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Abstract

In this paper, we analyze zero-shot taxonomy
learning methods which are based on distilling
knowledge from language models via prompt-
ing and sentence scoring. We show that, de-
spite their simplicity, these methods outperform
some supervised strategies and are competitive
with the current state-of-the-art under adequate
conditions. We also show that statistical and
linguistic properties of prompts dictate down-
stream performance1.

1 Introduction

Taxonomy learning (TL) is the task of arranging
domain terminologies into hierarchical structures
where terms are nodes and edges denote is-a (hyper-
nymic) relationships (Hwang et al., 2012). Domain-
specific concept generalization is at the core of hu-
man cognition (Yu et al., 2015), and a key enabler
in NLP tasks where inference and reasoning are
important, e.g.: semantic similarity (Pilehvar et al.,
2013; Yu and Dredze, 2014), WSD (Agirre et al.,
2014) and, more recently, QA (Joshi et al., 2020)
and NLI (Chen et al., 2020).

Earlier approaches to taxonomy learning focused
on mining lexico-syntactic patterns from candidate
(hyponym, hypernym) pairs (Hearst, 1992; Snow
et al., 2004; Kozareva and Hovy, 2010; Boella and
Di Caro, 2013; Espinosa-Anke et al., 2016), cluster-
ing (Yang and Callan, 2009), graph-based methods
(Fountain and Lapata, 2012; Velardi et al., 2013) or
word embeddings (Fu et al., 2014; Yu et al., 2015).
These methods, which largely rely on hand-crafted
features, are still relevant today, and complement
modern approaches exploiting language models
(LMs), either via sequence classification (Chen
et al., 2021), or combining contextual, distributed,
and lexico-syntactic features (Yu et al., 2020). In

∗ Work done during an internship at CardiffNLP.
1Code available at

https://github.com/devanshrj/
zero-shot-taxonomy.

parallel, several works have recently focused on us-
ing LMs as zero-shot tools for solving NLP tasks,
e.g., commonsense, relational and analogical rea-
soning (Petroni et al., 2019; Bouraoui et al., 2020;
Ushio et al., 2021; Paranjape et al., 2021), multi-
word expression (MWE) identification (Espinosa-
Anke et al., 2021; Garcia et al., 2021), QA (Shwartz
et al., 2020; Banerjee and Baral, 2020), domain
labeling (Sainz and Rigau, 2021), or lexical substi-
tution and simplification (Zhou et al., 2019). More-
over, by tuning and manipulating natural language
queries (often referred to as prompts), impressive
results have been recently obtained on tasks such as
semantic textual similarity, entailment, or relation
classification (Shin et al., 2020; Qin and Eisner,
2021).

In this paper, we evaluate LMs on TL bench-
marks using prompt-based and sentence-scoring
techniques, and find not only that they are com-
petitive with common approaches proposed in the
literature (which are typically supervised and/or
reliant on external resources), but that they achieve
state-of-the-art results in certain domains.

2 Methodology

We follow Ushio et al. (2021) and define a prompt
generation function τp(t1, t2) which maps a pair of
terms and a prompt type p to a single sentence. For
instance,

τkind(“physics”, “science”) =

“physics is a kind of science”

Then, given a terminology T , the goal is to, given
an input term t ∈ T , retrieve its top k most likely
hypernyms, (in our experiments, k ∈ {1, 3, 5}), us-
ing either masked language model (MLM) prompt-
ing (§2.1), or sentence-scoring (§2.2).

2.1 MLM Prompting
RestrictMLM Petroni et al. (2019) introduced a
“fill-in-the-blanks” approach based on cloze state-
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ments (or prompts) to extract relational knowledge
from pretrained LMs. The intuition being that
an LM can be considered to “know” a fact (in
the form of a <subject, relation, object> triple)
such as <Madrid, capital-of, Spain> if it can suc-
cessfully predict the correct words when queried
with prompts such as “Madrid is the capital of
[MASK]”. We extend this formulation to define
a hypernym retrieval function fR(·) as follows:

fR(p, t,T) = P ([MASK]|τp(t, [MASK])) ∗ T (1)

where p is a prompt type, and T is a one-hot en-
coding of the terms T in the LM’s vocabulary. We
follow previous works (Petroni et al., 2019; Kass-
ner et al., 2021) and restrict the output probability
distribution since this task requires the construc-
tion of a lexical taxonomy starting from a fixed
vocabulary.

PromptMLM For completeness, we also report
results for an unrestricted variant of RestrictMLM,
where the LM’s entire vocabulary is considered.

2.2 LMScorer
Factual (and true) information such as “Trout is
a type of fish” should be scored higher by a LM
than fictitious information such as “Trout is a type
of mammal”. The method for scoring a sentence
depends on the type of LM used.

Causal Language Models Given a sentence W,
causal LMs (C) predict token wi using only past
tokens W<i. Thus, a likelihood score can be esti-
mated for each token wi from the LM’s next token
prediction. The corresponding scores are then ag-
gregated to yield a score for sentence W.

sC(W) = exp




|W|∑

i=1

logPC(wi|W<i)


 (2)

Masked Language Models Given a sentence W,
masked LMs (M) replace wi by [MASK] and pre-
dict it using past and future tokens. Thus, a pseudo-
likelihood score can be computed for each token
wi by iteratively masking it and using the LM’s
masked token prediction (Wang and Cho, 2019;
Salazar et al., 2020). The corresponding scores are
then aggregated to yield a score for sentence W.

sM(W) = exp




|W|∑

i=1

logPM(wi|W\i)


 (3)

Given the above, we can cast TL as a sentence-
scoring problem by evaluating the natural fluency
of hypernymy-eliciting sentences. Specifically, for
each term t, we score the sentences generated using
τp(·) with every other term t′ in the terminology.
We then select the term-pair with the highest sen-
tence score and assume that the corresponding term
t′ is a hypernym of t. Formally, we define a hyper-
nym selection function fS(·) as follows:

fS(p, t, T ) = argmax
t′∈T \t

[s(τp(t, t
′))] (4)

where s refers to the scoring function determined
by the LM used.

3 Experimental setup

This section covers the datasets and prompts we
use in our experiments2, as well as the different
LMs we consider. Concerning evaluation metrics,
we report standard precision (P ), recall (R) and
F -score at the edge level (Bordea et al., 2016).

Dataset Details We evaluate our proposed ap-
proaches on datasets belonging to two TL Se-
mEval tasks (TExEval-1, Bordea et al. (2015) and
TExEval-2, Bordea et al. (2016)). Following recent
literature, we consider the equipment taxonomy
from TExEval-1 and the English-language environ-
ment, science and food taxonomies from TExEval-
2. For the science taxonomy, our results are based
on an average of the 3 subsets, which is in line
with previous work. Since these datasets do not
come with training data, they are well suited for
unsupervised approaches.

Domain Source V E

environment Eurovoc 261 261

science
Combined 453 465
Eurovoc 125 124
WordNet 429 452

food Combined 1556 1587

equipment Combined 612 615

Table 1: Taxonomies statistics. Vertices (V ) and Edges
(E) are often used as structural measures.

2We use PyTorch and the transformers library (Wolf
et al., 2020), as well as mlm-scoring (Salazar et al., 2020)
(https://github.com/awslabs/mlm-scoring).
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Prompts We use the following prompts:

• gen.: [t2] is more general than [t1].

• spec.: [t1] is more specific than [t2].

• type: [t1] is a type of [t2].

gen. and spec. prompts are hand-crafted templates
to encode, in a general way, the hypernymy re-
lationship. The choice of the type prompt, how-
ever, comes from a set of experiments involving all
LPAQA (Jiang et al., 2020) prompts under the “is
a subclass of ” category. We do not consider au-
tomatic prompt generation techniques (Shin et al.,
2020) due to the absence of training data. Note that
for each prompt, we replace t1 with the input term
so that the task is always to predict its hypernym.

Language Models We interrogate BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) among
masked LMs, and GPT2 (Radford et al., 2019)
among causal LMs. For each LM, we consider
two variants corresponding to approximately 117M
parameters and 345M parameters.

4 Results

Table 2 shows the results on TExEval-2’s science
and environment. We compare with the current
state of the art (Graph2Taxo) (Shang et al., 2020),
as well as with other strong baselines such as Tax-
oRL (Mao et al., 2018) and TAXI (Panchenko et al.,
2016), the highest ranked system in TExEval-2.
We also compare with CTP (Chen et al., 2021)
to illustrate the advantages of zero-shot methods
vs finetuning. For the environment domain, we
find that RestrictMLM performs similar to CTP
and LMScorer outperforms it. Moreover, all 3
proposed approaches fail to outperform the other
baselines. However, in science, all 3 of our ap-
proaches outperform CTP, while our best model
(RestrictMLM) outperforms TAXI and is compet-
itive with TaxoRL (ours has higher precison, but
lower recall). Note that compared to our zero-shot
approaches, these methods are either supervised,
expensive to train or take advantage of external
taxonomical resources such as WordNet, or lexico-
syntactic patterns mined from the web using differ-
ent hand-crafted heuristics.

We also show results for TExEval-1’s equipment
and TExEval-2’s food (Table 3). Both datasets
are considerably larger than environment and sci-
ence. We compare with the corresponding high-
est ranked system, namely TAXI for food, and IN-
RIASAC (Grefenstette, 2015) for equipment. For

environment science

Model P R F P R F

TAXI 33.8 26.8 29.9 35.2 35.3 35.2
TaxoRL 32.3 32.3 32.3 37.9 37.9 37.9
Graph2Taxo 89.0 24.0 37.0 84.0 30.0 44.0
CTP 23.1 23.0 23.0 29.4 28.8 29.1

PromptMLM 19.2 19.2 19.2 34.4 32.0 33.1
RestrictMLM 23.0 23.0 23.0 39.3 36.7 37.9
LMScorer 26.4 26.4 26.4 33.1 30.7 31.8

Table 2: Comparison of our best performing methods
with previous work (environment and science).

both domains, all 3 of our approaches outperform
the corresponding TExEval best-performing sys-
tems. This suggests that zero-shot TL with LMs
is robust, easily scalable and feasible on large tax-
onomies. However, a clear bottleneck for prompt-
based methods is that only single-token terms can
be predicted (using a single [MASK] token), making
this approach a lower bound for TL.

food equipment

Model P R F P R F

TExEval 13.2 25.1 17.3 51.8 18.8 27.6

PromptMLM 23.2 22.6 22.9 29.4 29.3 29.4
RestrictMLM 25.2 24.6 24.9 38.4 38.2 38.3
LMScorer 25.2 24.6 24.9 37.7 37.6 37.6

Table 3: Comparison of our best configurations with the
best TExEval systems on food and equipment.

5 Analysis

In this section, we provide an in-depth analysis of
our approaches, including comparison of LMs and
statistical and semantic properties of prompts.

LM Comparison Table 4 compares the best con-
figuration for each LM. We can immediately see
that a conservative approach (i.e., k = 1 with
the type prompt) almost always yields the best
F -score. Another important conclusion is that,
among MLMs, BERT-Large performs best across
the board, with BERT generally outperforming
RoBERTa, a finding in line with previous works
(Shin et al., 2020). Concerning causal LMs, GPT-
2 Medium outperforms its smaller counterpart as
well as both MLMs for sentence-scoring.

Sensitivity to Prompts There is interest in un-
derstanding models’ sensitivity to prompts and
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environment science food equipment

Method LM (p, k) P R F (p, k) P R F (p, k) P R F (p, k) P R F

PromptMLM

BERT-Base (t, 1) 18.8 18.8 18.8 (t, 1) 30.2 28.1 29.1 (t, 1) 20.9 20.4 20.6 (t, 1) 29.4 29.3 29.4
BERT-Large (t, 1) 19.2 19.2 19.2 (t, 1) 34.4 32.0 33.1 (t, 1) 23.2 22.6 22.9 (t, 1) 28.4 28.3 28.4
RoBERTa-Base (t, 1) 18.0 18.0 18.0 (t, 1) 24.5 23.0 23.7 (t, 1) 18.5 18.0 18.2 (t, 1) 26.3 26.2 26.3
RoBERTa-Large (t, 1) 18.0 18.0 18.0 (t, 1) 28.1 26.2 27.1 (t, 1) 20.3 19.8 20.0 (t, 1) 28.4 28.3 28.4

RestrictMLM

BERT-Base (t, 1) 23.0 23.0 23.0 (t, 1) 35.8 33.5 34.6 (t, 1) 22.8 22.2 22.5 (t, 1) 38.4 38.2 38.3
BERT-Large (t, 1) 21.8 21.8 21.8 (t, 1) 39.3 36.7 37.9 (t, 1) 25.2 24.6 24.9 (t, 1) 37.9 37.7 37.8
RoBERTa-Base (t, 1) 5.4 5.4 5.4 (t, 1) 11.0 10.6 10.8 (t, 1) 9.3 9.1 9.2 (t, 1) 0.0 0.0 0.0
RoBERTa-Large (t, 1) 8.4 8.4 8.4 (t, 1) 12.3 11.8 12.0 (t, 1) 10.7 10.5 10.6 (t, 1) 0.0 0.0 0.0

LMScorer

BERT-Base (t, 1) 20.3 20.3 20.3 (t, 1) 15.2 14.4 14.8 (t, 3) 6.8 19.7 10.1 (t, 3) 7.5 22.4 11.2
BERT-Large (t, 3) 13.7 41.0 20.5 (t, 1) 13.0 12.4 12.6 (t, 1) 13.9 13.6 13.7 (t, 1) 15.2 15.1 15.1
RoBERTa-Base (g, 3) 7.7 23.0 11.5 (t, 3) 5.5 15.7 8.1 (t, 3) 2.5 7.2 3.7 (t, 5) 4.2 21.0 7.0
RoBERTa-Large (t, 3) 11.1 33.3 16.7 (t, 1) 13.6 12.8 13.2 (t, 3) 3.6 10.6 5.4 (t, 3) 9.2 27.5 13.8
GPT-2 Base (t, 1) 24.9 24.9 24.9 (t, 1) 29.3 27.4 28.3 (t, 1) 21.0 20.5 20.7 (t, 1) 36.8 36.6 36.7
GPT-2 Medium (t, 1) 26.4 26.4 26.4 (t, 1) 33.1 30.7 31.8 (t, 1) 25.2 24.6 24.9 (t, 1) 37.7 37.6 37.7

Table 4: Comparison of best configuration for each LM and proposed approach. (p, k) refers to the prompt and
top-k combination that gives the best results for that setting, where p = g for gen., s for spec. and t for type prompt.

whether frequency can explain downstream per-
formance in lexical semantics tasks (Chiang et al.,
2020). In the context of prompt vs. performance
correlation, we find that prompt-based downstream
performance on TL can be attributed to: (1) syn-
tactic completeness and (2) semantic correctness.
For (1), we find that prompts that are syntactically
more complete (e.g., “[X] is a type of [Y]” vs “[X]
is a type [Y]”, the difference being the preposi-
tional phrase) perform better. For (2), we find that
prompts that unambiguously encode hypernymy
are also better (i.e., the type prompt, as opposed to
other noise-inducing templates such as “is a” or “is
kind of ”). Finally, out of the cleanest prompts, the
most frequent in pretraining corpora are the most
competitive. Table 5 confirms the intuition that
the type prompt is not only unambiguous, but also
highly frequent when compared to similar (noise-
free and syntactically complete) prompts.

Prompt avg F Frequency

is a type of 25.5 14,503
is the type of 24.2 809
is a kind of 23.6 2,934
is a form of 22.1 9,518
is one form of 17.9 124
is a 7.4 9,328,426
is a type 1.0 15,085

Table 5: Domain-wise average F -score of LPAQA
prompts and their frequency in BERT’s pretraining cor-
pora.

Single-Token vs Multi-Token Hypernyms Ta-
ble 6 compares F-score on original terminology
vs filtered terminology, where filtered terminology

contains only the terms that have single-token hy-
pernyms. The results show that % Increase in F-
score is inversely proportional to the % Retained.
This can be explained by the fact that smaller %
of terms retained implies higher % of multi-token
hypernyms in the original dataset that cannot be
predicted using prompting. Thus, the increase in F-
score by removing such hypernyms should increase
as the % Retained decreases.

Domain Total Terms % Retained % Increase

environment 261 29.89 2.32
equipment 612 44.77 1.24
science 452 53.32 0.90
science_ev 125 52.80 0.89
food 1555 59.55 0.57
science_wn 370 69.73 0.51

Table 6: Comparison of F-score on original terminology
vs filtered terminology. % Retained refers to the percent-
age of terms that have single-token hypernyms and are
thus retained for the filtered dataset. % Increase shows
the increase in F-score on filtered dataset compared to
F-score on original dataset.

6 Conclusion and Future Work

We have presented a study of different LMs un-
der different settings for zero-shot taxonomy learn-
ing. Compared with computationally expensive
and highly heuristic methods, our zero-shot alter-
natives prove remarkably competitive. For the fu-
ture, we could explore multilingual signals and the
integration of traditional word embeddings with
contextual representations.
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