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Abstract

The paper describes the Flexica team’s sub-
mission to the SIGMORPHON 2022 Shared
Task 1 Part 1: Typologically Diverse Morpho-
logical Inflection. Our team submitted a non-
neural system that extracted transformation pat-
terns from alignments between a lemma and
inflected forms. For each inflection category,
we chose a pattern based on its abstractness
score. The system outperformed the non-neural
baseline, the extracted patterns covered a sub-
stantial part of possible inflections. However,
we discovered that such score that does not ac-
count for all possible combinations of string
segments as well as morphosyntactic features
is not sufficient for a certain proportion of in-
flection cases.

1 Introduction

Previous years’ shared tasks on morphological rein-
flection demonstrated superior performance across
a variety of typologically diverse languages, es-
pecially in high-resource setting (Cotterell et al.,
2016, 2017, 2018; McCarthy et al., 2019; Vylo-
mova et al., 2020; Pimentel et al., 2021). Still, in
low-resource setting and languages with limited
resources in which paradigms were only partially
represented the accuracy numbers were much less
optimistic (Vylomova et al., 2020; Pimentel et al.,
2021). Recently, Goldman et al. (2022) experi-
mented with the 2020 shared task data splitting
it by lemmas and demonstrated the 30% accuracy
drop on average among top-3 top ranked systems in
that year’s shared task. This motivated organizers
of this year’s shared task to focus on various as-
pects of morphological generalisation and conduct
controlled experiments to evaluate systems’ ability
to predict inflected forms for unseen lemmas and
morphosyntactic feature combinations.

In this paper, we describe a modification of our
earlier model, Flexica (Scherbakov, 2020), that has
been participated in the 2020 shared task (Vylo-
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mova et al., 2020).! We provide a summary of
its modified version where we attempted to im-
prove its pattern-based generalization ability. We
added ability to reuse word forms observed at dif-
ferent combinations of grammatical tags. Also,
we improved scoring mechanism to enable better
fitting to rule-and-exception hierarchy which typi-
cally presents in a language, and to reduce noise in
pattern selection.

2 Task Description

This year’s shared task setting substantially dif-
fered from previous years in controlling the lemma
and feature sets. More specifically, the training, de-
velopment, and tests sets for the shared task were
designed to assess various kinds of generalization.
The shared task organizers considered four scenar-
ios of overlap between the training and test sets
: 1) both test lemma and feature set are observed
in the training (but separately); 2) a test lemma
is observed in the training set whereas the feature
combination is entirely novel; 3) a feature combi-
nation is observed in the training set but the lemma
is novel; 4) both a test pair’s lemma and feature
set are entirely novel and were not presented in the
training set.

In addition, the training data sizes vary from
700 training instances in the small (low-resource)
setting to 7,000 instance in the large (high-resource)
setting. For some under-resourced languages the
large setting contained fewer samples.

3 Data

3.1 Data Format

All shared task data are in UTF-8 and follow Uni-
Morph annotation schema (Sylak-Glassman, 2016).
Training and developments samples consist of a

"nttps://github.com/
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lemma, an inflected (target) form, and its mor-
phosyntactic features (tags). Test samples omit
the target form.

3.2 Languages

The shared task covered morphological paradigms
for 33 typologically diverse languages represent-
ing 11 language families: Arabic (Modern Stan-
dard), Assamese, Braj, Chukchi, Eastern Armenian,
Evenki, Georgian, Gothic, Gujarati, Hebrew, Hun-
garian, Itelmen, Karelian, Kazakh, Ket, Khalkha
Mongolian, Kholosi, Korean, Lamahalot, Low Ger-
man, Ludic, Magahi, Middle Low German, Old
English, Old High German, Old Norse, Polish, Po-
mak, Slovak, Turkish, Upper Sorbian, Veps, and
Xibe.

4 Baseline Systems

As in previous years’ shared tasks, two types of
baseline systems were provided: neural and non-
neural. The non-neural baseline aligns extracts
suffixes and prefixes based on lemma—form align-
ments, later associating them with corresponding
morpholosyntatic features (Cotterell et al., 2017,
2018). As the neural baseline, organizers provided
a character-level adaptation of transformer (Wu
etal., 2021).

5 Evaluation

The systems submitted to the shared task were eval-
uated in terms of test accuracy between predicted
and gold forms. Besides the overall accuracy, four
categories were distinguished in the analytic data
provided by organizers. Depending on whether a
test sample lemma has been seen in the training set,
and whether an exact tag combination ("feature")
has been seen in the training set, a test sample
might fall into one of the following four categories:
"Lemma Overlap", "Feature Overlap"”, "Neither
Overlap", or "Both Overlap".

6 System Description

6.1 Training

We implemented a non-neural system (Flexica)
where an inflected form is inferred from string-to-
string transformation patterns observed in training
samples. We produce multiple transformation pat-
terns per each training sample. Those patterns dif-
fer in their level of abstractness and also depend
on string-to-string alignments between a lemma

and an inflected form. Later on, we also distin-
guish two types of patterns, namely a string pat-
tern abd a transformation pattern. A string pattern
is a string which may consist of concrete charac-
ters and wildcards, e.g. “u(:)nd” pattern for the
word “understand”. A transformation pattern is a
triple (lemma_pattern,tag — form_pattern)
which is produced from (lemma,tag — form)
training samples by replacing certain character sub-
sequences with wildcards. lemma_pattern and
form_pattern share the same wildcards within a
transformation pattern.

In order to produce transformation patterns for
a given training sample we follow the stages:

1. Find the longest common substring for a
lemma and its form. Introduce a wild-
card (character subsequence) (1) and replace
the matching part by the wildcard symbol.
For example, an inflection (“observe”,
V;3;SG — “observes”) produces a
pattern (“(1)”, V;3;SG — “(1)s”). If
there are multiple longest matches, we pro-
duce as many transformation pattern vari-
ants. For example, (“bring”, V;PST
— "brang”) will result in two pat-
terns at this stage, (“(1)ing”, V;PST
— “(Dang”) and (“bri(1)”, V;PST
— “bra(1)”). We recursively apply the
above procedure to the remaining concrete
subsequences, finding longest matches and
adding new wildcards until no more match-
ing fragments are available.> While doing so,
we never nest wildcards into each other. We
also reject lemma patterns where two or more
wildcards would be immediately adjacent, be-
cause it would lead to excessive ambiguity in
further matching.

Note: although the process described above
may seem to be proliferating, just a single
pattern is produced for a vast majority of in-
flection samples, as they usually have a single
longest match. A notable exception are lan-
guages with templatic morphology.

2. Produce patterns with various character
refinements. At this stage, we partially
“surrender” longest matches found at the
alignment stage. We replace some characters

“We apply an upper threshold for the number of wildcards
specifying its as a hyperparameter (usually 2 or 3), which does
not affect prediction accuracy.
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in wildcard groups back to their concrete
values that were observed in a training sample.
Once a character is reverted to its concrete
value, a wildcard that contained it may be split
into two wildcard groups or even disappear.
The latter happens whenever a wildcard
standing for an empty substring is produced.
We do such for 0,1..CCL characters se-
lected in all possible combinations, where
CCL is a limit of the concrete characters.’
Transformation patterns such as (“(2)e”,
V;3;8G6 — “(es”), NONOW
V;3;8G6 = “(v(2)s”), (Mo(W)v(2)e”,
V;3;8G6G — “o@v@es”) constitute a
non-exhaustive list of refinements for the
pattern @), V;3;86 = “()s”)
produced for an (“observe”, V;3;SG
— “observe”) sample.

We collect all unique patterns produced over
a training corpus, finally constructing a trie
database model in which data records are as
follows: | — {s — {t,c,d}} where [ is a
lemma pattern; s is an inflected form pattern;
t is a grammatical tag combination; c is a num-
ber of training samples matching the transfor-
mation ([,t} — s); d is a number of samples
where lemma and tags match [ and ¢, respec-
tively, but the inflected form doesn’t match
s.

6.2 Inference

In order to predict an infected form for a
(lemma, tag) pair, our system finds all the trans-
formation patterns that match the lemma (given
any non-empty substring substitution for each wild-
card group). Then it picks the transformation that
yields the highest score. The score is hierarchical
which means that a less significant score factor is
considered if and only if all the factors of greater
significance are in a tie. Here are the list of score
factors, ordered by decreasing significance:

1. Penalty for the pattern abstractness, measured
as count of characters substituted into wild-
card groups. We include an extra “pad” char-
acter per group while calculating that sum;

2. Penalty for tag sets’ mismatch (which is fixed
per each mismatching tag) plus (optionally) a

*In our officially reported results CC'L is taken to be 3,
because computations are too numerous for greater values.
However, our observations suggest that this value is not suffi-
cient, and increasing it enables better performance.

fixed “lump” amount for any two mismatching
tag sets;*

3. Representative premium (optional), which is
a fixed bonus assigned to transformations that
are the most abstract while being correct repre-
sentations of at least one training sample. This
score component serves as a counterweight
to the pattern abstractness score component
described above. It may be seen as an adapta-
tion of the idea of the most general paradigm
(Hulden et al., 2014);,

4. A (squashed) frequency f of transforma-
tion pattern occurrence in a training set for
the given tag combination, minus double
(squashed) frequency observed for alternative
transformations for the same lemma pattern
and tag combination.

7 Results

Tables 1 and 2 present accuracy across all the
shared task’s languages measured for the small
and large settings, respectively. For Flexica, the
column “B” stands for the basic option (without
representative bonus), while the column “R” stands
for the option with representative bonus. The offi-
cial submission accuracy numbers are shown in the
“Sb.” column. Also, accuracy results for the non-
neural and neural baselines (“BL") and best results
across neural systems submitted to the shared task
“neural”/*“max’), are presented for the reference.

We also explored some modifications to pattern
scoring, but they did not affect performance much.
In particular, we tried the following options:

* Increased penalty for impure patterns where
different transformations were learnt for a
given lemma pattern. The change resulted in
approx. 1% accuracy increase for Middle Low
German, although a nearly equal decrease hap-
pened in Old High German;

* We added an extra bonus for the exact match
of grammatical tag combinations. Surpris-
ingly, due to a notable sparseness of such
combinations in the dataset we used, that

*We also considered using a variable tag-to-tag mismatch
penalty which was proportional to a negative log-likelihood
of tag interchangeability, but our experiments demonstrated
lower accuracy for that option.
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neural
max | BL

non-neural
Flexica BL
B | R | Av. | Sb.

lang

neural
max | BL

non-neural
Flexica BL
B | R | Av. | Sb.

lang

ang |41 |41 | 8 | 37 | 49 | 54 | 33
ara | 31|31 70 | 32| 65| 66 | 22
asm | 33 (33| 47 | 30 | 54 | 57 | 26
bra | 55|56 | 82 | 58 | 55 | 60 | 57
ckt | 2121|2910 | 6 21 | 13
evn | 3 | 3 |43 | 3 | 29| 34 |25
gml |27 |27 ] 92 | 26 | 42 | 56 | 22
goh |49 |50 | 73 | 40 | 56 | 60 | 42
got [ 38|38 | 68 | 18 | 60 | 61 | 38
guj |47 |47 ] 61 | 47 | 39 | 66 | 48
heb | 19 |19 | 31 | 19 | 39 | 40 | 14
hsb |13 13| 52 | 13 | 5 83 | 10
hsi |16 | 16 | 27 | 13 | O 9% | 20
hun |26 | 26| 58 | 25 | 65 | 61 | 23
hye |40 |40 | 61 | 39 | 64 | 86 | 38
itl 30130 53 | 31 | 34| 34 | 28
kat |36 |36 | 63 | 34 | 60 | 59 | 43
kaz |40 |40 | 52 | 34 | 55 | 65 | 42
ket |21 |21 | 42 | 18 | 10 | 35 | 32
khk |24 |24 | 46 | 22 | 41 | 41 | 28
kor |32 |31 |57 |30 |23 | 50 | 28
kel |23 ]123| 31 |23 | 16 | 45 5
lud | 88 |87 | 91 | 88 | 46 | 87 | 88
mag | 58 | 58 | 79 | 58 | 51 | 64 | 55
nds |29 (29| 62 | 31 | 25| 50 | 16
non |35 (35| 71 |39 55| 52 | 30
pol |40 40| 67 | 43 | 59 | 78 | 30
poma | 29 | 29 | 49 | 29 | 51 | 50 | 22
sjo | 55155190 | 65|58 | 76 | 67
slk |44 |44 | 81 | 51 | 61 | 84 | 38
slp 717 |51 8 |15 30 5
tar | 18 | 18 | 25 | 18 | 34 | 85 | 16
vep |20 | 20| 41 | 20 | 35 | 42 | 21

Table 1: Accuracy (in %) measured in the small training
condition. B - basic options; R - with a bonus score
for “representative” patters; Av. - theoretical limit at
a perfect pattern choice; Sb. - submitted version; BL -
baseline; max - best among submitted systems

change produced no significant difference, ex-
cept for a minor accuracy increase for Gothic
and Georgian.

* Tag combinations in some UniMorph inflec-
tion data files may denote multiple options.
For instance, multiple tags corresponding to
the same category may be included into a

ang |46 |47 | 91 | 41 | 61 | 64 | 43
ara |37 37|79 |37 |78 | 75 | 26
asm |35 35|63 |34 |76 | 75 | 31
evn 31370 3 |57 57 |25
got |44 |44 | 80 | 21 | 72 | 73 | 46
heb |29 (29 | 45 | 28 | 48 | 51 | 20
hun |34 |34 |75 | 32 | 77 | 74 | 37
hye |43 (42| 66 | 42 | 69 | 93 | 44
kat |32 32| 75 |45 | 87 | 83 | 45
kaz |40 |40 | 52 | 34 | 55 | 65 | 42
khk |31 |31 | 50 | 23|49 | 49 | 38
kor | 33|34 | 63 |33 |5 | 54 | 32
kel |36 |37 | 53 | 37 | 27 | 64 5
lud |83 |78 |93 |8 |52 | 8 | 89
non |41 |41 | 8 | 47 | 84 | 87 37
pol [ 50|50 | 84 | 52|69 | 90 | 43
poma | 34 | 34| 65 | 33 | 63 | 61 | 24
slkk |49 49 | 87 | 58 | 70 | 93 | 47
tur |36 36| 53 | 35|39 | 94 | 36
vep |30 30| 60 | 30 | 48 | 62 | 32

Table 2: Accuracy (in %) measured in the large training
condition. B - basic options; R - with a bonus score
for “representative” patters; Av. - theoretical limit at
a perfect pattern choice; Sb. - submitted version; BL -
baseline; max - best among submitted systems

single combination, in which any of them is
meant to be equally suitable for producing a
given inflected form. In order to meet that an
alternative tagging format, we tried a modified
tag mismatch penalty. Namely, an absence of
a target tag in a learnt tag combination is in-
terpreted as “one unit” of tag mismatch. This
option yields approximately the same perfor-
mance as the previous one described.

As exact tag combinations were significantly
sparse in training and test sets, the majority of mis-
predictions can be attributed to failures to inference
tag interchangeability. Indeed, in most cases of mis-
prediction a correct transformation was available
in the learnt model, but it deemed to be irrelevant
due to low “similarity” between the learnt tag com-
bination and the target one. The “Av.” column in
Tables 1 and 2 shows the percentage of test sam-
ples where a correct transformation was available
for the model. It tells the upper bound of accuracy
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that our system would have if the pattern selection
mechanism worked perfectly.

8 Discussion

The system we explored in this paper relies on two
simple hypotheses. According to the first one, a
choice of inflection paradigm in most cases may
be associated with some distinctive subsequence
of characters in a lemma. The second hypothesis
claims existence of a hierarchy of rules and ex-
ceptions in most languages, where each exception
domain is fenced by a more concrete character pat-
tern than one associated with an embracing general
inflection rule. We note that our current approach
only admits a very restrictive meaning for such
a “concreteness”, namely, the number of concrete
characters in a template. Due to this substantial
limitation, we only consider an approximate split
of rule-specific domains.

While the analysis of predictions suggests this
approach is generally reasonable, the distinguish-
ing of relevant patterns from noise is challenging.
Certain information-based criteria such as entropy,
cross-entropy and the like did not work, mainly due
to specific patterns being sparsely distributed in the
dataset (especially small ones), so that majority
of highly concrete patterns peaked the distribution
of inflection transformations. On the other hand,
many relevant generic patterns demonstrate rather
disperse distributions due to numerous exceptions.
As a result, it is not possible to easily link the en-
tropy to the relevancy. We intentionally avoided
imposing extra biases toward “known” common
language rules in order to focus our exploration
on the system’s learning capability itself. Unfor-
tunately, we have not yet found universal enough
criteria to assess pattern relevance against inflec-
tion rules, so in this aspect the system should be
considered as a work in progress. We attempted
“promotion” of one maximally abstract pattern per
training sample, that match the given sample and
does not contradict any other observed samples.
The underlying hypothesis was that every inflection
paradigm is probably justified by a single “cause”,
where a “cause” in our restricted context stands
for a distinct character pattern for a lemma. There-
fore, it should be reasonable to restrict prediction
selection to those transformation patterns which
were proven to be correctly representing at least
one training sample in the most generic way. How-
ever, our experiments disproved such an approach,

because, as we already said above, relevance crite-
ria based on distribution purity are fundamentally
flawed.

Our system operates at character level without
considering more generic classes of sub-patterns.
However, it did not seem to be a significant issue
in most languages. In other words, patterns needed
for correct inflection have usually been successfully
learnt in most languages (still, non necessarily with
the same grammatical tag). However, there are nu-
merous languages where correct patterns cannot be
found for a large fraction of examples; this severely
jeopardised the respective prediction rates. Besides
the “genuinely” high morphological complexity of
languages such as Veps, there also occurred some
“technical” reasons for the pattern match missing,
such as non-standardized scripting of spoken lan-
guages (Pomak, Evenki). It is our system’s lack
of a mechanism for the affix concatenation which
was responsible for inferior results observed in ag-
glutinative languages like Turkish of Hungarian,
especially in their low-resource settings.

In the 2022 shared task, we faced a new chal-
lenge of extreme sparsity of grammatical tag com-
binations. A separate model per learnt tag com-
bination does not work in such an environment.
We allowed using transformation patterns observed
at grammatical tag combinations different from a
requested one, with a score penalty proportional
to the number of different “atomic” tags (mor-
phosyntatic features). From the inflection perspec-
tive, many grammatical tags are not as significant
for a correct prediction as others are. This inspired
us to use variable penalty per tag substitutions,
which was proportional to a log-likelihood of ob-
serving the same transformation regardless whether
a given tag is present, as measured over all learn
transformation patterns, without considering other
tags. For instance, in Polish, the animacy does not
affect inflection paradigms much, and ignoring it
would significantly increase the average accuracy
of inference. However, to our surprise, according to
the likelihood, some case tag substitutions occurred
to be better candidates for being ignored. For in-
stance, the dative and the instrumental cases pro-
duce same forms for a majority of Polish feminine
nouns, therefore our predictor frequently chooses
INS — DAT substitution, which is usually incor-
rect beyond the feminitive (instead of correct ANTM
— INAN). Thus, such Bayesian approach, that con-
siders tags independently, even failed to outperform
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a simplistic technique based on the “edit distance”
between tag combinations. We did not yet consider
more complex sub-combinations of tags, still the
results definitely suggest one to do that way.

An excessive number of generated patterns is
another challenge which yet needs to be addressed.
Currently, our system unrolls all the combinations
of concrete characters in lemma patterns until ulti-
mately discriminative ones are found over a train-
ing set. This leads to huge proliferation of noisy
patterns of no extra value. In practice, this fact
prevents the system from considering longer sub-
sequences of concrete characters where those sub-
sequences could really help to delimit paradigm
domains.

Summarizing our impressions from the exper-
iments, we suggest that the system is primarily
interesting as it prototypes a simple but efficient ap-
proach to the conversion of a sequence-to-sequence
task into a “plain” classification task. In this view,
further enhancements of the system may be broken
into two separate directions. The first one concerns
the pattern matching mechanism which would be-
come less consuming, more generalized, based on
incrementally collected “cues” (and, in such a way,
borrowing features of the “soft attention”). An-
other direction, which is less specific, would be
an exploration of better classification models to be
used. Also, the principally optimistic results ob-
tained in our experiments inspire us to attempt ex-
panding the proposed multi-pattern approach into
other sequence-to-sequence tasks beyond the re-
inflection one.

9 Conclusion

We developed a non-neural system for morpholog-
ical inflection. We submitted it to the SIGMOR-
PHON 2022 shared task 1, part 1. The system
outperformed the non-neural baseline, still we dis-
covered a fundamental insufficiency of simplistic
approaches that rely on observed probabilities of
particular transformation patterns.
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