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Abstract

The reliance of deep learning algorithms on large scale datasets represents a significant challenge when learning from low
resource sign language datasets. This challenge is compounded when we consider that, for a model to be effective in the real
world, it must not only learn the variations of a given sign, but also learn to be invariant to the person signing. In this paper, we
first illustrate the performance gap between signer-independent and signer-dependent models on Irish Sign Language manual
hand shape data. We then evaluate the effect of transfer learning, with different levels of fine-tuning, on the generalisation of
signer independent models, and show the effects of different input representations, namely variations in image data and pose
estimation. We go on to investigate the sensitivity of current pose estimation models in order to establish their limitations and
areas in need of improvement. The results show that accurate pose estimation outperforms raw RGB image data, even when
relying on pre-trained image models. Following on from this, we investigate image texture as a potential contributing factor
to the gap in performance between signer-dependent and signer-independent models using counterfactual testing images and
discuss potential ramifications for low-resource sign languages.

Keywords: Sign language recognition, Transfer learning, Irish Sign Language, Low-resource languages

1. Introduction tion |3| describes our approach to evaluating transfer
learning and input representations for low-resource
sign language recognition; Section 4] describes the de-
tails of the dataset used in our experiments, models and
evaluation techniques. We present and discuss the re-
sults of these experiments in Section[5] Finally, we con-
clude with a summary of our findings and a discussion
on potential future work in Section [6]

Modern deep learning techniques rely heavily on large
scale datasets. However this becomes a significantly
limiting factor when such large datasets are unavail-
able or difficult to obtain, as is the case with many
low-resource sign languages. This limitation is not
unique to sign language recognition, with several tech-
niques being proposed to perform image classification
within this resource-constrained setting (Larochelle et
al., 2008: [Sharif Razavian et al, 2014). Sign language 2. Related Work

recognition adds an additional nuance to this challenge ~ One of the over-arching issues associated with sign
as models not only need to generalise to different vari- language recognition research is a distinct lack of
ations of hand signs but also to new signers. Training  large-scale, diverse datasets. In particular, less preva-
models on a low number of signers causes them to learn lent languages such as ISL and Italian sign language
the characteristics of particular individuals leading to  (LIS) whose users number approximately just 40,000-

significant levels of bias in the models and limited ap- 60,000 (Ceeson et al., 2013} [Branchini and Mantovan,
plicability in real-world settings (Kim et al., 2016). 2020) experience this to a greater degree.

In this work, we first quantify the disparity in per- Due to the low-resource nature of these types of
formance between signer independent and signer- datasets, it is imperative that we consider the poten-

dependent models for Irish Sign Language (ISL) letter  tial influences this has on real-world recognition sce-
hand shape recognition. We show the effects of differ-  narios. While differences in camera quality, lighting,
ent input representations on the performance of signer-  and scenery are all valid and important considerations,
independent models trained on low-resource data and it is also important that our methods properly account
the tendency of raw image data to lead to significant  for diversity of signer. We must therefore also be con-

bias, even when transfer learning is used. The experi-  siderate of gender, skin-tone, fluency, age, disability,
ments show that pose estimation alone may lead to in-  etc (Bragg et al., 2019).
creased performance in this scenario. To study the effi-  The lack of signer variety that comes with low-resource

cacy of pose estimation models, the effects of colouron  datasets is a recurring challenge in the literature.
existing pose estimation models are shown. Finally, we  Specifically, there are many sign languages where data
experiment with different levels of fine-tuning to assess  is extremely limited, both in availability and size. For

whether this provides a regularisation effect. example, (Nakjai and Katanyukul, 2019; [Fagiani et al.,
The remainder of this paper is structured as follows. 2015} [Oliveira et al., 2017a;; |Oliveira et al., 2017c) ex-
Section [2] describes current works studying the area  periment on datasets with fewer than 12 signers. This
of low resource datasets and signer-independent mod-  inevitably leads to bias in the models trained on these
els along with the preprocessing techniques used; Sec-  datasets. For example, the dataset used in our experi-
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ments consist of just 6 signers (3 male, 3 female), all
of whom are of similar skin-tone, dressed in dark long
sleeves, and are recorded in extremely similar studio
conditions. It is therefore clear that we need to ad-
dress both preprocessing and training in a different way
compared with scenarios where signers and data are in
abundance.

In terms of preprocessing, several works have utilised
raw images as input or a combination of images
and auxillary features. Both Openpose (Cao et al.,
1812) pose estimation and RGB values were used
by (De Coster et al., 2021]), optical flow and RGB val-
ues were combined by (Shi et al., 2018]), data augmen-
tation on raw images was performed by (Pigou et al.,
2016)) including rotation, stretching and shifting, while
(Oliverra et al., 2017c|) experiment with raw images
alone. Other works take a more domain specific ap-
proach, using several image processing and feature se-
lection techniques. (Nakjai and Katanyukul, 2019) per-
form thresholding and calculate the maximum contour
area of each image before classification, (Fagiani et al.,
2015)) obtain the centroid coordinates of the hands with
respect to the face, (Oyedotun and Khashman, 2017)
convert images to binary and apply noise filtering while
(Oliverra et al., 2017a; |Oliveira et al., 2017c)) also ex-
periment with PCA and image blurring. (Fowley and
Ventresque, 2021)) create synthetic data for ISL finger-
spelling recognition, achieving high performance in a
signer independent setting. Though the authors are ap-
proaching a similar problem to that we aim to tackle,
we instead focus on a less language specific-approach
that does not require synthetic dataset design. Signer
independent models are also addressed by (Kim et al.,
2016) using neural network adaptation, however this
assumes that a small number of examples from the test
signer is available which we assume will be unavailable
in our work.

While other works have studied signer independent
models (Fowley and Ventresque, 2021; Kim et al.,
2016), we do so explicitly in a low resource context.
We experiment with the most effective preprocessing
techniques in the literature and determine their con-
tribution to classification performance in this context.
Specifically, we examine the generalisability of dif-
ferent input representations in isolation, determine the
most useful method of fine-tuning for pre-trained mod-
els, and discuss the impact of these experimental design
choices on the overall classification performance.

3. Adapting to Low Resource Sign
Languages

For languages where availability of data is limited, i.e.
low-resource languages, training deep learning algo-
rithms can be challenging due to their dependence on
large-scale datasets (LeCun et al., 2015)). Furthermore,
as with other tasks that utilise bio-metric data, perfor-
mance of subject-independent models tends to be dis-
tinctly lower than subject-dependent models (Kim et
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al., 2016; [Lockhart and Weiss, 2014). This negative
effect on performance tends to be amplified for low
resource datasets as the number of subjects contained
within them will naturally be lower.

3.1.

An obvious choice for learning with limited image data
is transfer learning (Sharif Razavian et al., 2014) due
to the wide availability of pre-trained image models.
However, the degree of fine-tuning needed to exploit
the features learned from pre-trained models for sign
language recognition is less obvious. In this paper we
investigate the effect of fine-tuning an entire network
on this domain-specific data versus fine-tuning only the
final classifier. We assess whether it is necessary to ad-
just the parameters in the earlier layers of the network
in order to adapt to this task or whether the potential
regularising effects of simply training the final layers
are more beneficial. We also assess this specifically
in the signer-independent scenario compared to the
signer-dependent scenario to determine whether signer-
independent models benefit more from this regularising
effect.

Transfer Learning

3.2.

Though transfer learning alone vastly improves the
ability of a network to learn image features with a small
amount of data, there remains a question as to whether
these are, in fact, the features the network should be
learning in order to generalise to the largest number
of signers possible. We seek to directly compare two
of the most common input representations for sign-
language recognition: raw image data with minimal
pre-processing and pose estimation keypoints. Below
is a discussion on the motivation for this comparison
for low-resource sign language data.

Input Representation

3.2.1. Raw Image Data

The use of raw image data in deep learning models has
become ubiquitous in computer vision. Raw color val-
ues, for instance, are vital in order to identify varying
objects and textures. However, for low resource com-
puter vision, there is a question as to whether color fea-
tures are desirable to learn directly from the data re-
lating to the task at hand. The role of incorrect white-
balance, for instance, has been found to cause errors in
deep learning models due to bias in datasets towards
white-balanced data (Afifi and Brown, 2019). When
we keep in mind that low-resource datasets have a low
number of signers, the potential for the particular char-
acteristics of signers such as skin tone, dress colour etc.
to bias datasets is undeniable. We will show the sen-
sitivity of sign language recognition models to colour
by determining the disparity in performance between
greyscale and RGB images.

3.2.2. Pose Estimation
Given the potential dependence of low resource com-
puter vision models on less than optimal features, we



seek to determine whether extracted pose estimation
could potentially outperform raw images (even with
pre-trained models) and generalise better to signers not
in the training data. Though many state-of-the-art pose
estimation tools also use raw images as training data,
they are typically trained on far more data than could
ever be collected in a low-resource scenario. We hy-
pothesise that using a highly accurate pose estimation
model’s output as sign language recognition model’s
input will allow for better generalisation, as the sign
language recognition model is forced to learn only from
the features that matter the most, i.e. the coordinates
of body parts and their relationship to each other, with
minimal dependence on the personal characteristics of
the signer.

4. Experimental Setup

4.1. Dataset

The following section describes the dataset used for ex-
periments. We describe the different dataset configura-
tions we created to assess the affect of certain attributes
on the overall performance and generalisation.

4.1.1. ISL Hand-shape Dataset

The dataset of Irish Sign Language Hand-shapes (ISL-
HS) was originally curated by (Oliveira et al., 2017b)
and is publicly available for downloa(ﬂ

The dataset consists of 468 RGB24 videos of 3 male
and 3 female signers performing the 26 ISL alpha-
bet hand-shapes. Each hand-shape was recorded three
times at 30 frames per second (fps) and resolution of
640 x 480 pixels. The curators of this dataset have also
extracted the frames from these videos, converted them
to greyscale and removed background features using a
pixel-value threshold. The resulting frames include just
the single hand and forearm used to perform the hand-
shape. These hand-shapes can be further distinguished
into two subcategories:

1. Static hand-shapes: All English letters with the
exception of ‘J’, ‘X’ and ‘Z’ which include no dy-
namic movement in their action. These signs were
performed using an arcing motion (vertical to hor-
izontal) to better simulate real-world gestural per-
mutations. There are on average 2291 grey-scale
frames per hand-shape.

2. Dynamic hand-shapes: English letters ‘J’, ‘X’
and ‘Z’ which were performed only using the mo-
tion of the gesture itself thus resulting in relatively
fewer frames on average (1809 frames per hand-
shape) with ‘X’ having the least of all (1443).

4.1.2. Data Configurations

In order to ascertain the disparity in performance of
signer-dependent versus signer-independent models,
we create the following two dataset configurations.

'https://github.com/marlondcu/ISL
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1. Signer-dependent dataset: Three trials of each

letter are signed by each person in the dataset. The
first trial is used for training, the second for vali-
dation and third for testing. This ensures that data
from all signers present is available for training,
validation and testing, while ensuring the frames
used in each set are different. We also assess
the effect of image colour composition on perfor-
mance with the following variations.

(a) The greyscale frames provided by (Oliveira
et al., 2017b), see Figure[Ta]

(b) The RGB frames we extracted from the
videos provided by (Oliveira et al., 2017b),
see Figure[Tb] We noted that this process lead
to 143 fewer frames than the greyscale data
provided in the public dataset. This is seem-
ingly due to a small number of the original
videos being very slightly longer than those
provided in the public data.

. Signer-independent dataset: To keep the signers

in each set separate, data from Person I and 2 is
used for training, Person 3 and 4 is used for vali-
dation and Person 5 and 6 is used for testing. This
also ensures that a similar number of examples are
present in each set of this dataset as the signer-
dependent dataset. Next we perform pose esti-
mation on the signer-independent dataset to cre-
ate a third data configuration. This is to assess
the extent to which pose estimation can close the
gap in performance between signer-dependent and
signer-independent models. We use MediaPipe
Hands (Zhang et al., 2020). Where the detection
confidence surpasses a minimum threshold, we
plot the pose estimation co-ordinates in 2D, mod-
ifying the default pose estimation plots to prevent
landmarks from becoming visually overcrowded,
see Figure Where the pose estimation confi-
dence does not meet this minimum criteria, the
raw frame is simply used. The minimum detec-
tion confidence set for our experiments was 0.5.
We stress that though it is certainly possible to use
the pose estimation co-ordinates directly as input
features, this transformation into a 2D “image” al-
lows a direct comparison of the same model ar-
chitectures irrespective of the input and to hold all
other algorithmic features and hyper-parameters
constant. The following data configurations are
used:

(a) Greyscale frames provided by (Oliveira et al.,
20170)

(b) RBG frames of from the videos provided by
(Oliveira et al., 2017b). In the same way
as the signer-dependent dataset, this lead to
fewer RGB frames for each video than those
provided in the grey-scale dataset.

(c) Pose estimation images for greyscale frames.


https://github.com/marlondcu/ISL

(a) Greyscale.

(b) RGB.

(c) Pose estimation.

Figure 1: The letter U performed by Person 2 in Greyscale, RGB and the corresponding pose estimation.

(d) Pose estimation images for RGB frames.

4.2. Models

For all experiments the same deep architecture and hy-
perparameters are used. This was done in order to en-
sure that all but the desired aspects of the data or model
being tested were kept constant.

Table 1: Hyperparameters used across all VGG models.

Hyperparameter Value

Normalisation Standard for VGG16 ?
Image resizing (120, 160)

Optimiser Adam

Initial learning rate  0.0001

Batch size 64

Number of epochs 50

dhttps://pytorch.org/vision/
stable/models.htmll

4.2.1. VGG network

For this network, we used an ImageNet pre-trained
VGG network (Simonyan and Zisserman, 2014ﬂ An
additional layer with 4000 unit, with ReLU (Nair and!
Hinton, 2010) activation and Dropout (Srivastava et al.,
2014) of 0.5 was added along with and a classification
layer with 26 outputs.

4.2.2. Fine-tuning
Fine-tuning was performed in two ways for each
model:

1. The added layers of the network alone were fine-
tuned on the ISL training set.

The entire network, including pre-trained layers,
were fine-tuned.

This process was performed to determine whether a
regularisation effect could be achieved by excluding the
pre-trained layers from the fine-tuning process.

https://pytorch.org/hub/pytorch_
vision_vgg/
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5. Results

This section first details the results of signer indepen-
dent compared to signer dependent models in subsec-
tion[5.1] We then move on to compare raw images to
a pose estimation representation in subsection[5.2} Ad-
ditionally, we provide a discussion on our results and
further analysis in subsection

5.1.

We can see in Table [2] that there is a sizable dispar-
ity between signer-independent and signer-dependent
models, trained on greyscale images, even for a rela-
tively homogeneous dataset. It is reasonable to expect
that there would be an even larger gap in performance
between these models for signers with significantly dif-
ferent characteristics to those in this dataset, highlight-
ing the challenge with datasets of this size. One may
expect that this drop in performance is an indicator of
over-fitting however when we plot the validation accu-
racy over all 50 epochs in Figure 2| we can see that
these models never perform anywhere near as well as
their signer-dependent counterparts. This, once again,
highlights the tendency of these models to learn char-
acteristics of the training images not useful to gen-
eralisation. With respect to fine-tuning, interestingly,
signer-independent models gain slightly more benefit
from fine-tuning all layers in the network more than
the signer-dependent models.

This disparity in performance is not unique to sign-
language models with similar behaviour to be seen
in fields like activity recognition (Lockhart and
Weiss, 2014) and electroencephalography classifica-
tion (Zhang et al., 2019). The performance of the
signer-independent models shown here closely mirror
that achieved by other authors (Fagiani et al., 2015} Shi
et al., 2018)) - diverting from the higher performance
results achieved in the signer-dependent work of (Nak-
jai and Katanyukul, 2019; |(Oyedotun and Khashman,
201775 Oliverra et al., 2017a; |Oliveira et al., 2017c).

All this indicates that models trained on raw images
have a tendency to utilise signer-specific features when
classifying hand shapes. Of course, a larger number
of signers would likely help remedy this behaviour,
though for low-resource languages such as ISL, this
data tends not to be available. Therefore we con-

Signer-Independent Models
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Figure 2: Validation accuracy for the signer-dependent and signer-independent models trained on greyscale images
with only layers added to the pre-trained VGG network fine-tuned. Minimum and maximum values are labeled.

clude that signer-independent models using raw RGB
images have limited generalisability for these low re-
source scenarios, even when pre-trained image classifi-
cation models are used. This motivates a more gener-
alisable input representation.

Table 2: Signer-dependent versus signer independent
models on greyscale data. Added layers refers to mod-
els where only the layers added to the end of a pre-
trained network were fine-tuned. All layers refers to
models where all layers of a pre-trained model were
fine-tuned.

Type Fine-tuning F1-Score
. Added layers 0.885
Signer-Dependent Al layers 0.882
. Added layers 0.433
Signer-Independent Al layers 0.463

5.2. Raw Images vs. Pose Estimation

Table 3: Pre-trained VGG network’s performance on
signer-independent data.

Fine-tuning Input F1-score
Greyscale (~48% MP frames) 0.486
Added layers RGB 0.369
RGB (~99% MP frames) 0.545
Greyscale (~48% MP frames) 0.468
All layers RGB 0.399
RGB (~99% MP frames) 0.542
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For our main results in 3} we first look at the effect of
converting greyscale images to MediaPipe landmarks,
with roughly 48% of these images being successfully
converted. We can see that these pose-estimation fea-
tures increased the performance for greyscale images,
especially when pre-trained weights are kept fixed,
with this variation achieving a 4.8% increase over the
best performing signer-independent model in Table 2]
We also evaluated models trained on the corresponding
RGB frames. Neither models trained on raw RGB im-
ages exceed the performance of the best model trained
on greyscale images. Again, we can see in Figure 3]
that validation accuracy for raw RGB data remains in
this region of performance for the entire training pe-
riod. This, at first, seems surprising given that pre-
trained models are trained on colour images. However,
we hypothesise that this is caused by features that are
signer-specific, but irrelevant to the characteristics of a
given sign, being more successfully learned by these
models, leading to poor generalisation. This is de-
spite the fact that regularisation is used in the form of
Dropout in the second to last layer added to the VGG
network. This behaviour is actually exacerbated when
pre-trained weights are not fine-tuned. We can see that
fine-tuning all layers leads to slightly increased perfor-
mance for raw RGB images. In fact, we can see that
both raw greyscale and RGB images show that a sim-
ilar increase in performance can be gained from fine-
tuning all layers of the network. Interestingly, we do
not see such an increase when including pose images
generated from MediaPipe.

Finally, we look at the effect of converting RBG images
to MediaPipe pose estimation landmarks, with over
99% of images successfully converted. There is over
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Figure 3: Validation accuracy for raw RGB frames with fine-tuning on added layers and for raw RGB frames with

fine-tuning on all layers.

an 11% improvement compared to the next best mod-
els (greyscale images converted to MediaPipe, added
layers fine-tuned), a pronounced boost in performance.
It is fascinating that models trained on raw RGB im-
ages, in fact, come last in terms of performance. This
provides evidence that pose estimation with minimal
use of RGB images (less than 1% due to low pose es-
timation confidence) provides greater generalisation to
unseen signers than utilising RGB images for a low re-
source dataset. We also observe greater performance
when excluding pre-trained layers from fine-tuning.

5.3. Feature Analysis

We observed that some features had a significant effect
on the overall performance of both pose estimation and
sign recognition. We discuss some of our further anal-
ysis and observations below.

5.3.1. Pose Estimation

The effect of removing colour from images on pose es-
timation performance, even when using a popular pose
estimation model trained on a large amount of data,
illustrates the sensitivity of such models to colour in
images. Table [d] compares the number of successfully
converted greyscale images compared to RGB images.
Figures fa] and [4D] further break down this comparison
by letter and signer ID respectively.

Table 4: Results of the Mediapipe conversion on both
greyscale and RGB frames

Frame # Frames # Frames No. Frames % Frames
Type Available Converted Non-Converted Converted
Grey-scale 58,114 27,840 30,274 47.9
RGB 57,971 57,850 121 99.7
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On the face of it, this may not appear to be a prob-
lem, due to the fact that modern images are unlikely to
be in greyscale. However, the reliance on colour indi-
cates that performance could also be greatly affected by
lighting conditions and scenes not present in the train-
ing data. This type of behaviour has been observed in
other computer vision tasks (Afifi and Brown, 2019).
This should be taken into consideration if sign language
recognition systems rely on such models and might mo-
tivate other types of feature pre-processing before pose
estimation such as optical flow.

5.3.2. Signer-specific Characteristics

The large gap between signer-dependent and signer-
independent models in the case of raw RGB images is
challenging as it can be difficult to determine which
of the characteristics specific to each signer is being
learned when trained on low-resource data. Models
pre-trained on ImageNet have indeed been found to
be biased towards image texture over shapes of objects
within images (Geirhos et al., 2018)), which in this case
translates to the texture of the clothes being worn by the
signer and their skin texture. To evaluate whether this
could be a large contributing factor, we create counter-
factual examples of the signer-independent RGB test
set described in [£.1.2] by applying a Gaussian blur to
images to smooth the image texture. We do, in fact,
see a decrease in performance for the model which was
trained on raw RGB images which suggests that this is
a contributing factor. This feature alone, however, is
clearly just a single aspect that influences this gap in
performance and further evaluations are needed to as-
certain other contributing factors.
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Figure 4: The number of frames converted to pose estimation for both hand-shapes and signers between the grey-

scale and RGB images.

Table 5: VGG model with a Gaussian blur applied to
test set

Fine-tuning Input Fl-score
Added layers RGB 0.359
All layers RGB 0.384

6. Conclusion

In this work we have illustrated the large per-
formance disparity between signer-independent and
signer-dependent models in Irish Sign Language. We
show that using accurate pose estimation as input when
training on low-resource sign language datasets in-
creases recognition performance. We have investigated
the improvements needed for pose estimation models
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to become more effective and have used counterfactual
examples to show the effect of texture on models us-
ing raw RGB data. It should be noted that these im-
ages account for just a small subset of ISL manual hand
shapes. We also recognise that the resolution of the im-
ages used in these experiments and their distinct lack
of background noise is often an overly optimistic rep-
resentation of real-world finger spelling. However, this
work is merely the beginning of a line of research that
will perform more extensive analysis on the effects of
input representation, the ways that this representation
can be made more robust and the role of the network
architecture in improving signer-independent generali-
sation.
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