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Abstract

While both extractive and generative readers
have been successfully applied to the Ques-
tion Answering (QA) task, little attention has
been paid toward the systematic comparison of
them. Characterizing the strengths and weak-
nesses of the two readers is crucial not only
for making a more informed reader selection in
practice but also for developing a deeper under-
standing to foster further research on improv-
ing readers in a principled manner. Motivated
by this goal, we make the first attempt to sys-
tematically study the comparison of extractive
and generative readers for question answering.
To be aligned with the state-of-the-art, we ex-
plore nine transformer-based large pre-trained
language models (PrLMs) as backbone archi-
tectures. Furthermore, we organize our find-
ings under two main categories: (1) keeping
the architecture invariant, and (2) varying the
underlying PrLMs. Among several interesting
findings, it is important to highlight that (1)
the generative readers perform better in long
context QA, (2) the extractive readers perform
better in short context while also showing bet-
ter out-of-domain generalization, and (3) the
encoder of encoder-decoder PrLMs (e.g., TS)
turns out to be a strong extractive reader and
outperforms the standard choice of encoder-
only PrLMs (e.g., RoOBERTa). We also study
the effect of multi-task learning on the two
types of readers varying the underlying PrLLMs
and perform qualitative and quantitative diag-
nosis to provide further insights into future di-
rections in modeling better readers.

1 Introduction

Question Answering (QA) is an important task
to evaluate the reading comprehension capac-
ity of an intelligent system and can be directly
applied to real applications such as search en-
gines (Kwiatkowski et al., 2019) and dialogue sys-
tems (Reddy et al., 2019; Choi et al., 2018). This
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paper studies extractive QA which is a specific
type of QA; i.e., answering the question using a
span from the context (Rajpurkar et al., 2016; Fisch
et al., 2019). Extractive readers (Seo et al., 2017;
Devlin et al., 2019) are widely used to tackle such
a task, where the goal is to classify start and end
positions of the answer in the context. Generative
readers (Raffel et al., 2020; Lewis et al., 2020c;
Izacard and Grave, 2021) have also shown remark-
able performance, where the goal is to generate
answers by autoregressively predicting tokens.

Both the state-of-the-art extractive and genera-
tive readers are based on large pretrained language
models (PrLMs) and show good performance on
different datasets. However, a systematic compar-
ison between them has been largely unexplored.
Such a comparison reveals the strengths and weak-
nesses of each reader, which in turn can provide
more principled guidance on which reader and
PrLLM should be applied in which cases, and also
open up future research opportunities grounded on
identified concrete challenges to improve reader
models. However fair comparisons between these
have been difficult to perform mainly because 1)
the PrLMs for extractive and generative are dif-
ferent, i.e., extractive readers are usually built on
top of encoder-only PrLM while generative ones
are based on encoder-decoder PrLLMs, and 2) the
size of generative and extractive readers are not
the same, which can greatly affect the performance.
We design two main set of controlled experiments
to address such challenges in comparing extractive
and generative readers in a principled manner.

In the first set of experiments, we compare ex-
tractive and generative readers using the same
PrLMs. Specifically, TS (Raffel et al., 2020) gener-
ative reader is compared with TS extractive reader
and similarly for BART (Lewis et al., 2020a). This
allows a fair comparison of different answer predic-
tion approaches without being affected by different
architecture or prior knowledge of PrLMs. More-
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over, we challenge the conventional formulation
of extractive readers, which are often built upon
encoder-only PrLLMs, by leveraging the encoder of
encoder-decoder PrLLMs as a variable alternative.
More concretely, we use the encoders of T5 and
BART models to explore their capacity as an ex-
tractive reader to better understand the effect of
different pre-training strategies on the final QA per-
formance.

While the aforementioned comparison strategy
adopts the same PrLMs, it remains unclear how
generative readers compare with the conventional
extractive readers that are built upon encoder-only
PrLMs. Thus, in the second experiment, we
compare different architecture PrLMs, including
T5, BART, ELECTRA (Clark et al., 2020) and
RoBERTa (Liu et al., 2019), to draw more gener-
alizable and grounded conclusions. All models in
this suite of experiments have similar sizes, thus
reducing the impact of model size on performance.

With these two experiments, we present a
systematic comparison of extractive and gener-
ative readers using nine readers on the MRQA
task (Fisch et al., 2019), a collection of multiple
extractive QA datasets. This evaluation results in
five insightful findings:

1. The first experiment reveals that the choice of
PrLM affects the performance. Specifically, for
TS5, the generative reader is better than the ex-
tractive one, but for BART, extractive readers
are better than the generative ones.

2. The second experiment shows that on average,
extractive readers performs better than the gen-
erative ones, with the extractive reader built on
the encoder of TS performing the best among
the different types of PrLMs.

3. Extractive readers perform better in short con-
text and have better generalization on out-of-
domain datasets and rare answers, but the gener-
ative readers perform better in the long context.

4. The encoder of encoder-decoder PrLMs are also
good extractive readers. Extractive readers built
on top of the encoder of BART or T5 are better
than encoder-only PrLMs, like ROBERTa.

5. While the inference length is usually chosen to
be the same as in the training time, we find that
longer inference length has a positive effect for
all PrLMs. Using longer lengths for long con-
texts leads to greater gains than short contexts.

Our work presents an in-depth study of extractive
and generative readers for QA task, an important

NLP task toward building intelligent systems. Our
findings shed light on key considerations behind
reader selection and would be helpful for formulat-
ing future research on advancing reader models.

2 Related Work

Pretrained Language Models Here, we mainly
discuss two types of pre-trained models based on
transformers architecture (Vaswani et al., 2017),
autoencoder and encoder-decoder models, which
are widely used for QA tasks. Autoencoder only re-
lies on the encoder part in the original transformer,
and in the pretraining time, the input is a cor-
rupted sentence, for example, a sentence with mask
tokens, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) and ELECTRA (Clark
et al., 2020). Both RoOBERTa and ELECTRA has
the same architecture as BERT but perform bet-
ter than BERT on many tasks. ROBERTa mainly
benefits from larger training corpus consisting of
news, books, stories, and web text. ELECTRA
adapts GAN-style training (Mirza and Osindero,
2014) and aims to detect if a token is replaced
or is from the original text. Large ELECTRA is
trained on similar data as ROBERTa. BART (Lewis
et al., 2020b) and T5 (Raffel et al., 2020) belong to
encoder-decoder architecture. BART is pretrained
on the same data as RoBERTa, while TS5 is pre-
trained on Colossal Clean Common Crawl Corpus
as well as the multiple downstream tasks.

Question Answering Systems We focus on QA
systems that are built upon PrLMs. Extractive QA
readers assume that answers can be found in the
context and aim to predict the corresponding start
and end tokens from the context (Fisch et al., 2019;
Li et al., 2019; Clark et al., 2020; Karpukhin et al.,
2020). Differently, generative QA readers are not
restricted to the input context, where they can freely
generate answers token by token using the entire vo-
cabulary in an autoregressive manner (Raffel et al.,
2020). Generative readers are more often used in
open domain (Lewis et al., 2020c; Izacard and
Grave, 2021; Xiong et al., 2021) and unified set-
tings (Khashabi et al., 2020; Tafjord and Clark,
2021). Fajcik et al. (2021) combines extractive
and generative readers by adding a classification
module to decide which reader predicts answers.
Cheng et al. (2021) proposes a unified system of ex-
tractive and generative readers, but different from
(Fajcik et al., 2021), the output is computed by both
extractive and generative readers.



3 Model

We mainly study the QA models based on PrLMs
with extractive and generative approaches.

3.1 Extractive Reader

In extractive reader, an encoder firstly receives the
concatenation of a question q :{q1,...,¢:} and a
context ¢ :{cy,..., ¢y}, Where ¢; and ¢; are to-
kens in question and context, respectively. Then,
it produces h : [hq]---|hy,] € R¥X™, where h;
corresponds to the d-dimensional contextual repre-
sentation of context token c;. We then stack two
linear layers on top of the contextual representa-
tions to independently predict the probability of
each context token being start and end positions
of the correct answer. More formally, given a tu-
ple (q,c,a), where a is an answer, the training
objective is to minimize the following loss function

Lexi = — 1Og(];)start,s) - 1Og(Pend,e) (D
where Pgtart, Pend € R are defined by

Pstart = SOftmaX(Wstart h) 2)

Pend = softmax(wepqgh) 3)

where Wgtart and Wenq denote for the linear lay-
ers to predict start and end tokens, Pgiart s and
Pcnd e denote the probability of the ground truth
start and end tokens of answer a, respectively.
In testing time, the answer span is decoded by
argmaxiyj{Pstart,i X Pend,j}-

In this work, we have two variants of extrac-
tive readers. One is encoder-only models to get
the contextual representation of each token. We
call such kind of reader as E-Extractive reader.
Apart from taking the conventional PrLMs such
as RoBERTa and ELECTRA, we also apply the
encoder part in T5 and BART to be E-Extractive
reader. The other one is using the encoder-decoder
models where the decoder is to obtained the con-
textual representation of each token in the context
in an autoregressive way (see §3.2). We use both
BART and T5 PrLLMs and term this kind of reader
as ED-Extractive reader.

3.2 Generative Reader

We consider a generative reader consisting of an
encoder and a decoder where the decoder is used
to generate answers in an autoregressive way. Spe-
cially, the encoder takes a question q and a context
c as input and outputs contextual representation

Dataset ‘ Training size | Avg. tokens in Q ‘ Avg. tokens in C

In-domain datasets

SQuAD 86,588 11.53 144.15
NewsQA 74,160 7.60 581.61
TriviaQA 61,688 15.81 782.59
SearchQA 117,384 17.46 744.44
HotpotQA 72,928 18.89 237.67
NQ 104,071 9.18 158.80
Out-of-domain datasets
DROP - 11.18 215.16
RACE - 11.82 347.90
BioASQ - 11.53 252.83
TextbookQA - 11.07 663.36
RE - 9.26 30.02
DuoRC - 8.63 732.92

Table 1: Statistics of In-domain (IID) and out-of-

domain (OOD) datasets of MRQA benchmark.

h. Then, the decoder takes the previously gener-
ated answer tokens as input and performs attention
over h and then generates the next token. Formally,
given a tuple (q, c, a), the training objective is to
minimize the following loss function

K
Léen =Y logP(a; | h,a.) 4
i=1

where K is the number of tokens in answer a, a;
is the i*" token in a, and ag corresponds to a spe-
cial beginning of sequence (BOS) token. In the
inference time, we use the greedy search method
to autoregressively generate the answer.

4 Experiments

4.1 Dataset

We conduct experiments on MRQA benchmark
which provides six in-domain (IID) datasets, and
six out-of-domain (OOD) datasets for generaliza-
tion evaluation. MRQA covers different domains
(e.g. News and biomedical) and different types of
questions, (e.g. single hop and multi-hop). Table
1 shows the statistic of each IID and OOD dataset.
Some datasets have long context and others are
short context. More details about MRQA are pre-
sented in Appendix A.

4.2 Learning Strategy

Single Task Learning: we use each IID datasets
to train extractive and generative readers. Multi-
Task Learning: we consider training with all (six)
IID datasets as multi-task learning for two rea-
sons. As (Su et al., 2019) showed that different
IID datasets share a low similarity, therefore, they
may require different reasoning skills. In addition,
Table 1 shows that different datasets have different



question and context lengths, which may lead to
different difficulties between datasets.

4.3 Experimental Setup

We use Huggingface (Wolf et al., 2020) and Py-
torch (Paszke et al., 2019) implementation for train-
ing each model. All models are trained using
maximum input length of 512 and other details
is provided in Appendix B!. In Table 2, we summa-
rize the size of each evaluated model and the size
of PrLMs are chosen based on a comparable way
and the best computation power. For example, we
choose T5 base model for generative reader since
the large TS is too larger (737M).

Input Format: Given a question Q and a context
C, the input to extractive readers is {Q [SEP] C}
and the input to generative readers is {question:
Q [SEP] context: C}. We also considered other
input formats, which are reported in Appendix C.
Answer Length of Generative Reader: We set
the maximum generated answer length as 16 for
generative reader. Using longer generation lengths
(32 and 64) do not yield noticeable improvement
as reported in Appendix D.

5 Results and Analysis

We first present the study of using different infer-
ence length for each model since it guides us to
choose the best performance of each model. Then,
we compare the generative and extractive readers
using the same PrLMs and the different PrL.Ms.
Last, we present a detail analysis to diagnose the
difference among extractive and generative reader.
F1 is used to measure performance. Note that since
we test each model on 12 datasets, the observation
and conclusion we draw are mostly based on the
average across all datasets.

5.1 The Effect of Context Length

While all models are trained with 512 maximum
length, the inference length can be longer than this.
We experiment with three lengths, 512, 1024, and
the full length of input question and context. Due to
the tokenization and pretraining maximum length
of each PrLM, ELECTRA only allows 512 maxi-
mum inference length, ROBERTa and BART allows
1024, and TS allows the full length of input.

"While we fix the training hyperparameters for all the mod-
els for the sake of experimental efficiency, the performance of
our setting is close to the original results.
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We present the average performance of each
model on both IID and OOD in Table 32, from
which three trends are observed. (1) When using
512 inference length, ELECTRA is the best model
in single-task learning on IID datasets and multi-
task in both IID and OOD datasets. (2) Increasing
the inference length actually improves all models’
performance. (3) The length affects the TS mod-
els more significantly than others, for example, in
single-task learning, the largest improvement of
length 1024 for T5 model on IID and OOD datasets
are 2.77% and 5.49%, while for other models, the
largest improvement of length 1024 compared to
512 are 1.32% and 1.65%. The performance of
using 512 and 1024 are given in Appendix E, and
we present the performance of each dataset using
the best input length in the following sections.

5.2 Comparison within Same PrLLMs

We compare different readers when using the same
PrLLMs. Two PrLMs, TS5 and BART, are considered,
where T5-base model is applied to each TS5 reader,
and BART-large model is applied to each BART
reader. We have three comparison as there are
two types of extractive and one type of generative
readers (§3). We present the average performance
in each comparison and the detail performance on
each datasets are given in Appendix F.

ED-Extractive and E-Extractive Since the E-
Extractive reader is only use the encoder part of the
PrML without the decoder, the size of E-Extractive
reader is less than the ED-Extractive. But even
under this disadvantage, surprisingly, we find that
the encoder part actually perform well on QA tasks.
In Figure 1, the red and green bars compare the
ED-Extractive and E-Extractive reader. For BART
model, the E-Extractive reader outperforms ED-
Extractive reader on average on IID and OOD
datasets in single task learning as well as multi-
task learning. This indicates that the decoder in
BART is not crucial for the extractive reader. On
the other hand, for T5, the ED-Extractive reader
outperforms E-Extractive reader on average on both
IID and OOD datasets. This suggests that the de-
coder in TS still plays a role to yield better perfor-
mance. But the performances are similar even that
the E-Extractive reader has less parameters.

Note that in single-task learning, the performance on
OOD are extracted from the best performance of each single-
task model on every dataset and this applies to all other tables
in this paper.



| TSE-Ext | TSE-Ext | TS ED-Ext | T5 ED-Gen | Bart E-Ext | Bart ED-Ext | Bart ED-Gen | ELECTRA | RoBERTa

Size ‘ base ‘ large ‘ base ‘ base ‘

large | large | large | large | large

#Params (M) | 110 | 335 | 223 | 223 |

204 | 406 | 406 | 334 | 354

Table 2: Size and parameters of readers. ED: encoder-decoder, Ext for extractive, Gen for generative approach.

‘ In-domain Avg. ‘ Out-of-domain Avg.

Model
|512 1024 Full |512 1024 Full
Single Task Learning
T5 E-Ext (B) 7442 75.80 77.93 | 55.89 58.06 58.65
TS E-Ext (L) 76.46 78.67 80.85 | 60.74 63.67 64.49
TS5 ED-Ext (B) 7475 77.06 79.11 | 57.11 59.19 59.99
TS5 ED-Gen (B) 7791 80.68 81.02 | 56.26 61.75 61.82
BARTE-Ext (L) | 77.78 79.10 - 59.67 61.32 -
BART ED-Ext (L) | 77.10 77.34 - 59.29 59.21 -
BART ED-Gen (L) | 69.89 70.24 - 49.65 53.51 -
RoBERTa (L) 7759 77.89 - 60.32 6047 -
ELECTRA (L) 78.71 - - 60.19 - -
Multi-Task Learning
TSE-Ext(B) | 7574 76.65 78.99 | 58.94 61.55 61.98
TS5 E-Ext (L) 77.10 79.30 81.55 | 63.04 66.10 66.78
T5 ED-Ext (B) 7592 77.38 79.93 | 59.23 61.86 62.64
TS5 ED-Gen (B) 78.06 80.89 81.16 | 57.82 63.56 63.68
BART E-Ext (L) | 77.75 79.13 - 63.27 64.06 -
BART ED-Ext (L) | 77.26 77.55 - 62.14 62.68 -
BART ED-Gen (L) | 78.11 78.55 - 5741 60.54 -
RoBERTa (L) 77.86 78.02 - 63.70 63.58 -
ELECTRA (L) | 7852 - . 63.83 - -

Table 3: Result of each model using three inference
length. Bold number means the highest value of each
model with three inference length for IID and OOD
datasets. L: large PrLMs, B: base PrLMs

Bmm ED-Ext IID
E-Ext IID

zm ED-Ext OOD

/. E-Ext OOD

ED-Ext IID

E-Ext IID

ED-Ext OOD
. E-Ext OOD

T5 BART T5 BART

Figure 1: Left for single-task and right for multi-tasks
settings. For TS5, ED-Ext performs better than E-Ext
reader; for BART, E-Ext is better than ED-Ext reader
even though the former has less parameters.

ED-Extractive and ED-Generative Reader
Here, the model size of extractive reader and
generative reader are almost the same (see Table 2)
and also the pre-owned knowledge of two readers
are the same since both readers use the encoder and
decoder parts. In Figure 2, the red and blue bars
compare the ED-Extractive and ED-Generative
reader. For T5, generative models performs better
than the extractive one on four cases, IID and OOD
datasets and single- and multi-tasks learning. For
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BART PrLM, in single-task learning, the extractive
model is much better than the generative model.
This probably explains why in most of the previous
work, when BART is applied to extractive QA
tasks, it is used as extractive reader even though it
belongs to encoder-decoder model family>. The
story for multi-task learning is different, and we
find that the BART generative reader benefits
significantly from multi-task learning and even
outperforms the BART ED-extractive reader on
IID datasets. It indicates that the decoder in BART
requires larger and more diversified datasets to
learn the QA task.

ED-Ext IID ED-Ext IID
ED-Gen IID
ED-Ext OOD

ED-Gen OOD

ED-Gen IID
ED-Ext OOD
ED-Gen OOD

Figure 2: Left for single-task and right for multi-tasks
settings. For T5, ED-Gen performs better than ED-Ext;
For BART, ED-Ext is better than ED-Gen in single task
learning, but worse in multi-task learning on IID.

E-Extractive and Generative Reader In this
comparison, the extractive reader has less advan-
tage than the generative ones since the decoder has
been removed in E-Extractive reader. In Figure 3,
the green and blue bars compare the E-Extractive
and ED-Generative reader. For TS5 model, the gen-
erative reader are better than the extractive ones
in both single- and multi-tasks and IID and OOD
datasets. But again, this disadvantages of extractive
readers might come from the smaller model size as
we discussed in previous comparison. For BART
model, E-Extractive reader outperforms generative
reader significantly on both IID and OOD datasets
and the advantage of E-Extractive reader are much
more significantly in single-task learning scenario.
To summarize,
1. The encoder part itself in both TS and BART

can perform well as an extractive reader.

3The original BART paper takes BART as an extractive

and also the implementation of using BART for QA in Hug-
gingface library do the same.



E-Ext IID
ED-Gen IID
E-Ext OOD
ED-Gen OOD

B E-Ext IID
mmm ED-Gen IID
@z E-Ext OOD
mm ED-Gen OOD

5 BART T5 BART

Figure 3: Left for single-task and right for multi-tasks
settings. For TS5, ED-Gen is better than E-Ext reader;
for BART, E-Ext is better than ED-Gen reader even
though the former has less parameters.

. The comparison among three types of reader
using BART and T5 suggests that although
both PrLLMs are of encoder-decoder architecture,
three types of readers behave quite differently.
This might caused by different pre-training ob-
jectives and knowledge.

. For BART model, the E-Extractive reader out-
performs ED-Extractive reader and generative
reader regardless of less parameters, thus should
be used as an extractive reader.

. The BART generative reader requires large and
diversified datasets to learn the QA task and thus
benefits significantly from multi-task learning.

. For T5, the performance of generative reader
consistently outperforms two types of extractive
reader. The deficiency of T5-Extractive reader
might be caused by less parameters.

5.3 Comparison within Different PrLMs

The previous section compares the generative and
extractive readers using the same PrLMs and both
PrLLMs are encoder-decoder models. On one hand,
such comparison reduces the impacts of PrLMs
architecture and pre-owned knowledge. On the
other hand, it raises two concerns. First, whether
extractive readers using an encoder-decoder PrLMs
are good for representatives of extractive readers?
After all, encoder-only PrLMs are more standard
choice for extractive readers in most previous work.
Second, whether the smaller size of the extractive
reader cause its deficiency compared to the gen-
erative one, particularly that the TS E-Extractive
reader is half size of the TS5 generative reader in
previous comparison.

To clear out the first concern, here, we present
the comparison cross different PrLLMs including
standard encoder-only models for extractive read-
ers. To address the second concern, we carefully
select the model size so that each model is of rela-
tive comparable size.

12

The Selection of Each Model’s size We use the
encoder in TS large model for the T5 E-Extractive
reader so that it is of similar size as RoOBERTa and
ELECTRA extractive readers (~330M)*. When us-
ing BART PrLMs for extractive reader, we only use
BART E-Extractive reader but not ED-Extractive
reader because the former performs better even
though it has less parameters (204M) than the later
one has larger size. TS generative reader is also
smaller (223M), but this is better than using TS
large generative reader to compare with others,
which is way too larger than other readers (737M).
For BART generative reader, it is larger than other
readers (406M). One potential issue for the above-
mentioned setting is that even though we choose
the best comparison setting, still each model size
are different, and thus if a model perform inferior
than others, it might due to the smaller model size.
However, the following conclusion we draw does
not effect by this issue.

Are Encoder-decoder PrLLMs Good for Extrac-
tive Readers? Based on Table 4, we find that
encoder-decoder PrLMs outperform encoder-only
PrLMs as extractive readers on average. Both
T5 and BART E-Extractive readers perform better
than RoOBERTa and ELECTRA on IID and OOD
datasets under single- as well as multi-task learn-
ing regardless of less parameters of TS and BART.
This observation is exciting since instead of using
standard encoder-only PrLLMs for extractive reader,
encoder-decoder PrLLMs are actually better choice.

Which reader generalize better on OOD? The
extractive reader generalize better on OOD datasets.
In both single- and multi-task learning, TS E-
Extractive reader shows the best performance, es-
pecially beating the BART generative reader even
though the latter one has more parameters. BART
E-Extractive reader also generalize well on OOD,
and it also beats the BART generative reader even
though the former has less parameters than the later.

Which PrLLM is the best? Based on Table 4, we
see that TS is the best among four PrLLMs in both
single- and multi-tasks learning scenario on IID as
well as OOD datasets. We observe two advantages
of TS over other PrLLMs. First, TS is much better
than ELECTRA and RoBERTa on NewsQA data.
In both single- and multi- task learning, RoOBERTa

*Note that the T5 PrLM is already trained on SQuAD,
while others do not. However, based on the results on SQuAD,
T5 does not have advantage over other models on this dataset.



Model ‘ In-domain Datasets

‘ Out-of-domain Datasets

‘ SQuAD NewsQA  TQA SQA HQA NQ Avg. ‘ DROP RACE BioASQ  TbQA RE DuoRC Avg.
Single Task Learning
T5 ED-Gen 90.75 71.65 79.61 86.21 79.89 78.04 81.02 48.08 48.89 67.36 60.30 84.94 61.35 61.82
BART ED-Gen | 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 53.51
T5 E-Ext 92.47 72.63 76.09 83.24 80.67 80.00 80.85 53.14 52.06 71.26 61.92 85.78 62.80 64.49
BART E-Ext | 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32
ELECTRA | 9339 60.23 76.31 82.54 80.99 78.78 78.71 5543 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa 92.64 59.95 72.97 81.62 81.21 78.95 77.89 55.88 47.72 64.47 5231 86.69 55.75 60.47
Multi-Task Learning
TSED-Gen | 9141966 71.29 03 80014 86.46.055 79.70_019 78094005 8L.16. 014 |51.204312 49.66.077 68.724135 62904260 85.84.090 63.76.541 63.68. 156
BART ED-Gen | 88.63. 955 6891 571 74914710 82.52.363 80.53.731 75.78,1900 78.55.531 | 552051008 50.04.631 63.78,519 5481970 8094, .11 5847.541 60.54 703
TSE-Ext | 92.84.045 73.5lioxs 7737112¢ 82.89 045 8192155 8074071 8155.070 | 59.104505 540Li1g5 7LI3 015 64.90.00s 86.53.075 65.01i00 6678500
BART E-Ext | 92.46.057 7211 (g9 72.24 55 7653 66 82.04.1435 79404011 7913003 | 58224645 50.40.155 70.72:189 5629500 86.79.075 6195060 64.06,574
ELECTRA | 9327 015 60.59,055 7296 555 82.03 051 83.00,01, 79164055 7852 010 | 6256715 5029049 7T150.15 5460,550 87141001 56.88,105 63.831501
RoBERTa 9341077 59.56_0359 72.23 7 8098 (41 82.37.146 79.55i060 78.02.013 | 64.47 550 51.81.409 69.15.465 53.68;137 8631 35 56.06.03 63.58.51

Table 4: Comparison of readers based on the different PrLMs by F1 Score.

Inference length of TS5 is full

length of context, 512 for ELECTRA, and 1024 for BART and RoBERTa. TQA: TriviaQA; SQA:SearchQA;
HQA:HotpotQA; NQ: NaturalQuestions; TbQA:TextbookQA; RE:RelationExtraction. Bold numbers denote for

the best result and underline numbers for the second be

and ELECTRA achieve around 60% F1 score on
NewsQA, while both T5 extractive and generative
reader achieved higher than 70% F1 score, yielding
more than 10% improvements. Second, T5 is better
at long context dataset. In IID, TQA and SQA, T5
ED-Generative reader outperforms other readers at
least 3.30% and 3.67% in single-task, 7.05% and
4.43% in multi-task learning. On OOD datasets,
TbQA and DuoRC, T5 E-Extractive reader is better
than others at least by 9.61% and 1.45% in single-
task, 8.61% and 3.06% in multi-task. We would
like to mention that this advantage of TS5 is condi-
tioned on using full inference length, when using
short input length such as 512, this advantage does
not exhibit as we shown in §5.1.

Which PrLLM benefits more from Multi-task
Learning? While multi-task learning is in gen-
eral beneficial for all PrLMs, we find BART ben-
efits the most from multi-task learning, especially
for the generative reader. For example, on IID
datasets. BART generative reader improves more
than 8% on average while all other readers im-
proves less than 1%. Similarly for OOD datasets,
the improvement of multi-task learning on BART
generative reader are more significant than other
readers. To summarize,

1. Encoder-decoder PrLMs can be in fact used as
extractive readers, they are even better than the
conventional choice (encoder-only PrLMs) of
extractive readers on average.

Extractive readers perform better than the gen-
erative readers on OOD datasets, especially for
the ones based on the encoder-decoder PrLLMs.
TS5 is the best among four PrLLMs since it per-
forms better on the news domain and the long

St.
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context. And the advantage of T5 is conditioned
on using full inference length.

While in general multi-task learning turns out to
be useful for all PrLMs, BART PrLLM benefits
the most.

5.4 In-Depth Diagnosis

We investigate the behavior of extractive and gener-
ative models in long and short context and predict-
ing answers which include rare characters. Multi-
task models in §5.3 are chosen for comparison.

5.4.1 Long and Short Context

As we discussed in previous section that genera-
tive readers have advantage over extractive coun-
terparts. To further support this trend, we divide
the testing sets into five subsets, where we count
the total words in question and context, and choose
five thresholds, 2/4/6/8/10 hundreds. It is worth
to mention that since all extractive readers use the
window-stride strategy (i.e. if the input length is
longer than the maximum length, then the input is
segmented into multiple inputs), so that the entire
context is observable for extractive readers.

From Figure 4, we have two observations. First,
on IID datasets, for questions and contexts with less
than 600 words, the extractive ones always perform
better than the generative ones (the dash lines are
higher than the solid ones), but when the length are
more than 600 words, the generative ones consis-
tently outperform the extractive ones. This suggests
that the extractive readers performs better in the
short context while the generative readers perform
better in long context. Second, on OOD datasets,
TS5 generative reader still presents advantage in the
long context (more than 600 words), while BART
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Figure 4: Comparison among generative and extractive readers on different length of the question and context.
Left part for IID and right part for OOD datasets. Dash line for extractive and solid line for generative readers.

generative reader performs worse than the extrac-
tive one in both short and long context. But the
gap between the BART generative and extractive
readers is less on the long context compared to the
short context. It might suggest that the extractive
reader has better generalization capacity than the
generative one thus the advantage of generative
reader in long context is weakened.

5.4.2 Rare Characters in Answer

We find that some answers of testing sets include
rare characters such as 7i and ¢ (119 are found), thus
we divide the testing sets into two subsets, one is
the normal answer set where the answer does not
have rare characters’, the other one is with rare
characters. The percentage of rare cases for IID
and OOD datasets is 1.4% and 2%, respectively.
From Table 5, we have two observations. First,
in normal case, the performance of extractive and
generative readers are relatively comparable on
both IID and OOD datasets, but in rare case, the ex-
tractive readers are better than the generative ones
This suggests that the extractive reader has better
generalization than the generative ones. Second,
we see that the rare tokens has worse impact on
TS5 than BART generative readers in both in- and
out-of-domain datasets. Further investigation finds
that 94 out of 119 rare characters can not be rep-
resented by T5 tokenizer (i.e. T5 tokenizer uses
‘<unk>’ special tokens to represent these charac-
ters), and tends to ignore these special characters
in the generation time as the two examples shown
in Table 6. Differently, BART tokenizer can rep-
resent all rare characters. Improving generative
readers performance in predicting rare answers is

SRare characters are any characters which are not belongs
to the printable characters in the string library of Python. The
printable characters include lower and upper case alphabets,
digits, punctuation, and white-space.
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Answer type ‘ D i ‘ Gen ‘ Ext
| | TS |BART| T5 |BART| Ro | EL
Rare ‘ 1D ‘ 68.97 ‘ 73.64 ‘ 77.79 ‘ 78.54 ‘ 78.64 ‘ 78.18
00D | 59.25 | 79.84 | 85.22 | 84.95 | 80.73 | 86.94
Normal ‘ 1D ‘ 82.71 ‘ 80.02 ‘ 79.98 ‘ 79.95 ‘ 80.35 ‘ 78.18
00D | 6828 | 64.19 | 69.9 | 66.91 | 67.75 | 68.12

Table 5: Compare extractive and generative readers in
terms of rare and normal answers. Ro for ROBERTa

and EL for ELECTRA.
Question Answer Prediction
Who was one of the Maria Maria
most famous people  Sklodowskacurie Skodowska-
born in Warsaw? Curie

What museum pre-
serves the memory of
the crime?

Katyn Museum  Katy Museum

Table 6: Examples of questions with answers contain-
ing rare characters and the prediction of T5-Gen.

an important future work. To summarize,
1. Extractive readers performs better than the gen-
erative reader on short context, but generative
one performs better on long context.

Generative readers performs worse in predicting
answers with rare characters, and TS performs

worse than BART.

6 Conclusion and Future Work

We systematically compare the extractive and gen-
erative readers for QA tasks. Two sets of experi-
ments are designed to control the effects of differ-
ent PrLMs and the size of models. By conducting
experiments on 12 QA datasets, our findings pro-
vide guidelines on how to choose extractive or gen-
erative readers given their strength and weakness.
While current work investigates the pros and
cons of extractive and generative models systemat-
ically, there are some hyperparameters that might



affect the model performance. For example, it is
known that different prompts in the input effect gen-
erative model performance (Mishra et al., 2021b,a).
Also, it is worth studying the OOD performance
of models deeply. Gokhale et al. (2022) compares
multiple ways to improve the OOD performance
of an extractive model on QA task, and how these
methods affect generative models have not been
well-studied yet. Meanwhile, most of the work in-
cluding this work evaluate OOD performance by
averaging the performance across multiple dataset,
but as mentioned in (Mishra et al., 2020), the eval-
uation should be more carefully designed. Also,
Diagnosing the performance on each OOD dataset
can provide more insights. For example, why mod-
els perform better on BioASQ dataset than most
other datasets (see Table 4), while previous work
have shown that it is hard to transfer general model
to biomedical domain (Luo et al., 2022). Inves-
tigating the reason behind the observations and
improving the generative and extractive models are
interesting research questions for future.
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A More Details of MRQA Datasets

MRQA provides six datasets for training and six
for out-of-domain evaluations. In Table 7, we
present the source of each datasets, and we can see
that the domains are diversified. Figure 5 and 6
show the histogram of the context length of IID and
OOD dataset. The distribution shows that some
datasets are mainly short, some are mainly long,
and others are the combination of short and long.
We use short annotation for some datasets, TQA:
TriviaQA; SQA:SearchQA; HQA:HotpotQA;
NQ: NaturalQuestions; TbQA:TextbookQA;
RE:RelationExtraction.

Dataset Source

SQuAD Wikipedia

NewsQA News article

TQA Trivia and quiz-league websites

SQA Jeopardy! TV show

HQA Wikipedia

NQ Wikipedia

DROP Wikipedia

RACE English reading comprehension exams for mid-
dle and high school

BioASQ Science (PubMed) articles

TbQA Lessons from middle school Life Science,
Earth Science, and Physical Science textbooks

RE Wikiread

DuoRC wikipedia

Table 7: The source of each dataset

B Training Setup

We use Huggingface (Wolf et al., 2020) implemen-
tation and Pytorch (Paszke et al., 2019) to train each
model. All model are trained on 4 GTX1080 GPUs
in 4 epochs with a learning rate of 1e-4, batch size
of 128, random seed 1234. While we fix these hy-
perparameters for all models, we get similar results
as the original paper (i.e. the difference in terms
of F1 are mostly within 2 percent.) In details, on
SQuAD dataset, RoBERTa in (Liu et al., 2019)
and in ours achieves 94.6 and 92.64 F1 scores,
respectively; BART in (Lewis et al., 2020a) and
in ours achieves 94.6 and 92.51 F1 scores, respec-
tively; ELECTRA in (Clark et al., 2020) and in ours
achieves 94.2 and 93.39 F1 scores, respectively; TS
in (Raffel et al., 2020) and in ours achieves 80.88
and 82.56 EM scores, respectively.

C Two Input Format

When fine-tuning generative reader on question an-
swering task, some special words are added before
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the real input to denote the type of task. In an ex-
tractive reader, usually, there are no special words
added. Here, we evaluate these two formats for TS
and BART generative reader. Particularly, given
a question Q and a context C, format 1 is to add
the “question:” and “context:” in front of the real
question and context such that the input is {ques-
tion: Q [SEP] context: C}; and format 2 is without
these special words such that the input is {Q [SEP]
C}. To keep the training process be efficient, we
evaluate on two datasets SearchQA and HotpotQA,
instead of all datasets. Table 8 shows that format 1
yields slightly better performance for T5 and much
better performance for BART on SQA datasets, and
thus we use this format for all generative reader.

Model ‘ Format ‘ SQA ‘ HQA
\ | EM Fl | EM Fl
s 1 81.07 86.21 | 64.04 79.89
2 80.65 85.76 | 63.23 79.42
BART 1 72.86  78.89 | 55.77 73.22
2 4928 58.00 | 55.72 17320

Table 8: Comparison between different input format
on two datasets. Format]l means input with “question:”
and “context:” as formatl, and format2 means without.

D Answer Length of Generative Reader

For the generative reader, we tried different maxi-
mum lengths of the generated answer: 16, 32, and
64. Table 9 shows that increasing the length of the
target does not make improvement, this might be
because the answer in the testing data is usually
short and thus length of 16 is sufficient.

E Inference Length

We present the results of using 512 and 1024 length
and full length in Table 10, 11, 12 separately. Note
that due the tokenization approach adapted by each
model, for Electra using 1024 or full length is same
as using 512, for RoBERTa and BART, using full
length is the same as length 1024. Furthermore, the
detailed performance of each single task model is
given in Table 14, using the best inference of each
model, i.e. full length for TS5, 1024 for RoOBERTa
and BART, and 512 for ELECTRA.
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Figure 5: Context Length Histogram of In-domain dataset

F Detailed Comparison Results for Using
Same PrLLMs

Table 13 presents the F1 score of each readers when
using the same PrLLMs as we discussed in §5.2.
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Figure 6: Context Length Histogram of out-domain dataset
IID Datasets ‘ OOD Datasets

Length ‘
‘ SQuAD NewsQA TQA SQA HQA NQ Avg. ‘ DROP RACE BioASQ TbQA RE DuoRC Avg.

16 91.41 71.29 80.01 86.46 79.7 78.09 81.16 | 51.2  49.66 68.72 629 8584 6376  63.68
32 91.41 71.29 80.01 86.46 79.7 78.09 81.16 | 512  49.66 68.72 629 8584 6376 63.68
64 91.41 71.29 80.01 86.46 79.7 78.09 81.16 | 51.2  49.66 68.72 629 8584 6376 63.68

16 88.63 68.91 7491 8252 8053 7578 78.55 | 552  50.04 63.78 54.81 8094 5847 60.54
32 88.72 69.05 7491 8252 80.56 7593 78.61 | 5521 50.05 63.74 54.82 8092 5849 60.54
64 88.72 69.05 7491 8252 8056 7593 78.61 | 5521 50.05 63.74 54.82 8092 5849 60.54

Table 9: Performance of using different Answer length for generative reader. First block is the result for T5 model
and the second block for BART model.
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‘ In-domain Datasets ‘ Out-domain Datasets

Model
| SQUAD  NewsQA  TQA SQA HQA NQ Ave. | DROP RACE BioASQ  TbQA RE DuoRC  Avg.
Single Task Learning
T5 E-Ext (B) 90.12 59.38 67.39 77.14 76.95 75.56 74.42 41.17 45.46 64.92 46.69 84.48 52.61 55.89
T5 E-Ext (L) 92.39 59.62 70.22 78.52 80.06 71.93 76.46 52.73 51.38 69.99 49.76 85.78 54.82 60.74
T5 ED-Ext (B) 90.57 58.00 66.87 77.66 78.68 76.69 74.75 45.49 45.56 66.99 48.66 84.91 51.03 57.11
T5 ED-Gen (B) | 90.63 66.74 73.45 82.75 78.81 75.10 7191 48.07 47.54 67.33 46.19 84.94 43.49 56.26
BART E-Ext (L) | 92.15 62.31 72.84 79.99 80.52 78.86 71.78 50.91 48.83 68.18 47.19 86.04 56.89 59.67
BART ED-Ext (L) | 92.50 58.81 72.11 80.33 80.30 78.57 71.10 54.74 47.13 66.05 47.00 86.15 54.66 59.29
BART ED-Gen (L) | 78.72 63.18 69.22 79.39 72.72 56.09 69.89 44.04 43.64 53.79 38.44 7217 45.84 49.65
ELECTRA (L) | 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa (L) 92.67 59.32 72.52 81.34 80.88 78.82 71.59 55.02 48.18 64.66 52.42 86.65 54.98 60.32
Multi-Task Learning
T5 E-Ext (B) 90.76, 061 6169231 68.95.156 77.58 041 78.63 168 7684, 105 757413 | 4725 608 4893 347 66.70 175 5223551 85.09.061 534208 58.94.305
T5 E-Ext (L) 9274935 60504085 70.50008 79.14.060 81284120 7844, 55 77104064 | 58.68.505 53.071 160 69.66 33 5504 508 86.53.075 5528046 63.04.53)
T5 ED-Ext (B) 91.03,0.46 60.73;273 68.8011093 78.10 041 79.66,008 77.19.050 75.92,117 | 48.67 318 49.06,350 67.46,047 50.66,500 8549058 54.05.300 59.23,212
T5 ED-Gen (B) | 91.29,066 66.37 037 7399051 8275000 78.58_ 23 7541031 78.06,015 | 51.13.506 48.99,145 68.65,13 47.09 000 85.84.000 4523174 57.82.15
BART E-Ext (L) |9242,02; 61.83 s 7098 155 80.12,013 82.024150 7913027 7775 003 | 58.32,7.41  50.064153 69.62,144 55027585 86.79.075 59.83,201 63.27,360
BART ED-Ext (L) | 93.06,056 58.72 009 70.80_13 80.11 20 81.78 145 79.11.055 7726016 | 60.19. 545 4897151 6747140 5324.601 86.75.060 56.22.156
BART ED-Gen (L) | 88.58 955 60.18. 300 7521500 8338300 7988716 7541103 7811525 | 55071105 4991627 63.69,000 46.75,531 80.94, 577 48.11 907
ELECTRA (L) | 9327 12 60.59.035 72.96_33; 8203 (5 83.104511 7916035 78.52_ 19 | 62.56. 715 50.29,049 71.50. 454 54.60,650 87.14.091 56.88 105 63.83. 364
RoBERTa (L) 93361060 60.15:083 7140 112 80.56 75 82214133 79.50.06s 77.864007 | 64.79977 51494331 68.69.405 53.68,126 8631 31 57.221921 63.705338

Table 10: Three readers trained by single and multi task learning and evaluated on in-domain and out-domain
datasets by F1 Score. Inference length for all readers is 512.

Model ‘ In-domain Datasets ‘ Out-domain Datasets

‘ SQuAD NewsQA  TQA SQA HQA NQ Avg. ‘ DROP RACE BioASQ TbQA RE DuoRC Avg.

Single Task Learning
TS5 E-Ext (B) 90.20 69.93 66.26 74.56 77.38 76.44 75.80 41.36 45.63 66.64 54.34 84.48 55.93 58.06
T5 E-Ext (L) 92.47 7222 70.43 77.10 80.69 79.08 78.67 53.14 52.06 71.26 61.07 85.78 58.72 63.67
TS5 ED-Ext (B) | 90.71 70.43 68.48 76.01 78.94 77.80 77.06 45.86 46.18 67.93 55.07 84.91 55.19 59.19
T5 ED-Gen (B) | 90.75 71.64 79.02 86.09 79.87 76.72 80.68 48.08 48.89 67.36 60.42 84.94 60.83 61.75
BART E-Ext (L) | 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32
BART ED-Ext (L) | 92.51 58.68 72.55 80.94 80.71 78.63 77.34 54.73 47.64 66.15 46.18 86.15 54.39 59.21
BART ED-Gen (L) | 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 53.51
ELECTRA (L) | 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa (L) 92.64 59.95 72.97 81.62 81.21 78.95 77.89 55.88 47.72 64.47 52.31 86.69 55.75 60.47

Multi-Task Learning
TSE-Ext(B) | 908106  70.73,080 66734047 74.96,040 7902161 77.641100 76.65.085 | 47.99 665 4922 550 67.59.005 60.18,551 85.09 04 59.24.53 61.55,54

TSE-Ext(L) | 92.84,047 7305005 70865043 77301020 81.881110 79774000 7930:06s | 59104505 54014105 7113 015 64.63.356 86.53.075 6121040 66.104043
TSED-Ext(B) | 9112404 71784135 6693 15 76.03.012 80234120 78.11i05 77381040 | 49.691555 49.641545 6845.05 60.50454 8549.05 57.41,000 6186106
TSED-Gen (B) | 914106 7127 3: 7965065 8621012 7970 o1: 77.10.055 8089021 | 51204510 49.66,07 68.72,15 63.02,500 85.84.000 62.94,51; 6356,
BART E-Ext(L) | 9246027 7211 g0 7224 o5 7653 o556 82044145 79405011 7903005 | 5822665 50404155 7072415 5629500 8679075 6195060 6406571
BART ED-Ext (L) | 93.07:05  58.67 001 7147 105 80.66 o5 82.141145 79324060 77551001 | 60404567 51324565 6748155 53344716 86.75:000 56794210 6268 547
BART ED-Gen (L) | - 88.63.055 689157 7491710 825256 80.53.75 757841020 78.55:531 | 552041008 50.04,65 6378.510 5481070 8094, 41, 5847 05 60.54,70;
ELECTRA (L) | 9327 410 60.59,035 7296 555 8203 05 83.00,051 79064058 7852 010 | 62.564715 5029040 71.50,.51 54.60.65 87.14.001 56.88,105 6383 50
ROBERTa (L) | 93.41,077  59.56 030 7223 g71 8098 o1 82374116 79.55.060 78.02013 | 64471550 518lu000 69.15,068 53.68,157 8631 a6 56.06,0a 6358 51

Table 11: Three readers trained by single and multi task learning and evaluated on in-domain and out-domain
datasets by F1 Score. Inference length for all readers is 1024, except for ELECTRA is 512.

M ‘ In-domain Datasets ‘ Out-of-domain Datasets
odel
‘ SQUAD  NewsQA TQA SQA HQA NQ Avg. ‘ DROP RACE BioASQ  TbQA RE DuoRC Avg.
Single Task Learning
TS5 E-Ext (B) 90.20 70.14 72.67 79.89 77.37 77.31 77.93 41.36 45.63 66.64 55.17 84.48 58.62 58.65
T5 E-Ext (L) 92.47 72.63 76.09 83.24 80.67 80.00 80.85 53.14 52.06 71.26 61.92 85.78 62.80 64.49
T5 ED-Ext (B) 90.71 70.80 74.16 81.32 78.98 78.68 79.11 45.86 46.18 67.93 55.74 84.91 5933 59.99
T5 ED-Gen (B) | 90.75 71.65 79.61 86.21 79.89 78.04 81.02 48.08 48.89 67.36 60.30 84.94 61.35 61.82
BART E-Ext (L) | 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32
BART ED-Ext (L) | 92.51 58.68 72.55 80.94 80.71 78.63 7134 54.73 47.64 66.15 46.18 86.15 54.39 59.21
BART ED-Gen (L) | 78.75 66.20 67.81 78.89 73.22 56.58 70.24 44.22 43.70 55.59 45.11 76.83 55.63 5351
ELECTRA (L) | 93.39 60.23 76.31 82.54 80.99 78.78 78.71 55.43 49.80 66.96 47.80 86.23 54.90 60.19
RoBERTa (L) 92.64 59.95 72.97 81.62 81.21 78.95 77.89 55.88 47.72 64.47 5231 86.69 55.75 60.47

Multi-Task Learning
T5 E-Ext (B) 90814061 7092075 74221155 8042.0535 79.03,166 78.57.126 7899106 | 47.99 663 49.22,350 67.59.005 60.52,535 85.09.061 61.44, 05,

TSEExt(L) | 928405 73.51.0ss 77371195 82.89 45 81.92.155 80741074 81.55.070 | 59100505 54014105 7113 15 6490,00 8653107 6501455 66.78:50
TSED-Ext(B) | 91.12,04 71.95.1,5 7550415 81.82.05 80.25, 5 7893.025 79.93,0x | 49.69.555 49.64,545 684505 61331550 8549058 61.22,15 6264, 20
TSED-Gen (L) | 914106 7129 445 80.014040 8646.025 79.70 10 78.09:005 81164014 | 5120051 49.665077 68.72.145 62.90.560 8584000 6376154 6368, s
BART E-Ext (L) | 9246,00 7211 000 7224 gss 7653 056 8204145 7940.01 79131005 | 58220665 5040.155 7072415 5629500 86.79.075 619505 6406457
BART ED-Ext (L) | 93.07,055 58.67 001 7147 105 80.66 gos 8204145 7932000 77.55,021 | 604056 51.32,50 67.48,155 5334716 86.75.060 5679040 62.68,54
BART ED-Gen (L) | 88.63 055 68.91,5m 7491 710 82.52.565 80.53,731 75.78.1020 7855551 | 552051005 50.04,031 63.78,510 54.81,070 80.94..11 584755 60.54,70;
ELECTRA (L) | 9327 (15 60.590s55 7296 555 8203 g5 8310451 79.06.035 7852 (19 | 62.56:715 50294049 7150, 45 54.60.650 87.14.001 56.88;105 63.83 56
ROBERTa (L) | 9341,077 59.56 050 7223 on 8098 45 8237116 79.55.060 78.02.015 | 6447550 5181400 695,065 53.68,15 8631 o35 56.06 035 63.58.51

Table 12: Three readers trained by single and multi task learning and evaluated on in-domain and out-domain
datasets by F1 Score. Inference length for T5 readers is full length, for BART is 1024, and for ELECTRA is 512.
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‘ In-domain Datasets ‘ Out-of-domain Datasets

Model
‘ SQUAD  NewsQA TQA SQA HQA NQ Avg. ‘ DROP RACE BioASQ  TbQA RE DuoRC Avg.
Single Task Learning
T5 E-Ext (B) 90.20 70.14 72.67 79.89 77.37 77.31 77.93 41.36 45.63 66.64 55.17 84.48 58.62 58.65
T5 ED-Ext (B) | 90.71 70.80 74.16 81.32 78.98 78.68 79.11 45.86 46.18 67.93 5574 84.91 59.33 59.99
T5 ED-Gen (B) 90.75 71.65 79.61 86.21 79.89 78.04 81.02 48.08 48.89 67.36 60.30 84.94 61.35 61.82
BART E-Ext (L) | 92.19 72.20 73.12 77.19 80.61 79.29 79.10 51.57 48.82 68.83 51.29 86.04 61.35 61.32
BART ED-Ext 9251 58.68 72.55 80.94 80.71 78.63 77.34 54.73 47.64 66.15 46.18 86.15 5439 59.21
BART ED-Gen (L) | 78.75 66.20 67.81 78.89 73.22 56.58 70.24 4422 43.70 55.59 45.11 76.83 55.63 53.51
Multi-Task Learning
T5 E-Ext (B) 9081061 7092078 74221155 8042053 79.03,166 78.57. 126 7899106 | 47.99 663 49.224350 67.59,005 60.52,535 85.09.061 614455 61.98,333
TSED-Ext (B) | 9112041 71.95.115 75.50,131 81.82,050 80.25,157 7893.025 79.93.052 | 49.69. 353 49.64 345 6845.05 613355 8549.055 612215 62.64.905
TSED-Gen (L) | 9141066 71.29 035 80.0l040 86.46.025 79.70 019 78.09:005 81.161014 | 51.204310  49.66,077 68.721135 6290260 85.84.000 63761241 63.68,16
BART E-Ext (L) | 92.46,027 72.11 09 72.24 55 76.53 66 82.04,143 7940.011 7913003 | 58.22.665 50404155 70.72,189 5629500 86.79.075 61.95.060 64.06.274
BART ED-Ext (L) | 93.07,056 58.67 001 7147 105 80.66 (25 82.14,143 79.32.060 77.55;021 | 6040 567 51.321 365 6748 133 5334716 86.75.060 56.79i240 62.68.547
BART ED-Gen (L) | 88.63, 955 6891 271 74.91,719 82.52.56; 80.53,731 75781920 78.55:531 | 552051095 50.04,651 63.78.519 5481970 80.94.411 5847 551 60.54. 703

Table 13: Comparison of readers based on the same PrLLMs by F1 Score. For three TS5 readers, we use the T5-base
model, for three BART readers, we use the BART-large model. Avg. means the Macro Average of in/out-domain
datasets. Inference length for TS5 is full length of context, for ELECTRA is 512 and for BART and RoBERTa is
1024.
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Test ‘ In-domain Datasets ‘ Out-domain Datasets

Model R
\ Train SQUAD NewsQA TQA SQA HQA NQ | DROP RACE BioASQ TbQA RE  DuoRC

Single Task Learning
SQUAD 90.20 6337 6375 3097 6753 6228 | 3603 4563 6638 5477 8448 57.08
NewsQA 84.54 70.14 6399 4232 6155 6350 | 2348 4407 6213 5025 7759  58.62
TS E-Ext (B) TQA 69.68 4683 7267 6040 5433 5449 | 2428 37.15 6007 4261 7583 4772
SQA 60.75 4049 6837 79.89 4421 49.84 | 2368 3002 5593 3928 7526 4336
HOQA 83.30 59.19  61.67 48.18 7737 6235 | 39.04 4051  63.68  40.15 84.07 5531
NQ 83.87 60.81  65.64 5224 64.60 7731 | 4136 4399 6664 5517 82.58  52.88
SQUAD 92.47 6533 6797 3273 7100 6497 | 5201 50.13  68.66  53.03 8578 614l
NewsQA 87.38 7263 69.34 4383 6656 69.02 | 3172 4972 6597 5551 7875  62.80
TS E-Bxt (L) TQA 74.97 5027 7609 6326 5726 5868 | 4009 3855 6595 5234 8101 5521
SQA 7247 4812 7357 8324 5350 S57.17 | 4157 3553 6607 5264 81.63  52.05
HQA 86.88 6242 66.16 4647 80.67 67.13 | 4743 4510 6827 5137 8489  56.80
NQ 86.73 64.62 7032 5409 6854 80.00 | 53.14 5206 7126 6192 8435 6043
SQuAD 92.47 6533 6797 3273 7100 6497 | 5201 50.13  68.66 5303 8578 614l
NewsQA 87.38 7263 69.34 4383 6656 69.02 | 3172 4972 6597 5551 7875  62.80
TSED-ExB) | TQA 74.97 5027 7609 6326 5726 5868 | 40.09 3855 6595 5234 8101 5521
SQA 72.47 4812 7357 8324 5350 S57.17 | 4157 3553 6607  52.64 81.63  52.05
HQA 86.88 6242 66.16 4647 80.67 67.13 | 4743 4510 6827 5137 8489  56.80
NQ 86.73 64.62 7032 5409 6854 80.00 | 53.14 5206 7126 6192 8435 6043
SQUAD 90.75 6051  69.56 24.11 6857 57.19 | 4331 4889 6596 4675 8494 6031
NewsQA 85.75 71.65 6970 43.16 63.61 6296 | 2537 4597  62.80  53.82 7737 6135
TSED-Gen(B) | TQA 7433 4926 7961 57.14 5875 55.18 | 33.84 4238 5694 5116 80.52  52.69
SQA 70.62 4466 7803 8621 57.19 5292 | 3532 3533 5976 53.66 79.54  49.23
HQA 86.24 6025 7057 5123 79.89 6233 | 4494 4638 6693  42.65 8456  59.60
NQ 85.46 61.80  72.08 57.55 6771 78.04 | 4808 4585 6736  60.30 84.06  58.42
SQUAD 92.19 6230  60.86 3552 69.60 6294 | 5131 4882  68.83 4939 8604 5831
NewsQA 85.04 7220 62.86 41.17 6181 6584 | 3199 4882 6198 4929 7730  61.35
BARTE-Ext (L) | TQA 68.36 4338 7312 5553 5927 55.01 | 3779 36.16 5390 3798 80.07  49.51
SQA 50.74 3148 6674 77.19 4065 4353 | 2215 2390 5376 3638 6648  37.12
HQA 8221 5246 56.53 3495 80.61 6258 | 4430 39.60 5940 3374 8546  52.60
NQ 83.12 5944 6212 49.19 6273 7929 | 51.57 4323 6477 5129 8313  54.63
SQUAD 9251 5370  62.64 4185 67.69 60.82 | 5473 47.64  66.15 4618 8615 54.39
NewsQA 86.15 58.68 6229 4698 64.09 66.00 | 3191 4552 6070  44.82 7872  54.09
BARTED-Ext (L) | TQA 69.82 3840 7255 61.02 6105 54.10 | 3463 3636 5434 3935 8128 4643
SQA 57.26 3200 69.35 8094 41.82 4562 | 28.54 2518 5150  41.09 7098  38.88
HQA 83.29 4966 6318 4046 8071 6352 | 4791 3856 5978  34.60 8432  52.04
NQ 83.86 5035 6406 5634 6253 78.63 | 5241 4425 6559 4593 8443  49.44
SQUAD 7875 5402 4869 2233 S57.19 5790 | 4409 4133  47.04 3542 7068 4579
NewsQA 78.65 6620 5802 3631 5791 6110 | 2836 4370 5371 4511 7217  55.63
BART ED-Gen (L) | TQA 58.98 3922 67.81 5390 5481 4673 | 3285 3374 4662 3997 64.89 4547
SQA 4051 2833 6542 78.89 37.05 36.12 | 2345 2242 4671 3943 5223 3824
HQA 7475 5041 5656 4090 7322 57.83 | 4422 3731 5559 2996 7683  50.62
NQ 61.09 39.05 3821 3348 4359 5658 | 4027 3201 5124 3663 5946  33.69
SQUAD 92.64 5476 6590 4576 7135 5943 | 5251 47.13 6447 5231 8669 5575
NewsQA 86.50 59.95  63.01 48.02 6699 6729 | 3352 4726 6005 4510 78.08  54.27
RoBERTa(L) | TQA 73.63 4105 7297 5116 6244 5576 | 4440 3927 5492 4272 8232  49.89
SQA 53.59 2957 7035 81.62 4203 47.06 | 23.04 2370 5418  39.69 7113 36.06
HQA 85.10 5055  65.06 4431 8121 63.88 | 5174 3686 6244 3749 8507  54.02
NQ 85.25 4949 6448 5723 6747 7895 | 5588 4772 6377 4467 8410  50.00
SQUAD 9339 5542 6592 4656 68.69 6892 | 5511 4980 6696 4657 8623  54.90
NewsQA 86.33 6023 6513 4939 6397 68.03 | 3074 4645 6486 4679 7821 5378
ELECTRA L) | TQA 69.75 4020 7631 6527 58.87 5595 | 4221 3746 5994 4154 80.56  49.24
SQA 52.17 2821 7139 8254 4481 4328 | 3668 2247 5835 4276 69.54  39.16
HQA 84.43 5123 65.83 5025 8099 64.89 | 4891 3824 6577 3653 8386  50.50
NQ 85.45 5081  66.65 62.88 64.00 7878 | 5543 4729 6639  47.80 8343 5115

Multi-Task Learning
TS5 E-Ext (B) Multi 90.81 7092 7422 8042 79.03 7857 | 4799 4922 6759 6052 85.09 61.44
TS E-Ext (L) Multi 92.84 7351 7737 8289 8192 80.74 | 59.10 5401 7113 6490 8653  65.01
TSED-Ext (B) | Multi 91.12 7195 7550 81.82 8025 7893 | 49.69 49.64 6845 6133 8549 61.22
T5ED-Gen (B) | Multi 91.41 7129 80.01 8646 7970 78.09 | 5120 49.66 6872 6290 8584 63.76
BART E-Ext (L) | Multi 92.46 7211 7224 7653 8204 7940 | 5822 5040 7072 5629 8679  61.95
BART ED-Ext (L) | Multi 93.07 58.67 7147 80.66 82.14 7932 | 6040 5132 6748 5334 8675 5679
BART ED-Gen (L) | Multi 88.63 6891 7491 8252 8053 7578 | 5520 5004  63.78 5481 8094 5847

ROBERTa (L) | 93.41 59.56 7223 8098 8237 7955 6447 | 5181 69.15  53.68 8631 56.06

ELECTRA (L) | Multi 93.27 6059 7296 8203 83.10 79.16 | 62.56 5029 7150 5460 87.14  56.88

Table 14: Evaluation by F1 score. TQA: TriviaQA; SQA:SearchQA; HQA:HotpotQA; NQ: NaturalQuestions;
TbQA:TextbookQA; RE:RelationExtraction. For inference length, TS5 use Full length, BART and RoBERTa use
1024 and ELECTRA use 512.
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