 0.95 0.70
#6 0.97 0.98 0.96 0.96 0.58 0.84 0.80 0.26 0.24 0.96 0.95 0.69
#7 0.95 0.98 0.96 0.96 0.57 0.86 0.79 0.27 0.26 0.95 0.94 0.71
#8 0.96 0.98 0.96 0.96 0.57 0.85 0.79 0.26 0.25 0.95 0.94 0.70
#9 0.97 0.99 0.97 0.97 0.59 0.88 0.79 0.31 0.36 0.96 0.95 0.78
#10 0.97 0.99 0.97 0.97 0.60 0.87 0.79 0.30 0.34 0.96 0.95 0.77
#11 0.97 0.99 0.97 0.97 0.60 0.87 0.79 0.31 0.35 0.96 0.95 0.77
#12 0.95 0.97 0.95 0.96 0.54 0.84 0.79 0.17 0.25 0.96 0.94 0.75
#13 0.97 0.99 0.97 0.97 0.61 0.87 0.79 0.29 0.32 0.96 0.95 0.76
#14 0.95 0.97 0.95 0.96 0.54 0.84 0.79 0.16 0.24 0.96 0.94 0.74
#15 0.94 0.97 0.95 0.96 0.54 0.85 0.79 0.15 0.18 0.96 0.95 0.73
#16 0.94 0.97 0.95 0.95 0.54 0.85 0.79 0.15 0.19 0.96 0.95 0.73

Table 7: Performance of ArgumentAnalyst for systematic and exegetic metrics on the entire OOS eval data (AAAC01).
Rows display mean results for each of the 16 generative chains.
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inference presentation

chain simple complex plain mutilat. C&M

SYS-PP & SYS-RP & SYS-RC & SYS-US
#1 0.95 0.72 0.98 0.61 0.69
#2 0.93 0.66 0.96 0.59 0.60
#3 0.92 0.69 0.96 0.68 0.73
#4 0.92 0.66 0.95 0.69 0.60
#5 0.92 0.68 0.95 0.59 0.61
#6 0.93 0.66 0.97 0.68 0.59
#7 0.92 0.67 0.96 0.62 0.64
#8 0.92 0.66 0.95 0.64 0.66
#9 0.94 0.68 0.96 0.67 0.61
#10 0.94 0.73 0.98 0.68 0.77
#11 0.94 0.69 0.98 0.66 0.73
#12 0.93 0.60 0.95 0.57 0.50
#13 0.95 0.68 0.98 0.64 0.61
#14 0.92 0.57 0.93 0.58 0.49
#15 0.92 0.66 0.95 0.59 0.56
#16 0.92 0.64 0.95 0.56 0.60

Table 8: Performance of ArgumentAnalyst for selected
systematic metric (SYS-PP & SYS-RP & SYS-RC & SYS-US) on
specific subsets (columns) of the OOD eval data.

inference presentation

chain simple complex plain mutilat. C&M

SYS-VAL
#1 0.84 0.48 0.88 0.40 0.34
#2 0.82 0.54 0.84 0.47 0.46
#3 0.82 0.44 0.87 0.39 0.36
#4 0.81 0.48 0.83 0.44 0.43
#5 0.82 0.44 0.85 0.45 0.37
#6 0.81 0.46 0.85 0.42 0.41
#7 0.83 0.44 0.82 0.46 0.49
#8 0.80 0.44 0.83 0.40 0.40
#9 0.83 0.56 0.84 0.49 0.50
#10 0.82 0.50 0.85 0.46 0.43
#11 0.82 0.48 0.84 0.46 0.41
#12 0.81 0.47 0.84 0.42 0.37
#13 0.82 0.47 0.86 0.46 0.37
#14 0.80 0.48 0.82 0.41 0.40
#15 0.82 0.45 0.84 0.50 0.33
#16 0.83 0.52 0.85 0.46 0.43

Table 9: Performance of ArgumentAnalyst for se-
lected systematic metric (SYS-VAL) on specific subsets
(columns) of the OOD eval data.

inference presentation

chain simple complex plain mutilat. C&M

EXE-RSS
#1 0.03 -0.25 0.05 -0.31 -0.30
#2 0.02 -0.27 0.07 -0.33 -0.31
#3 0.15 -0.03 0.12 -0.01 -0.06
#4 0.16 0.01 0.12 -0.01 0.04
#5 0.18 0.04 0.13 0.04 0.06
#6 0.17 -0.04 0.12 -0.02 -0.09
#7 0.18 0.05 0.14 0.03 0.08
#8 0.16 -0.02 0.12 -0.02 -0.07
#9 0.20 0.08 0.15 0.08 0.11
#10 0.19 0.04 0.15 0.05 -0.01
#11 0.21 0.04 0.15 0.07 -0.03
#12 -0.14 -0.20 -0.12 -0.23 -0.25
#13 0.17 -0.01 0.13 0.01 -0.06
#14 -0.17 -0.22 -0.16 -0.23 -0.26
#15 -0.19 -0.23 -0.24 -0.24 -0.23
#16 -0.19 -0.23 -0.24 -0.25 -0.24

Table 10: Performance of ArgumentAnalyst for selected
exegetic metrics (EXE-RSS) on specific subsets (columns)
of the OOD eval data.

inference presentation

chain simple complex plain mutilat. C&M

EXE-JSS
#1 0.06 -0.32 0.10 -0.37 -0.37
#2 0.16 -0.17 0.19 -0.12 -0.26
#3 0.02 -0.32 0.03 -0.42 -0.33
#4 0.12 -0.17 0.13 -0.14 -0.19
#5 0.15 -0.11 0.15 -0.08 -0.18
#6 0.16 -0.14 0.15 -0.22 -0.22
#7 0.16 -0.11 0.16 -0.10 -0.18
#8 0.15 -0.18 0.14 -0.19 -0.27
#9 0.23 -0.06 0.21 -0.03 -0.21
#10 0.23 -0.12 0.21 -0.15 -0.27
#11 0.25 -0.13 0.20 -0.11 -0.27
#12 0.06 -0.36 0.04 -0.28 -0.47
#13 0.13 -0.26 0.07 -0.26 -0.40
#14 -0.02 -0.39 -0.07 -0.31 -0.48
#15 -0.08 -0.41 -0.16 -0.36 -0.49
#16 -0.08 -0.37 -0.15 -0.35 -0.45

Table 11: Performance of ArgumentAnalyst for selected
exegetic metric (EXE-JSS) on specific subsets (columns)
of the OOD eval data.
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inference presentation

chain simple complex plain mutilat. C&M

SYS-PP & SYS-RP & SYS-RC & SYS-US
#1 0.98 0.78 1.00 0.75 0.76
#2 0.97 0.77 0.99 0.70 0.73
#3 0.95 0.79 0.96 0.77 0.74
#4 0.95 0.76 0.96 0.69 0.73
#5 0.97 0.75 0.98 0.66 0.74
#6 0.96 0.77 0.98 0.73 0.78
#7 0.96 0.73 0.96 0.71 0.72
#8 0.97 0.75 0.97 0.73 0.74
#9 0.98 0.80 0.99 0.80 0.70
#10 0.98 0.78 0.99 0.80 0.73
#11 0.98 0.78 0.99 0.80 0.71
#12 0.97 0.71 0.97 0.70 0.67
#13 0.98 0.81 0.99 0.76 0.78
#14 0.96 0.73 0.96 0.70 0.69
#15 0.97 0.72 0.96 0.70 0.68
#16 0.97 0.72 0.96 0.68 0.68

Table 12: Performance of ArgumentAnalyst for selected
systematic metric (SYS-PP & SYS-RP & SYS-RC & SYS-US) on
specific subsets (columns) of the OOS eval data.

inference presentation

chain simple complex plain mutilat. C&M

SYS-VAL
#1 0.97 0.68 0.96 0.74 0.74
#2 0.97 0.68 0.97 0.73 0.71
#3 0.94 0.70 0.94 0.72 0.71
#4 0.95 0.65 0.94 0.68 0.71
#5 0.96 0.59 0.95 0.65 0.62
#6 0.95 0.62 0.96 0.69 0.63
#7 0.94 0.66 0.94 0.66 0.71
#8 0.95 0.67 0.95 0.69 0.69
#9 0.97 0.65 0.97 0.72 0.69
#10 0.97 0.67 0.97 0.68 0.72
#11 0.97 0.70 0.97 0.68 0.74
#12 0.95 0.63 0.95 0.72 0.70
#13 0.97 0.68 0.95 0.73 0.73
#14 0.95 0.63 0.94 0.72 0.69
#15 0.95 0.65 0.94 0.75 0.71
#16 0.95 0.65 0.95 0.73 0.71

Table 13: Performance of ArgumentAnalyst for se-
lected systematic metric (SYS-VAL) on specific subsets
(columns) of the OOS eval data.

inference presentation

chain simple complex plain mutilat. C&M

EXE-RSS
#1 0.19 -0.16 0.11 -0.07 -0.18
#2 0.21 -0.13 0.10 -0.05 -0.15
#3 0.30 0.11 0.17 0.22 0.06
#4 0.29 0.16 0.16 0.24 0.16
#5 0.32 0.18 0.19 0.23 0.18
#6 0.31 0.11 0.18 0.19 0.07
#7 0.30 0.15 0.17 0.25 0.16
#8 0.30 0.12 0.17 0.24 0.08
#9 0.33 0.23 0.19 0.30 0.23
#10 0.33 0.20 0.19 0.27 0.16
#11 0.33 0.21 0.19 0.28 0.16
#12 0.20 0.06 0.11 0.16 0.04
#13 0.33 0.12 0.19 0.26 0.07
#14 0.20 0.06 0.10 0.16 0.03
#15 0.18 0.04 0.07 0.14 0.00
#16 0.18 0.04 0.07 0.11 0.02

Table 14: Performance of ArgumentAnalyst for selected
exegetic metrics (EXE-RSS) on specific subsets (columns)
of the OOS eval data.

inference presentation

chain simple complex plain mutilat. C&M

EXE-JSS
#1 0.35 -0.14 0.36 -0.09 -0.13
#2 0.40 0.02 0.39 0.10 0.02
#3 0.30 -0.15 0.29 -0.08 -0.15
#4 0.36 0.03 0.33 0.08 -0.02
#5 0.41 0.15 0.39 0.17 0.11
#6 0.40 0.04 0.38 0.10 -0.01
#7 0.39 0.12 0.37 0.15 0.06
#8 0.39 0.08 0.38 0.10 -0.02
#9 0.47 0.16 0.42 0.31 0.13
#10 0.47 0.11 0.42 0.26 0.02
#11 0.47 0.11 0.42 0.26 0.02
#12 0.40 -0.01 0.35 0.14 -0.08
#13 0.45 0.03 0.36 0.21 -0.01
#14 0.38 -0.00 0.30 0.15 -0.05
#15 0.30 -0.04 0.22 0.07 -0.07
#16 0.30 -0.03 0.22 0.11 -0.06

Table 15: Performance of ArgumentAnalyst for selected
exegetic metric (EXE-JSS) on specific subsets (columns)
of the OOS eval data.
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