SIGMORPHON–UniMorph 2022 Shared Task 0: Generalization and Typologically Diverse Morphological Inflection

Jordan Kodner¹ Salam Khalifa¹ Khuyagbaatar Batsuren² Hossep Dolatian¹ **Ryan Cotterell³** Faruk Akkus⁴ Antonios Anastasopoulos⁵ Taras Andrushko⁶ Aryaman Arora⁷ Nona Atanelov Gábor Bella⁸ Elena Budianskaya⁹ Yustinus Ghanggo Ate^{10,11} Omer Goldman¹² David Guriel¹² Simon Guriel Silvia Guriel-Agiashvili Witold Kieraś¹³ Andrew Krizhanovsky¹⁴ Natalia Krizhanovsky¹⁴ Igor Marchenko⁶ Magdalena Markowska¹ Polina Mashkovtseva⁶ Maria Nepomniashchaya⁶ Daria Rodionova⁶ Karina Sheifer^{6,9} Alexandra Serova⁶ Anastasia Yemelina⁶ Jeremiah Young¹⁵ Ekaterina Vylomova¹⁶ ¹Stony Brook University ²National University of Mongolia ³ETH Zürich ⁴University of Massachusetts-Amherst ⁵George Mason University ⁶Higher School of Economics ⁷Georgetown University ⁸University of Trento ⁹Institute of Linguistics, Russian Academy of Sciences ¹⁰STKIP Weetebula ¹¹Australian National University ¹²Bar-Ilan University ¹³Institute of Computer Science, Polish Academy of Sciences ¹⁴Karelian Research Centre of the Russian Academy of Sciences ¹⁵University of Oregon ¹⁶University of Melbourne jordan.kodner@stonybrook.edu vylomovae@unimelb.edu.au

Abstract

The 2022 SIGMORPHON–UniMorph shared task on large scale morphological inflection generation included a wide range of typologically diverse languages: 33 languages from 11 top-level language families: Arabic (Modern Standard), Assamese, Braj, Chukchi, Eastern Armenian, Evenki, Georgian, Gothic, Gujarati, Hebrew, Hungarian, Itelmen, Karelian, Kazakh, Ket, Khalkha Mongolian, Kholosi, Korean, Lamahalot, Low German, Ludic, Magahi, Middle Low German, Old English, Old High German, Old Norse, Polish, Pomak, Slovak, Turkish, Upper Sorbian, Veps, and Xibe. We emphasize generalization along different dimensions this year by evaluating test items with unseen lemmas and unseen features separately under small and large training conditions. Across the six submitted systems and two baselines, the prediction of inflections with unseen features proved challenging, with average performance decreased substantially from last year. This was true even for languages for which the forms were in principle predictable, which suggests that further work is needed in designing systems that capture the various types of generalization required for the world's languages.¹

1 Introduction

Generalization, the ability to extend patterns from known to unknown items, is a critical part of morphological competence. Morphological systems, both human and machine, must be able to recognize and produce novel items as new words are encountered. Every learner, every speaker, and any system intended for general use constantly encounters new words, both new coinings and existing words that are new to them.

The centrality of generalization is emphasized by the morphological sparsity that pervades language use. Inflected forms, lemmas, and inflectional categories are all sparsely distributed and highly skewed in any input sample, following longtailed, often Zipfian, frequency distributions (Chan, 2008). This has serious implications for learning, since the overwhelming majority of lemmas, if present at all in the input, will only be attested in a fraction of their possible forms. This is true even for a language like English, with only five inflected forms per verb and two per noun, and the problem only grows as a language's paradigms increase in size and complexity.

The test paradigm that the SIGMORPHON inflection shared tasks have employed since 2016 (Cotterell et al., 2016, 2017, 2018; McCarthy et al., 2019; Vylomova et al., 2020; Pimentel et al., 2021)

¹Data, evaluation scripts, and predictions are available at: https://github.com/sigmorphon/2022InflectionST

provides one test bed for generalization in morphological learning systems. The shared tasks leverage the UniMorph Database (Kirov et al., 2018; Mc-Carthy et al., 2020; Batsuren et al., 2022), which provides data sets for an ever-growing range of typologically diverse morphologies.

In principle, there are at least two kinds of generalization which can be evaluated in our UniMorphbased test paradigm: generalization to unseen lemmas, and generalization to unseen inflectional categories (i.e., unseen feature sets). Contrasting seen and unseen lemmas and categories yields four different test conditions: 1) prediction of the form of a novel combination of a seen lemma and seen feature set, 2) prediction given a seen lemma but novel feature set, 3) prediction given a seen feature set but novel lemma, and 4) the prediction of a form when both the lemma and feature set are novel.

This year's shared task include 33 languages from 11 top-level language families with a particular focus on Eastern Europe, Central Asia, and Siberia: Arabic (Modern Standard), Assamese, Braj, Chukchi, Eastern Armenian, Evenki, Georgian, Gothic, Gujarati, Hebrew, Hungarian, Itelmen, Karelian, Kazakh, Ket, Khalkha Mongolian, Kholosi, Korean, Lamahalot, Low German, Ludic, Magahi, Middle Low German, Old English, Old High German, Old Norse, Polish, Pomak, Slovak, Turkish, Upper Sorbian, Veps, and Xibe. Many of these were included last year, but we hoped that running them again would provide further insights into generalization.

1.1 Motivation for Generalization Task

Generalization to the unseen is a challenging task, the feasibility of which should be sensitive to the organization of a given language's morphology. For a language with rampant unpredictable stem mutations or suppletion, it may not always be possible to generalize patterns accurately to unseen lemmas, but one would hope that a system could generalize well for a language with invariant stems or highly irregular stem changes. Similarly, it may not be possible for a system to generalize to unseen categories for a highly fusional language where forms cannot be predicted from their component features, but it should be possible for highly agglutinative languages where roughly each feature corresponds to its own morphological operation or for a language with a high degree of syncretism in which the expression of an unseen inflectional category is

Feature Set	guakamole
N;ACC;SG	?
N;ACC;PL	guakamoleleri
N;DAT;SG	guakamoleye
N;DAT;PL	?
N;ACC;PL;PSS3S	guakamolelerini
n;dat;pl;pss3s	guakamolelerine

Table 1: A partial paradigm for Turkish *guakamole* 'guacamole,' illustrating inference for novel feature sets in an agglutinative language.

likely the same as one that has already been learned. This was shown to be feasible in practice for Nen, a Papuan language with a large degree of syncretism (Muradoglu et al., 2020).

Previous iterations of this shared task have looked at some aspects of this problem, but none made this a focus. Last year's task (Pimentel et al., 2021) reported separate performance numbers for seen and unseen lemmas, but did not control for seen/unseen feature overlap. The 2018 task (Cotterell et al., 2018), sampled train and test sets with frequency weighting from Wikipedia, which made for a more naturalistic sparse sampling setting, but did not control for either kind overlap. In preparation for this year's iteration, we found that the proportion of test items with seen feature sets varied greatly across languages in the 2018 task and may have been a major driver of performance.

For example, the best performing system on Turkish, consistently scored just under the proportion of test items with seen feature sets at each training size (Table 2), even though Turkish is a agglutinative language for which generalization to unseen categories should be possible. Table 1 provides a partial noun paradigm from Turkish UniMorph which illustrates why this type of generalization should be possible. Say the feature sets N;ACC;SG and N;DAT;PL were never attested in training, but the lemma *guakamole* was. It should be possible to deduce their forms anyway – this would be a fair homework problem for an undergraduate course.

Looking at the table, *-ler-* corresponds to PL here, \emptyset to SG, and *-in-* to PSS3S. Both forms with ACC end in *-i*, while DAT seems to correspond to *-ye* in the singular and *-e* in the plural. From this alone, one can correctly infer that N;DAT;PL should be *guakamole-ler-e*, while N;ACC;SG should be *guakamole-yi* or maybe *guakamole-i*. The former is indeed correct: *y*-insertion is well attested elsewhere in the language and would certainly be present with other lemmas and with other feature sets containing ACC. While unseen Turkish inflectional categories are not completely predictable, since they also contain some morphological eccentricities which obscure predictability, "could an undergraduate solve it?" is a good rule of thumb for whether generalization to unseen feature sets is a feasible task.

Performance was divergent on closely related languages whose test sets' feature set overlaps differed. Turkish and Azeri are closely related Oghuz Turkic languages with some mutual intelligibility (Salehi and Neysani, 2017) and very similar morphological paradigms, nevertheless, scores for Azeri during the 2018 task were much higher than for Turkish. Table 3 shows feature overlap and performance for Azeri. It is tempting to propose that Azeri scores were higher than Turkish scores because overlap proportions were higher.

Taken together, this suggests two things. First, the proportion of test items with feature sets attested in training is an uncontrolled factor in the data that could be driving performance in a way that obscures language-internal factors. Second, this could suggest that the systems of the day were not able to generalize across inflectional categories,² but a more focused evaluation would be needed to investigate these hypotheses. We perform such an investigation this year.

Turkish	Overlap%	Best Acc%	Δ
Low	39.600	39.500	-0.1
Medium	94.100	90.700	-3.4
High	100	98.500	-1.5

Table 2: Comparison of best 2018 system accuracy on Turkish low-, medium-, and high-train conditions and percent of test items with feature sets attested during training.

Azeri	Overlap%	Best Acc%	Δ
Low	71.000	65.000	-6.0
Medium	99.000	96.000	-3.0
High	100	100	0

Table 3: Comparison of best 2018 system accuracy on Azeri low-, medium-, and high-train conditions and percent of test items with feature sets attested during training.

2 Task Description

From the participants' perspective, this task was organized very similarly to previous iterations. Participants were asked to design supervised learning systems which could predict an inflected form given a lemma and a morphological feature set corresponding to an inflectional category or cell in a morphological paradigm. They were provided with a small, and data permitting, large training set, as well as a development set and test set for each language. The train and dev sets consisted of (lemma, inflected, feature set) triples, while the inflected forms were held out from the test set.

Data was made available to participants in two phases. In the first phase, train and dev sets were provided, with the expectation that model development and tuning be carried out primarily on these languages. In the second phase, test sets were released for all languages during the evaluation phase. Teams produced predicted inflected forms for each test set. They were given the opportunity to submit two sets of predictions from two separate models, one trained on the small training sets and one trained on the large training sets, with the latter being a super set of the former.

3 Description of Languages

This section provides brief descriptions of each language that was newly included or newly updated for this year's task. Further information about returning languages can be found in previous years' papers (Vylomova et al., 2020; Pimentel et al., 2021). Table 4 summarizes the list of languages and provides citation and attribution information.

3.1 Armenian (Indo-European)

Armenian is an independent branch of the Indo-European family. Its oldest attested form is Old Armenian or Classical Armenian (~5th century). It has two modern standardized varieties: Western Armenian and **Eastern Armenian**. Western Armenian is a diasporic language that developed in the Ottoman Empire, while Eastern Armenian is the official language of the Republic of Armenia (Dum-Tragut, 2009). Inflection is largely agglutinative, with some residues of Indo-European fusional morphology. For verb morphology, verbs fall into different conjugation classes. Most tenses are formed via periphrasis via a non-finite converb and a finite auxiliary, though some tenses are synthetic. Nouns

²Recent work has shown that lemma overlap is also an important predictor of performance (Goldman et al., 2022), but an analysis of 2018 results suggests that feature set overlap is an even better predictor (see Appendix A).

am Khalifa ar Habash er Goldman tinus Ghanggo Ate ina Sheifer ria Ryskina ina Sheifer ya Ganieva tvey Plugaryov ssep Dolatian uyagbaatar Batsuren emiah Young uyagbaatar Batsuren emiah Young uyagbaatar Batsuren aman Arora 'aman Arora 'aman Arora jyaagbaatar Batsuren 'aman Arora iyaagbaatar Batsuren 'aman Arora iyaagbaatar Batsuren 'aman Arora iyaagbaatar Batsuren aman Arora iyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś rcin Woliński
tinus Ghanggo Ate ina Sheifer ria Ryskina ina Sheifer ya Ganieva tvey Plugaryov ssep Dolatian uyagbaatar Batsuren emiah Young uyagbaatar Batsuren emiah Young uyagbaatar Batsuren emiah Young uyagbaatar Batsuren aman Arora yaman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren in Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren in Arora hit Raj, Ritesh Kumar old Kieraś
ina Sheifer ria Ryskina ina Sheifer ya Ganieva tvey Plugaryov ssep Dolatian uyagbaatar Batsuren emiah Young uyagbaatar Batsuren emiah Young uyagbaatar Batsuren aman Arora yama Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren
ria Ryskina ina Sheifer ya Ganieva tvey Plugaryov ssep Dolatian uyagbaatar Batsuren emiah Young uyagbaatar Batsuren emiah Young uyagbaatar Batsuren aman Arora yaman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren in Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
ya Ganieva tvey Plugaryov ssep Dolatian uyagbaatar Batsuren emiah Young uyagbaatar Batsuren emiah Young uyagbaatar Batsuren aman Arora esh Kumar aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora uyagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
ssep Dolatian uyagbaatar Batsuren emiah Young uyagbaatar Batsuren emiah Young uyagbaatar Batsuren yaman Arora esh Kumar aman Arora uyaagbaatar Batsuren aman Arora uyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
emiah Young uyagbaatar Batsuren emiah Young uyagbaatar Batsuren aman Arora eam Ratan esh Kumar aman Arora uyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
emiah Young uyagbaatar Batsuren emiah Young uyagbaatar Batsuren aman Arora eam Ratan esh Kumar aman Arora uyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
ayagbaatar Batsuren emiah Young ayagbaatar Batsuren aman Arora esh Kumar aman Arora ayaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
emiah Young uyagbaatar Batsuren aman Arora am Ratan esh Kumar aman Arora uyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
emiah Young uyagbaatar Batsuren aman Arora am Ratan esh Kumar aman Arora uyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
emiah Young uyagbaatar Batsuren aman Arora am Ratan esh Kumar aman Arora uyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
ayagbaatar Batsuren raman Arora ram Ratan esh Kumar raman Arora ayaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
aman Arora am Ratan esh Kumar aman Arora uyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
aman Arora am Ratan esh Kumar aman Arora uyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
esh Kumar yaman Arora uyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
uyaagbaatar Batsuren aman Arora hit Raj, Ritesh Kumar old Kieraś
aman Arora hit Raj, Ritesh Kumar old Kieraś
hit Raj, Ritesh Kumar old Kieraś
van Karahodja
onios Anastasopoulos
old Kieraś as Andrushko
r Marchenko vid Guriel
on Guriel via Guriel-Agiashvili
na Atanelov
ria Nepomniashchaya
ia Rodionova
astasia Yemelina
iyagbaatar Batsuren
na Klyachko
anor Chodroff 1yagbaatar Batsuren
er Goldman
ygu Ataman
it Ács 1yagbaatar Batsuren 00r Bella, Ryan Cotterell isto Kirov
lrew Krizhanovsky alia Krizhanovsky
abeth Salesky
na Budianskaya
ina Mashkovtseva xandra Serova

Table 4: Languages presented in this year's shared task

fall into different declension classes, based on the choice of plural and case suffixes.

3.2 Finno-Ugric (Uralic)

Finno-Ugric is a branch of Uralic, a language family with around 25 million native speakers spread between Northern Russia, Scandinavia, and Hungary. The majority of them are agglutinating and extensively use suffixes. They are also known for a relatively rich grammatical case system. Verbs are inflected for number, person, tense, and mood. Phonologically, these languages often present vowel harmony and palatalization.

Hungarian, with its 13 million native speakers, is the most widely spoken Uralic language. Hungarian is an agglutinative language with a rich set of affixes expressing derivation or inflection, such as in the verb. Another feature of Hungarian morphology, adding to its complexity from a computational perspective, is vowel harmony: the vowels of certain affixes adapt to those of the stem (Rounds, 2009). Compounding in Hungarian is frequent and productive, leading to further complexity in its morphological analysis (Kiefer and Nemeth, 2019).

Karelian and Ludic are two closely related Finnic varieties spoken in Russian and Finnish Karelia and the regions around Lakes Onega and Ladoga. The data for both languages, along with Veps returning from last year, has been collected as part of the VepKar project (Boyko et al., 2021) and includes multiple dialects. Typical of Finnic, these languages are highly agglutinative, present vowel harmony processes, and overtly express well over ten cases on nominals and adjectives. Ludic is often described as a dialect of Karelian, although it has certain unique features such as the presence of a reflexive conjugation (Novak et al., 2019) and the use of the full temporal paradigm of the conditional. It is seriously endangered, with about 150 remaining speakers.³

3.3 Georgian (Kartvelian)

Kartvelian, or South Caucasian, languages are primarily spoken in the South Caucasus with no demonstrable genetic relation to other languages in the region. Georgian, an official language of Georgia, has about four million speakers worldwide. Georgian morphology is mostly agglutinative. Nouns have number (singular/plural), but no grammatical gender. Its grammatical case system is relatively rich, having seven cases. Nouns are declined for number and case. Verbs exhibit polypersonal agreement (incorporating the number and the person of both subject and objects). In addition, verbs are divided into 4 classes: transitive, intransitive, indirect, and medial, and present many irregularities.

3.4 Germanic (Indo-European)

The Germanic family constitutes one of the primary branches of Indo-European. It in turn contains three sub-branches. The West Germanic sub-branch includes English, Dutch, and German, among others. The North Germanic sub-branch contains the Germanic languages of Scandinavia. The East Germanic sub-branch is extinct and contained Gothic. At a high level, Germanic morphology is similar to that of other Indo-European branches, but it does diverge in some key ways (Ringe, 2017). Germanic languages, particularly in the past, had an inherited three-way gender distinction, an inherited three-way number system, and overt inflectional case systems, all reduced to some degree from Indo-European. Nominals fall into several inflectional classes with different case/number expressions.⁴ The 2020 shared task revealed some major inconsistencies in the data (Vylomova et al., 2020). In this iteration, the data has been re-extracted and checked.

Gothic is an extinct East Germanic language. Nearly the entire extant Gothic corpus comes from a partial translation of the Christian Bible by bishop Wulfila. Gothic is in many ways more conservative than other Germanic languages. It lacks Umlaut, which is a type of vowel alternation on nouns and verbs present in the rest of the family, but it retains reduplicated perfects, and it sometimes uses the accusative as a vocative case. Data for Gothic was sourced from Wiktionary and contains both Gothic script and Latin transcriptions.

Old English, Old High German, and Old Norse were three closely related West and North Germanic languages and early attested ancestors of modern English, High German varieties, and liv-

³https://lyydi.net/

⁴Five of the six Germanic languages presented this year are historical. They no longer have living speakers, and their corpora are of a fixed size. Paradigms were initially extracted from Wiktionary. Given the highly skewed long-tailed distributions of inflected forms, lemmas, and inflected categories (Chan, 2008), which do not differ in historical corpora (Kodner, 2019), the large majority of potential inflected forms, even for known lemmas, are not attested in the historical record. As such, most of the forms in the full paradigms available on Wiktionary are generated and not actually attested. This is likely not a major concern for the purpose of this task, but the caveat must be expressed.

ing North Germanic languages today. Inflectional classes in these languages are often less transparent than in Gothic due to successive sound changes obscuring their basis.

Middle Low German was a collection of West Germanic dialects spoken along the southern North Sea coast. It was a major trade language, the lingua franca of the Hanseatic League during the European Medieval period. The language retains overt case distinctions on nominals, but it shows a greater degree of syncretism than earlier Germanic languages. This trend of increased syncretism extends to the verbal system as well (Lasch, 1914).

Low German is a collection of West Germanic varieties descended from Middle Low German occupying an intermediate space in a dialect continuum between Dutch and High German. Varieties exist in a state of diglossia, mostly with Standard German, a High German variety. Several million native speakers remain in the 21st century, though numbers are declining. Outside of Europe, Low German is spoken in some diaspora communities including Mennonite groups in the Americas.

3.5 Hebrew (Semitic)

The Semitic languages, a branch of the larger Afro-Asiatic family, are spoken by over 300 million people across North Africa and Southwest Asia. Hebrew is a Northwest Semitic language with around 5 million native speakers, spoken mainly in Israel. Typically of Semitic, Hebrew makes heavy use of templatic non-concatenative morphology (Coffin and Bolozky, 2005). Verbs are expressed through triliteral consonant roots which occupy slots in a template of vowels. Verbs occupy inflectional classes called binyanim in Hebrew. Person, number, and tense marking is indicated primarily with affixation. Both prefixation and suffixation are applied depending on the tense. Nouns and adjectives indicate gender and number through suffixation, sometimes with stem mutations. Verbs, nouns, and propositions may take possessive or pronominal object clitics. In the current shared task we introduce a vocalized version of Hebrew that has been recently added to the UniMorph.

3.6 Indic, or Indo-Aryan (Indo-European)

Indic is a branch of Indo-Iranian, itself a primary branch of Indo-European. The family has a long history, with a large attested corpus of Vedic and Classical Sanskrit. It currently has over 800 million speakers extending through all countries in South Asia. Morphologically conservative languages express a three-way gender distinction and case on nouns, tense, aspect, mood, number, and person on verbs. Inflectional morphology is primarily suffixing. Some languages possess overt formality distinctions on verbs.

Assamese is mainly spoken in the northeast Indian state of Assam, with over 20 million native speakers. While gender is not grammatically marked, Assamese presents a rich system of noun classifiers. The Assamese data has been extracted from the English edition of Wiktionary. **Gujarati** (Baxi et al., 2021) is spoken predominantly in the Indian state of Gujarat, with over 50 million native speakers. **Kholosi** is an under-documented Indo-Aryan language spoken in two villages (Kholus and Gotav) in Hormozgan Province, Iran. The data has been collected during field work (Arora and Etebari, 2021).

3.7 Ket (Yeniseian)

Yeniseian languages were historically spoken along the Yenisei River region of central Siberia. Ket, the only living member, is critically endangered, with only about 60 remaining speakers at any level of linguistic competence. The language presents mainly agglutinative morphology, with extensive use of suffixes, prefixes, and infixes. Although verbal conjugation and noun declension systems are well-developed, the boundaries between word classes are fuzzy (Verner, 1997). Noun classes differentiate between masculine and non-masculine in the singular, animate and inanimate in the plural. The grammatical case system contains between 8 and 10 cases depending on the analysis. Ket verbs express polypersonal agreement, with the case and number of all arguments reflected on the verb.

The data for Ket was sourced from a text collection compiled during the field work of the Laboratory for Computational Lexicography of the Moscow State University, that took place between 2004 and 2009. It contains word forms from twelve categories, seven of which (ADJ, NUM, ADV, INTJ, ADP, PART, CONJ) are invariable.

3.8 Khalkha Mongolian (Mongolic)

The Mongolic language family has 5.200 million active speakers of 14 language varieties, which are actively spoken in Mongolia, Russia, China, and Afghanistan. The Khalkha Mongolian is de facto the official national language of Mongolia and both the most widely spoken and most-known member of the Mongolic language family. Khalkha Mongolian is an agglutinative language with a rich set of suffixes, but no prefixes. It also expresses complex vowel harmony patterns (Jaimai et al., 2005).

3.9 Korean (Koreanic)

Korean, spoken by about 80 million people, is often described as a language isolate. However, the Jeju dialect, spoken on the southern island of Jeju is highly divergent and often considered its own language. The language expresses limited inflectional morphology on nominals. Verbs express valency, tense, aspect, mood, and various dimensions of formality through suffixation. The current dataset consists of mostly predicates, so the resulting lemmas are mainly verbs and a smaller number of adjectives.

3.10 Lamahalot (Austronesian)

Lamahalot, or Solor, is one of the Central-Malayo-Polynesian languages, a proposed branch in the Malayo-Polynesian within Austronesian. As of 2010, it had about 200,000 native speakers, primarily on the eastern part of Flores Island, and neighboring islands of Flores (Solor, Adonara, Lembata, and Alor). Nearby Papuan languages have had a significant influence on this language phonologically and syntactically (Nagaya, 2011; Arka, 2007; Klamer, 2002, 2009). The language has several dialects. We use data mainly from the Lewotobi dialect (Nagaya, 2011) spoken by about 6,000 people in Kecamatan Ile Bura, East Flores. Morphologically, Lamaholot is a nearly isolating language (each word typically has one morpheme) with a small inventory of affixes (mostly prefixes and a handful of suffixes) and clitics (mainly enclitics). This language has two salient morphological features, namely agreement and nominalization.

3.11 Slavic (Indo-European)

Slavic, another primary branch of Indo-European, contains approximately 20 languages, with half of them having over 1 million speakers. The languages are spoken in Central and Eastern Europe, the Balkans, and Russia. They are traditionally divided into three branches: East Slavic (incl. Belarusian, Russian, Rusyn, and Ukrainian), West Slavic (incl. Czech, Kashubian, Polish, Silesian, Slovak, and Upper and Lower Sorbian, among others), and South Slavic (incl. varieties of Bosnian-Croatian-Montenegrin-Serbian, varieties of Macedonian and Bulgarian including Pomak, and Slovenian).

Slavic morphology is generally typical of Indo-European, with several inflectional classes for both verbs and nouns, nominal inflection by case, number, and three genders. It elaborates Indo-European verbal inflectional paradigms marking aspect, tense, number, person, and sometimes gender.

Slovak (Mistrík, 1988), and Upper Sorbian are two closely related West Slavic languages. Masculine nouns additionally mark animacy, which is often described as a part of the gender system of these languages. The case systems of both languages are fairly similar, however in Slovak, vocative is usually syncretic with nominative. Upper Sorbian retains a dual number and has a greater variety of verbal past forms than other West Slavic languages. The Slovak data was obtained by automatic conversion of extensive inflectional dictionaries used for morphological analysis to the UniMorph scheme.⁵ The data for Upper Sorbian was combined from WMT and online grammars.⁶

Pomak is a South Slavic language, a dialect of Southeastern Bulgarian spoken in Greece and European Turkey. It has around 30,000 speakers as of 2021 but lacks standardized orthography (Jusúf Karahóğa et al., 2022). Bulgarian and Macedonian varieties are unusual among Slavic for having mostly lost case marking on nouns and for marking voice synthetically on verbs.

4 Data Preparation

All data for this task is provided in standard UniMorph format, with training items consisting of (lemma, inflected form, morphosyntactic features) triples. Since the goal of the task is to predict inflected forms, the test set was presented as (lemma, features) pairs. Data was canonicalized as in previous years using https://github.com/ unimorph/um-canonicalize, which ensures consistent ordering of the features in the feature sets.

4.1 Training-Test Overlap

As always, we ensured that there are no lemmafeature set pairs that occur in both the training and test sets. However, since test items contain both lemmas and features, other overlaps between training and test are possible. This year's data splitting algorithm aimed to control for the four logically

⁵https://github.com/unimorph/slk

⁶https://www.statmt.org/wmt20/unsup_and_very_ low_res/, https://baltoslav.eu/hsb/

possible licit types of lemma and feature overlap, which define four kinds of test items:

- **Both Overlap:** Both the lemma and feature set of a training pair are attested in the training set (but not together in the same triple)
- **Lemma Overlap:** A test pair's lemma is attested in training, but its feature set is novel
- Feature Overlap: A test pair's feature set is attested in training, but its lemma is novel
- **Neither Overlap:** A test pair is entirely unattested in training. Both its lemma and features are novel.

For illustration, consider the sample training and test sets provided in (1)-(2). In this example, each test pair exhibits a different kind of overlap.

(1) **Example Training Set**

eat eating V;V.PTCP;PRS run ran V;PST

(2) Example Test Set

eat	V;PST	< both
run	V;NFIN	< lemma
see	V;PST	< feature
go	V;PRS;3;SG	< neither

4.2 Data Splits

The data set for each language was split into training, development, and test sets. For languages with sufficiently large corpora, both large and small training sets were produced with the small set being a subset of the large one. We aimed for 7,000/1,000/2,000-item large train/dev/test splits and a 700-item small train split when possible, but splits for most languages were somewhat smaller in practice. Chukchi, Kholosi, Lamahalot, and Xibe in particular were too small to extract even full small training sets, while Braj, Gujarati, Itelmen, Ket, Low German, Magahi, Middle Low German, Old High German, Upper Sorbian were too small to extract large training sets. Split sizes are summarized in Table 5.⁷

4.3 Motivation for Data Splitting

The sampling script attempts to control the size of each overlap category in the test set. The challenge here is controlling for both lemma overlap and feature overlap simultaneously. Since no frequency information is provided in the UniMorph annotation scheme, any uniform sampling over triples, controlling for lemma overlap or otherwise, will tend to drive *feature overlap* to near 100%. This is unnatural. Since both lemmas and inflectional categories tend to follow long-tailed sparse frequency distributions in real language (Chan, 2008, ch. 3), a naturalistic split weighted by token frequencies of individual items will tend to oversample high frequency lemmas and inflectional categories (i.e., feature sets), and undersample most others. This skewed sampling should yield a mix of overlap types in the test set. This is what was achieved in 2018, though the ratios of overlap types were uncontrolled. In contrast, this year's data splitting achieves a controlled mixture of overlap types even in the absence of frequency information.

4.4 Splitting Process

The algorithm began by randomly partitioning a language's feature sets into OVERLAPPABLE and NON-OVERLAPPABLE sets and uniformly sampling the large training set from only those triples that contain feature sets in OVERLAPPABLE. If there were not enough triples with with feature sets in OVERLAPPABLE for a given language, then the OVERLAPPABLE partition was increased incrementally until enough training triples could be sampled. If there was insufficient data to create the large training set, then the small training set was sampled this way instead. If there was enough data, then the small training set.

The test set was sampled from the remaining items, with half drawn from triples with feature sets in OVERLAPPABLE and half from triples with feature sets in NON-OVERLAPPABLE features. The development set was drawn from the remainder in the same fashion.

As summarized in Table 5, this approach resulted in a much more even mixtures of overlapping pairs at both training sizes than is achieved by sampling that does not take *feature overlap* into account, though the actual ratios varied by language due to corpus-specific and language-specific factors. In controlling for *feature overlap*, a good mixture of

⁷Triples which shared their lemma and feature set with another item in the data were removed after splitting, which is why some languages fall short of 7,000/1,000/2,000 splits.

lemma overlap items is achieved simultaneously. Since most languages provide ample attestation of each overlap type, we could evaluate on each overlap type individually to gauge models' generalization abilities across both the lemma and inflectional category dimensions. Additionally, in aiming for a more uniform ratio of overlap types across languages, overall performance on each language is more directly comparable.

5 Baseline Systems

The organizers provided one neural and one nonneural baseline system. The neural system, Neural, is a character-level transformer (Wu et al., 2021). It is identical to the system CHR-TRM which was used in the 2021 task. The non-neural system, NonNeur, is identical to the non-neural baseline made available in 2020 and 2021.⁸

6 Submitted Systems

CLUZH (Silvan Wehrli and Makarov, 2022): The CLUZH team adapted their earlier model, character-level neural transducer, to work on large datasets (Makarov and Clematide, 2020). The model has previously shown superior performance, especially in low-resource scenarios. This year, the team optimized the training procedure using minibatches. They only relied on the teacher-forcing approach, i.e., using gold labels rather than what was predicted during the training phase. Morphosyntactic features were treated individually, and their embeddings were summed. The team explored performance of the model across various task settings and demonstrated its ability to capture feature behaviour better than other team's models, especially in the small training condition. The system is identical to the one submitted to this year's acquisitioninspired subtask (Kodner and Khalifa, 2022).

OSU (Elsner and Court, 2022): OSU's system is identical to the one submitted to this year's acquisition-inspired subtask. This inflection system is a transformer whose input is augmented with an analogical exemplar model showing how to inflect a different word into the target cell. In addition, alignment-based heuristic features indicate how well the exemplar is likely to match the output. The system works only when examples of the target cell are present in the training set and can serve as exemplars; otherwise, it outputs the lemma as a placeholder. Thus, the system's scores are expected to be higher for the *feature overlap* and *both overlap* evaluation categories and very low when the target cell is unknown.

TüMorph-Main (Merzhevich et al., 2022): Tü-Morph's neural system is a modification of the character-level adaptation of transformer to morphology from Wu et al. (2021). In particular, the team trained the transformer to predict a distribution over states of FST (whose states are characters) rather than character sequences themselves. The model is scored third on both the small and large training settings.

TüMorph-FST (Merzhevich et al., 2022): As their second submission, the team manually developed FSTs using grammars and corresponding UnMorph repositories. Since that requires more human labour and linguistic competence, the team focused only on three languages: Chukchi, Kholosi, and Upper Sorbian. The resulting FST models outperformed all other submitted systems on two of three languages. The authors confirm earlier observations from Beemer et al. (2020) that such systems are able to reach superior results compared to neural ones, especially in low-resource scenarios and high morphological complexity, but require substantially more human working hours.

UBC (Yang et al., 2022): The UBC team proposed enriching the character-level transformer of Wu et al. (2021) with reverse positional embeddings to better account for suffixing, one of the most common word formation processes. In addition, the team explored a synthetic data augmentation technique proposed by Anastasopoulos and Neubig (2019) and student-forcing (Nicolai and Silfverberg, 2020), a training strategy where the model outputs are replaced with gold labels for some percentage of samples to alleviate exposure bias. Data augmentation leads to significant improvements, especially in the small training condition, confirming its utility. The student forcing training also provides a certain accuracy gain but presents mixed results when used together with data hallucination.

Flexica (Scherbakov and Vylomova, 2022) is a modified version of the non-neural system submitted to the SIGMORPHON 2020 Shared Task on morphological reinflection (Scherbakov, 2020). The system is based on refined alignment patterns between lemmas and inflected forms. In this year's submission, grammatical tag interchangeability learning was added to address smaller fea-

⁸Available here: https://github.com/sigmorphon/ 2022InflectionST/tree/main/baselines/nonneural

	Tra	in/Dev/Test	t Split Siz	es		Test/Small T	rain Overla	aps		Test/Large	e Train Over	laps
Language	#Small	#Large	#Dev	#Test	#Both	#Lemma	#Feats	#Neither	#Both	#Feat	#Lemma	#Neither
ang	700	7000	866	1969	158	217	815	779	697	821	278	173
ara	700	7000	988	1995	84	93	843	975	549	529	447	470
asm	700	7000	996	1990	416	498	558	518	979	990	12	9
bra	700	-	365	734	64	161	146	363	-	-	-	-
ckt	167	-	22	46	0	16	1	29	-	-	-	-
evn	700	7000	959	1743	1	519	2	1221	3	1065	0	675
gml	700	-	229	358	42	316	0	0	-	-	-	_
goh	700	-	986	1877	713	800	199	165	-	-	-	-
got	700	7000	994	1994	146	174	836	838	825	795	169	205
guj	700	-	994	1941	764	823	204	150	-	-	-	_
heb	700	7000	1000	2000	419	454	581	546	1000	1000	0	0
hsb	240	-	40	80	0	13	3	64	-	-	-	_
hsi	70	-	15	30	1	18	0	11	-	-	-	-
hun	700	7000	1000	2000	40	40	949	971	308	315	692	685
hye	700	7000	1000	2000	145	158	838	859	678	715	322	285
itl	700	-	572	1083	85	191	449	358	-	-	-	-
kat	630	7000	1000	2000	162	406	721	711	816	832	184	168
kaz	700	7000	998	1994	375	510	609	500	966	992	28	8
ket	700	-	85	137	13	48	14	62	-	-	-	-
khk	700	7000	996	1980	205	284	788	703	976	985	17	2
kor	700	7000	987	1964	221	245	748	750	886	925	83	70
krl	700	7000	998	1996	148	174	844	830	804	816	192	184
lud	700	7000	991	1976	87	105	880	904	775	297	212	692
mag	700	-	215	430	45	107	105	173	-	-	-	-
nds	700	-	963	1900	813	936	106	45	-	-	-	-
non	700	7000	992	1991	362	442	609	578	931	964	61	35
pol	700	7000	1000	2000	8	11	847	1134	61	70	939	930
poma	700	7000	921	1999	17	14	980	988	169	172	830	828
sjo	700	-	350	1857	184	286	754	633	-	-	-	-
slk	700	7000	1000	2000	4	5	869	1122	56	47	944	953
slp	240	-	40	79	2	56	3	18	-	-	-	-
tur	700	7000	1000	2000	333	575	469	623	874	869	126	131
vep	700	7000	995	1993	42	58	936	957	412	428	583	570

Table 5: Training, development, and test data sizes along with overlap sizes between small training and test and between large training and test. Items were exlcuded post-hoc from dev and test if there were multiple triples with the same lemma and features.

ture overlap. The system learns transformation patterns based on maximal continuous matches between lemma and inflected forms. The extraction of a pattern from an inflection sample starts with finding the longest common substring and then recurrently continues to the remaining parts until no more common characters can be found. Then, each of such extracted patterns is augmented with a set of more concrete patterns. Concrete patterns are produced from abstract ones by replacing some 'wildcard' characters back with concrete characters observed in a training sample. At prediction time, an inflected form is inferred by choosing a pattern that matches the respective lemma and yields a maximum score.

7 Results and Evaluation

Performance was evaluated by exact match accuracy. Macro-averages across languages on the entire test set and partitioned over the four overlap types are provided in Table 6. Results by language for both small and large training conditions are provided in Tables 14-18 in Appendix B.

A few points stand out immediately. First, overall performance is much lower this year compared to last year's similar task. During the 2021 iteration, all systems achieved over 90% accuracy on most of languages, while this year, no system achieves over 72% average in either training condition. This task was designed to be particularly challenging because the test set required systems to make predictions with only partial information. The results bore out this expectation.

Flexica, the only general non-neural submitted system, surpasses the non-neural baseline, but does not surpass 40% overall accuracy in either training condition. Being a hand-built system, TüMorph-FST outperformed all other systems on two of three languages that it was developed for.

As expected, all systems that submitted full or nearly full predictions for both the small and large training conditions performed substantially better with more training data. CLUZH, TüMorph-Main, UBC, and the neural baseline each improved by over ten points, while Flexica and the non-neural baseline showed smaller gains of around four points.

UBC achieved the highest performance of any system in either training condition. To understand why this is, it is necessary to look at a breakdown of performance by overlap type. The system is more resilient to novel feature sets than any other except for the hand-built FSTs.

	Small Training Condition					Large Training Condition				
System	Overall	Both	Lemma	Feature	Neither	Overall	Both	Lemma	Feature	Neither
CLUZH	56.871	77.308	31.269	77.966	43.255	67.853	90.991	41.425	87.171	60.300
Flexica	34.406	59.503	6.390	61.616	14.562	38.243	66.846	4.985	73.007	21.337
OSU	47.688	79.310	8.565	82.308	44.133	46.734	89.565	4.843	85.308	16.768
TüM-FST	67.308	100.00	55.319	75.000	72.115	_	-	_	_	_
TüM-Main	41.591	58.907	18.597	62.469	27.613	57.627	77.995	34.916	76.009	48.720
UBC	57.234	75.963	35.519	74.201	46.060	71.259	89.503	50.583	85.063	66.224
Neural	47.626	65.027	24.929	66.539	35.601	62.391	80.462	42.166	77.627	55.563
NonNeur	33.321	58.475	5.566	59.969	14.431	37.583	67.434	4.843	72.283	16.768

Table 6: Macro-average accuracy for each system. Three systems (OSU, TüMorph-Main, and TüMorph-FST) only submitted predictions for a subset of languages in the small training condition, so their numbers (italicized) are not directly comparable to the others. Flexica and NonNeur are non-neural.

7.1 Analysis by Overlap Partition

A breakdown by overlap partition reveals some consistent trends. As expected, *neither overlap* items proved challenging, since systems had to infer the forms for simultaneously novel lemmas and novel feature sets. Surprisingly, all systems performed better on *neither overlap* items than *lemma overlap* items. It is not clear why this would be, since it is observed on average for many but not all of the tested systems. It may be an artifact of the data splitting algorithm favoring balancing feature overlap over lemma overlap. However, the results are consistent with the observation over the 2018 data that systems struggle generalizing across feature sets more so than generalizing over lemmas.

They perform better on generalizations across lemmas to such an extent that the proportion of items with feature overlap in the test set washes out the effect of seen and unseen lemmas. Tables 7-8 illustrate this point quantitatively. Table 7 compares average performance on test items with feature sets attested in training (both overlap \cup feature overlap items) with test items with novel feature sets (*neither overlap* \cup *lemma overlap* items). All systems perform better on items with attested feature sets, but the gap in performance varies greatly from UBC's 32 points in the small training condition to OSU's 79 points in the large training condition. OSU's drop in performance is expected because it outputs the lemma when the feature set is unknown. In these cases it makes correct predictions exactly when the inflected form is identical to the lemma, pointing to a degree of syncretism in the data.

Table 8 shows the same, but for test items with lemmas attested during training *both overlap* \cup *lemma overlap* items) and test items with novel feature sets (*neither overlap* \cup *feature overlap* items). Every system actually performs *worse* on the attested lemma items than the novel lemma items.

The penalty of novel feature sets overpowers gains incurred by attested lemmas.

	Features	Small	Train	Large	Train
_	System	Seen	Novel	Seen	Novel
	CLUZH	77.790	39.417	89.753	47.874
	OSU	80.573	21.174	88.186	8.918
	TüM-FST	80.000	66.887	_	-
	TüM-Main	61.521	24.797	77.351	39.633
	UBC	74.672	42.684	88.064	55.928
	Flexica	60.916	12.894	68.757	10.614

Table 7: Macro-Average performance for submitted systems on test items with attested feature sets (*both overlap* and *feature overlap*) and items with novel feature sets (*lemma overlap* and *neither overlap* types). Italicized small training results were calculated over partial submissions.

Lemma	Small	Train	Large	Train
System	Seen	Novel	Seen	Novel
CLUZH	50.175	59.690	65.399	72.764
OSU	38.248	62.811	45.821	48.560
TüM-FST	56.250	72.222	_	-
TüM-Main	35.442	44.116	55.752	61.378
UBC	52.128	59.384	69.407	74.962
Flexica	28.629	37.309	35.378	44.300

Table 8: Macro-Average performance for submitted systems on test items with attested lemmas (*both overlap* and *lemma overlap*) and items with novel lemmas (*feature overlap* and *neither overlap* types). Italicized small training results were calculated over partial submissions.

Tables 6-7 together elucidate a clear difference between CLUZH and UBC. While the former outperforms the latter on items with seen feature sets, the latter outperforms the former on itsems with novel feature sets. This means that UBC outperformed CLUZH on this data set because it is better suited for generalization to unseen features, something that would likely been hidden if tested on previous years' data.

However, there is a sense in which testing on items with novel feature sets is not entirely fair for all languages. In highly fusional languages in particular, it may not actually be possible to predict the mapping from a set of semantic features to a particular inflection given what is known about the member features. On the other hand, it should be solvable for a canonically agglutinative language where each member feature contributes one piece of the inflected form like "beads on a string." Thus, it could be possible that the lower aggregate performance observed on novel feature test items is not due to a failure of generalization in the systems but rather the impossible nature of the task.

Table 9 tests this hypothesis. It shows average performance only on languages considered to be primarily agglutinative: Chukchi, Evenki, Georgian, Hungarian, Itelmen, Karelian, Kazakh, Ket, Korean, Ludic, Mongolian, Turkish, Veps, and Xibe. Further information can be gleaned from performance on each language individually as reported in Tables 14-18 in Appendix B.

In principle, a system should be able to infer the appropriate morphological operations for unseen feature sets in these languages, as was illustrated for Turkish in Table 1. While this is not a perfect test, since real agglutinative languages also contain some morphological eccentricities which obscure predictability, "could an undergraduate solve it?" does apply. It provides a clear result: the gap between performance on test items attested and novel features does not generally improve even for these languages where it should, if the unfairness of the task were driving decreased performance on fusional languages. This shows that generalization to novel feature sets, that is, to previously unattested inflectional categories, remains a legitimate concern for nearly all the systems.

7.2 Results by Part-of-Speech

As in previous years, the data employed for this task contains items from several parts-of-speech. Languages vary considerably in how much inflection they apply to different POS categories. As such, collapsing over POS categories can obscure interesting patterns. Tables 19-26 provide results for test items tagged with the four most common part-of-speech features in this year's data: verb (V), noun (N), adjective (ADJ), and participle (V.PTCP). Given the overall challenging nature of this year's task, performance across POS categories is generally weaker than what was reported for last year.

Features	Small	Train	Large Train		
System	Seen	Novel	Seen	Novel	
CLUZH	78.837	34.118	90.198	40.657	
OSU	77.800	30.376	88.497	13.456	
TüM-FST	100.00	17.778	_	-	
TüM-Main	61.730	14.816	74.667	29.433	
UBC	75.994	39.232	89.213	49.799	
Flexica	60.885	11.386	69.173	10.094	
			•		
Lemma	Small	Train	Large	Train	
Lemma System	Small Seen	Train Novel	Large Seen	Train Novel	
			0		
System	Seen	Novel	Seen	Novel	
CLUZH	Seen 44.850	Novel 56.649	Seen 62.082	Novel 66.201	
System CLUZH OSU	Seen 44.850 30.012	Novel 56.649 61.435	Seen 62.082	Novel 66.201	
System CLUZH OSU TüM-FST	Seen 44.850 30.012 6.250	Novel 56.649 61.435 26.667	Seen 62.082 45.315 -	Novel 66.201 53.753	

Table 9: Macro-Average performance for submitted systems on seen and unseen feature and lemma items *for agglutinative languages only*. Compare to Tables 7-8. Italicized small training accuracies were calculated over partial submissions.

8 Error Analysis by Language

This section contains qualitative error analysis for six languages from five different top-level families.

8.1 Arabic

As shown in Table 17, none of the systems outperformed either of the baselines in the *overall* partition in the large training setting.

15% of the lemmas in the test set were not inflected correctly by all the systems. Nouns (N) made up the majority of those errors (47.8%). Focusing on the noun majority, errors included inaccurate plurals, minor orthographic errors, and "reasonable" confusion of different state and possession features. The plural inflection errors follow a similar pattern to those in this year's acquisitioninspired subtask. See Kodner and Khalifa (2022) for more in-depth analysis. Orthographic errors include minor common mistakes resulting from missing orthotactic operations or an alternative spelling in the gold form. Lastly, there seems to be some confusion between SPEC, DEF, PSSD tags⁹ in the dual and masculine plural forms since both those suffixes inflect for case and state. This confusion is mainly due to the existence of possible different forms of the same lemma sharing the same feature set or vice versa in the training data.

On the other hand, all systems correctly inflected 29% of the lemmas. In this case, 55% of those

⁹For more details about the state, case, and possession tags, please see the mapping description here: https://github.com/unimorph/ara#ara_atb

cases are adjectives (ADJ). This is not very surprising since adjectives in Arabic are more regular than nouns in pluralization in particular. Most of the plurals in this set are those ending with the feminine plural suffix, which does not inflect for case and state the same way the masculine plural suffix does. On the other hand, most of the masculine adjectives are singular and therefore the case and state inflections are easier.

In the small training setting, systems follow a similar trend, shown in Table 14. However, there is a higher percentage of verbs (V) among the lemmas that all systems inflected incorrectly. This is expected since verbal paradigms in Modern Standard Arabic tend to be very large in size, therefore, more sparsity in smaller training sets.

8.2 Armenian

Armenian orthography is quite close to the pronunciation of words. But all four models had issues when the triggers for inflectional allomorphy were from phonology, semantics, or morphological classes.¹⁰

The different learning models had problems in respecting the rather close correspondence between the orthography and phonology. For example, given a word with a final orthographic <a> like <anjny**a**> 'personable', adding a vowel-initial suffix sequence like *-i-s* (-GEN-POSS2SG) triggers a glide in both the orthography and pronunciation: <anjny**ayis**>. All four models incorrectly generated a glideless form for this word <*anjny**ais**>.

There were also cases of transparent phonological-conditioned allomorphy that caused errors. The definite suffix is <-n> after vowels, but <->> after consonants. Given a vowel-final word like <moreni> 'raspberry,' the definite form should thus be <morenin>, yet all four models made some type of error. The Flexica model used an entirely different ablative suffix -ic', while the other three models used the wrong definite allomorph -a. This allomorphy rule is exceptionless and is fully transparent from the reformed Armenian orthography. These errors suggest that the models didn't fully exploit the phonological properties that are reflected in the orthography. It is possible that such errors would reduce if the models incorporated some level of

phonological information, such as by making the input forms be transcribed forms, and by having the models have a priori knowledge of cross-linguistic phonological feature systems.

Some errors were unavoidable and are due to phonology-semantics interactions. The plural suffix is <-er> after monosyllabic words, but <-ner> after polysyllabic words. For example, the monosyllabic word <nyut'> 'material' takes the plural <nyut'-er>. But if a word is an endocentric compound, then the plural suffix must count the number of syllables in the second stem of the word (the head). For example, the word <šparanyut'> 'makeup' is an endocentric compound of <špar> 'makeup' and <nyut'>. Its plural unambiguously takes -er because of the transparent semantic connections between the compound and the monosyllabic second stem. But all four models incorrectly generated the polysyllabic-selecting suffix -ner. It is not surprising that all four models made errors of this type. To avoid such errors, the models would need access to semantic information of the compound, and to also access the semantics of other words in the lexicon (the stems).

Some errors were due to purely morphological under-learning. Armenian has many different declension and conjugation classes. The different models made over-regularization mistakes, whereby they used regular inflectional suffixes over irregular ones. Sometimes the use of a suffix triggers morphological alternations in the stem. The models however preferred to keep the shape of the stem constant. Such 'mistakes' are common in colloquial speech, but they are absent in the prescriptive declension patterns that the Wiktionary data uses.

8.3 Hungarian

The richness of the Hungarian inflection system made prediction hard for all systems. While most errors show failures of generalization, many are attributable to genuinely hard, i.e., irregular or weakly systematic, forms of inflection. Mistakes due to vowel harmony are very frequent, as the vowels to be used in inflections are often unpredictable and can only be judged in terms of frequency in everyday use. Thus, **megtilt+enélek* is clearly ungrammatical (it should be *megtilt+análak*), but forms such as *szellős+ök* or *objektív+től*, not present in the gold standard, are actually used. Another recurrent mistake is the presence or ab-

¹⁰Transliteration is the Hübschmann-Meillet-Benveniste (HMB) system: https://en.wiktionary.org/wiki/ Wiktionary:Armenian_transliteration. Forms in <angled brackets> are transliterations.

sence of the -j- in possessives where, again, systematicity is weak: in *siketfajd*+(*j*)*a*, the form without the -j- is not acceptable, but in other cases (*hangár*+(*j*)*aitok*, *tranzisztor*+(*j*)*a*) native speakers may accept either form. Unsurprisingly, all systems tended to fail over irregular inflections, such as hard-to-predict (but frequently used) inflectional classes, such as *low vowel nouns* (singular *út* but plural *utak*) or *v*-stems (singular *ló* but plural *lovak*). Finally, homonymy can also explain apparent mistakes, such as *szél* that means both *wind* and *edge*: in the first case its plural is *szelek* while in the second case it is *szélek*.

8.4 Khalkha Mongolian

Mongolian inflectional suffixes are highly unambiguous given a lemma's POS feature. Every inflectional suffix often belongs to only one morphological feature (Denwood, 2011; Munkhjargal et al., 2016). For example, Mongolian *-iin* belongs only to the genitive case while German *-s* suffix has two meanings by making the inflectional forms of either the genitive case or plural nouns. In this sense of low ambiguity, it is not surprising to see that the all participating systems have zero accuracy over the *lemma overlap* settings in Tables 15 and 18.

8.5 Polish

Performance on Polish was decent overall. In the small training condition, CLUZH managed to achieve nearly 91% on the *lemma overlap* items. While number decreased to 84% in the large training condition, which likely suggests that the *lemma overlap* test partitions contained coincidentally easy items, it does demonstrate generalization. Not all systems succeeded on the *lemma overlap* items. OSU, Flexica, and the non-neural baseline showed the usual performance drop.

Masculine genitive singular inflection proved challenging. There are two possible endings, *-u* and *-a*, but their distribution is unpredictable. As a classic example of paradigmatic gaps, native speakers themselves frequently disagree on which ending to apply (Dąbrowska, 2001). Then it is unsurprisingly that systems sometimes predict the wrong ending. For example CLUZH produced **przystępa* for *przystępu* as the genitive singular of *przystępa*. It also produced *filungu* instead of *filunga* as the genitive singular of *filung*, which is a known variant form in the language, but not the one presented in the gold standard data. Systems also confuse masculine and feminine forms or inflect the wrong case. They also misapply *yers*, or palatalization, a pervasive process in Polish and in Slavic more generally. These types of errors were also identified in an error analysis of the 2017 task in Gorman et al. (2019). See that paper for more information.

8.6 Turkish

Turkish exhibits both front/back and rounding harmony. Harmony mismatches are a major source of errors on the language. For example, Flexica produces **dokumalisin*, a front/back violation for expected *dokumalisin*, and CLUZH produces a rounding violation **yoldurtmişim* for *yoldurtmuşum*. Flexica, the only non-neural submitted system particularly strugged in this area.

Voicing assimilation, which can occur intervocalically and at some morpheme boundaries, also proved to be challenging. For example, Flexica and CLUZH, the stem *çıldırt*- ends in voiceless stop, therefore the consonant of the following past tense suffix should be devoiced and realized as [t], however, in these three systems it remains [d], thus resulting in forms like **çıldırtdım mı* for expected *çıldırttım mı*. CLUZH and Flexica do not perform intervocalic voicing for *akrebinizi* from *akrep* and instead produce **akrepinizi*. Similarly no system except for TüMorph-Main correctly produces *asidi* from *asit*. They instead produce **asiti*. Related to this, systems sometimes fail to insert epenthetic glides between vowels in hiatus.

Sometimes systems produce commission errors, substituting a morpheme with one absent in the feature set. For example, for CLUZH in the small training condition, the case marking is wrong for the lemma *balta*: instead of producing the genitive -in, it adds the ablative -dan even though the GEN feature is present. The same issue holds in quite a few lines as well. For example, for Flexica, the features contain GEN, but the system generates it with dative case (along with a vowel harmony error as in Hungarian), thus producing **havai fişeklara* instead of the expected form havai fiseklerin. All systems struggle significantly on items with unseen feature sets. This is interesting, because Turkish should have been one of the languages most conducive to generalization over unseen feature sets. The systems may not be associating the features in a set with their corresponding agglutinative realizations.

9 Discussion

This year's shared task investigated two dimensions of generalization in morphological inflection: generalization over lemmas and generalization over inflectional categories. Test items with lemmas or feature sets that were attested in training were evaluated separately from those with novel lemmas or feature sets to gain a better understanding of generalization. This proved to be a challenging version of the task, as performance is substantially lower across systems compared to previous years.

We carried on the tradition of including a range of typologically diverse languages in the task. From the perspective of the two dimensions of generalization, different morphological paradigms could prove more or less challenging. In particular, it is more reasonable to expect a system to generalize to an unseen feature set if the form of the corresponding inflectional category is in some way derived from forms associated with each of the member features. Similarly, a language with relatively invariant stem forms and little unpredictable stem-conditioned realization of inflectional categories should be conducive to generalization across lemmas, while a language with more stem changes or lexically arbitrary inflectional classes should prove more challenging.

Two major patterns emerged which held across systems. First, overall averages were lower than previous years in which overlaps between lemmas and features in training and test were left uncontrolled. The task was challenging. Second, performance test items with novel feature sets was almost uniformly weaker than performance on test items with novel lemmas. This was true for all systems and still held true for agglutinative languages which stood the best chance of generalization across feature sets.

9.1 Implications for Future Work

The results of this year's shared tasks have some implications for future systems and future shared tasks. First, since overlap type has a major effect on performance, cross-linguistic differences in performance in morphological inflection tasks may sometimes be driven by these distributions rather language-internal. Since these overlaps were hardly evaluated in previous years, a reanalysis of prior years' shared tasks along these lines may uncover interesting results. Related to this, train/test/dev splits created by uniform sampling of UniMorph will not only lead to uncontrolled overlap ratios, but will tend to drive feature overlap unrealistically high when training sets are large. This year's shared task provided an algorithm to make splits more uniformly with respect to overlap types, and it is recommended that future tasks also control for and separately analyze overlap types.

Second, both lemmas and inflectional categories are sparsely distributed in natural language use. As a result, systems in use in the real world will likely be asked to produce inflections for which lemmas or feature sets were not previously attested in their training. As focus grows on low-resource languages and language revitalization, a wide range of morphological typologies, including polysynthetic systems, will have to be reckoned with. The ability to generalize to unseen feature sets will become increasingly critical. Yet, there is a general weakness in generalization across inflectional categories in today's systems. Every system showed serious performance degradation. This was even true for agglutinative languages. Nevertheless, systems do appear to have generalized to unseen feature sets to a significant degree, and CLUZH and UBC, which showed similar overall performance, differed in their ability to handle unseen feature sets in particular. Thus, we believe there is reason for optimism and that there are real-world performance gains to be had by further developing this type of generalization.

Acknowledgements

We would like to thank Garrett Nicolai, Maria Ryskina, Ben Ambridge, Jeff Heinz, and all those who provided valuable advice and logistical support in the early stages of this project, Judit Ács, Duygu Ataman, Zigniew Bronk, Eleanor Chodroff, Sofya Ganieva, Włodzimierz Gruszczyński, Nizar Habash, Jan Hajič, Jan Hric, Ritvan Karahodja, Christo Kirov, Elena Klyachko, Ritesh Kumar, Vahagn Petrosyan, Matvey Plugaryov, Mohit Raj, Maria Ryskina, Elizabeth Salesky, Zygmunt Saloni, Danuta Skowrońska, Marcin Woliński, and Robert Wołosz, who prepared and authored lexicons used in this project, as well as Jeff Heinz, Sarah Payne, and Charles Yang, who provided feedback on this overview paper. The neural baseline system was trained on the SeaWulf HPC cluster maintained by RCC, and IACS at Stony Brook University and made possible by NSF grant #1531492.

References

- Antonios Anastasopoulos and Graham Neubig. 2019. Pushing the limits of low-resource morphological inflection. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 984–996, Hong Kong, China. Association for Computational Linguistics.
- I Wayan Arka. 2007. Creole genesis and extreme analyticity in Flores languages. In *the 5th International East Nusantara Conference on Language and Culture (ENUS)*, Kupang.
- Aryaman Arora and Ahmed Etebari. 2021. Kholosi dictionary.
- Khuyagbaatar Batsuren, Amarsanaa Ganbold, Altangerel Chagnaa, and Fausto Giunchiglia. 2019. Building the Mongolian WordNet. In *Proceedings of the 10th Global Wordnet Conference*, pages 238–244, Wroclaw, Poland. Global Wordnet Association.
- Khuyagbaatar Batsuren, Omer Goldman, Salam Khalifa, Nizar Habash, Witold Kieraś, Gábor Bella, Brian Leonard, Garrett Nicolai, Kyle Gorman, Yustinus Ghanggo Ate, Maria Ryskina, Sabrina J. Mielke, Elena Budianskaya, Charbel El-Khaissi, Tiago Pimentel, Michael Gasser, William Lane, Mohit Raj, Matt Coler, Jaime Rafael Montoya Samame, Delio Siticonatzi Camaiteri, Esaú Zumaeta Rojas, Didier López Francis, Arturo Oncevay, Juan López Bautista, Gema Celeste Silva Villegas, Lucas Torroba Hennigen, Adam Ek, David Guriel, Peter Dirix, Jean-Philippe Bernardy, Andrey Scherbakov, Aziyana Bayyr-ool, Antonios Anastasopoulos, Roberto Zariquiey, Karina Sheifer, Sofya Ganieva, Hilaria Cruz, Ritván Karahóğa, Stella Markantonatou, George Pavlidis, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Candy Angulo, Jatayu Baxi, Andrew Krizhanovsky, Natalia Krizhanovskaya, Elizabeth Salesky, Clara Vania, Sardana Ivanova, Jennifer White, Rowan Hall Maudslay, Josef Valvoda, Ran Zmigrod, Paula Czarnowska, Irene Nikkarinen, Aelita Salchak, Brijesh Bhatt, Christopher Straughn, Zoey Liu, Jonathan North Washington, Yuval Pinter, Duygu Ataman, Marcin Wolinski, Totok Suhardijanto, Anna Yablonskaya, Niklas Stoehr, Hossep Dolatian, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Aryaman Arora, Richard J. Hatcher, Ritesh Kumar, Jeremiah Young, Daria Rodionova, Anastasia Yemelina, Taras Andrushko, Igor Marchenko, Polina Mashkovtseva, Alexandra Serova, Emily Prud'hommeaux, Maria Nepomniashchaya, Fausto Giunchiglia, Eleanor Chodroff, Mans Hulden, Miikka Silfverberg, Arya D. Mc-Carthy, David Yarowsky, Ryan Cotterell, Reut Tsarfaty, and Ekaterina Vylomova. 2022. Unimorph 4.0: Universal morphology.
- Jatayu Baxi, Dr Bhatt, et al. 2021. Morpheme boundary detection & grammatical feature predic-

tion for Gujarati: Dataset & model. *arXiv preprint arXiv:2112.09860*.

- Sarah Beemer, Zak Boston, April Bukoski, Daniel Chen, Princess Dickens, Andrew Gerlach, Torin Hopkins, Parth Anand Jawale, Chris Koski, Akanksha Malhotra, Piyush Mishra, Saliha Muradoglu, Lan Sang, Tyler Short, Sagarika Shreevastava, Elizabeth Spaulding, Testumichi Umada, Beilei Xiang, Changbing Yang, and Mans Hulden. 2020. Linguist vs. machine: Rapid development of finite-state morphological grammars. In Proceedings of the 17th SIGMOR-PHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 162–170, Online. Association for Computational Linguistics.
- Tatyana Boyko, Nina Zaitseva, Natalya Krizhanovskaya, Andrew Krizhanovsky, Irina Novak, Natalia Pellinen, Alexandra Rodionova, and Elizaveta Trubina. 2021. The linguistic corpus VepKar is a language refuge for the Baltic-Finnish languages of Karelia. *Transactions of the Karelian Research Centre of the Russian Academy of Sciences*, (7):100–115.
- Erwin Chan. 2008. *Structures and distributions in morphological learning*. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA.
- Edna Amir Coffin and Shmuel Bolozky. 2005. A reference grammar of Modern Hebrew. Cambridge University Press.
- Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Arya D. Mc-Carthy, Katharina Kann, Sabrina J. Mielke, Garrett Nicolai, Miikka Silfverberg, David Yarowsky, Jason Eisner, and Mans Hulden. 2018. The CoNLL– SIGMORPHON 2018 shared task: Universal morphological reinflection. In *Proceedings of the CoNLL–SIGMORPHON 2018 Shared Task: Universal Morphological Reinflection*, pages 1–27, Brussels. Association for Computational Linguistics.
- Ryan Cotterell, Christo Kirov, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Patrick Xia, Manaal Faruqui, Sandra Kübler, David Yarowsky, Jason Eisner, and Mans Hulden. 2017. CoNLL-SIGMORPHON 2017 shared task: Universal morphological reinflection in 52 languages. In Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 1–30, Vancouver. Association for Computational Linguistics.
- Ryan Cotterell, Christo Kirov, John Sylak-Glassman, David Yarowsky, Jason Eisner, and Mans Hulden. 2016. The SIGMORPHON 2016 shared Task— Morphological reinflection. In Proceedings of the 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 10–22, Berlin, Germany. Association for Computational Linguistics.
- Ewa Dąbrowska. 2001. Learning a morphological system without a default: The Polish genitive. *Journal of child language*, 28(3):545–574.

- Ann Denwood. 2011. Template and morphology in Khalkha Mongolian—and beyond? In *Living on the Edge*, pages 543–562. De Gruyter Mouton.
- Jasmine Dum-Tragut. 2009. Armenian: Modern Eastern Armenian. Number 14 in London Oriental and African Language Library. John Benjamins Publishing Company, Amsterdam/Philadelphia.
- Micha Elsner and Sara K. Court. 2022. OSU at SIG-MORPHON 2022: Analogical Inflection With Rule Features. In *Proceedings of the SIGMORPHON* 2022 Shared Task: Morphological Inflection, Seattle. North American Chapter of the Association for Computational Linguistics.
- Alexander Fraser. 2020. Findings of the WMT 2020 shared tasks in unsupervised MT and very low resource supervised MT. In *Proceedings of the Fifth Conference on Machine Translation*, pages 765–771. Association for Computational Linguistics.
- Omer Goldman, David Guriel, and Reut Tsarfaty. 2022. (un)solving morphological inflection: Lemma overlap artificially inflates models' performance. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 864–870, Dublin, Ireland. Association for Computational Linguistics.
- Kyle Gorman, Arya D McCarthy, Ryan Cotterell, Ekaterina Vylomova, Miikka Silfverberg, and Magdalena Markowska. 2019. Weird inflects but ok: Making sense of morphological generation errors. In Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pages 140– 151.
- David Guriel, Omer Goldman, and Reut Tsarfaty. 2022. Morphological reinflection with multiple arguments: An extended annotation schema and a Georgian case study. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics*, Dublin, Ireland. Association for Computational Linguistics.
- Jan Hajič and Jan Hric. 2017. MorfFlex SK 170914. LINDAT/CLARIAH-CZ digital library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.
- Purev Jaimai, Tsolmon Zundui, Altangerel Chagnaa, and Cheol-Young Ock. 2005. PC-KIMMO-based description of Mongolian morphology. *Journal of Information Processing Systems*, 1(1):41–48.
- Ritván Jusúf Karahóğa, Panagiotis G. Krimpas, Vivian Stamou, Vasileios Arampatzakis, Dimitrios Karamatskos, Vasileios Sevetlidis, Nikolaos Constantinides, Nikolaos Kokkas, George Pavlidis, and Stella Markantonatou. 2022. Morphologically annotated corpora of Pomak. In Proceedings of the Fifth Workshop on the Use of Computational Methods in the Study of Endangered Languages, pages 179–186, Dublin, Ireland. Association for Computational Linguistics.

- Olga Kazakevich and Elena Klyachko. 2013. Creating a multimedia annotated text corpus: a research task (sozdaniye multimediynogo annotirovannogo kor- pusa tekstov kak issledovatelskaya protsedura). In *Proceedings of International Conference Computational linguistics*, pages 292—300.
- Ferenc Kiefer and Boglarka Nemeth. 2019. *Compounds* and multi-word expressions in Hungarian: Compounds and Multi-Word Expressions, pages 337–358. De Gruyter.
- Christo Kirov, Ryan Cotterell, John Sylak-Glassman, Géraldine Walther, Ekaterina Vylomova, Patrick Xia, Manaal Faruqui, Sabrina J. Mielke, Arya McCarthy, Sandra Kübler, David Yarowsky, Jason Eisner, and Mans Hulden. 2018. UniMorph 2.0: Universal Morphology. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan. European Language Resources Association (ELRA).
- Marian Klamer. 2002. Typical features of Austronesian languages in Central/Eastern Indonesia. *Oceanic Linguistics*, 41:250–263.
- Marian Klamer. 2009. The use of language data in comparative research: A note on Blust (2008) and Onvlee (1984). *Oceanic Linguistics*, 250-263.
- Jordan Kodner. 2019. Estimating child linguistic experience from historical corpora. *Glossa: a journal of general linguistics*, 4(1).
- Jordan Kodner and Salam Khalifa. 2022. SIGMORPHON-UniMorph 2022 Shared Task 0: Modeling Inflection in Language Acquisition. In *Proceedings of the SIGMORPHON 2022 Shared Task: Morphological Inflection*, Seattle. North American Chapter of the Association for Computational Linguistics.
- Ritesh Kumar, Bornini Lahiri, and Deepak Alok. 2014. Developing LRs for Non-scheduled Indian Languages: A Case of Magahi. In *Human Language Technology Challenges for Computer Science and Linguistics*, Lecture Notes in Computer Science, pages 491–501. Springer International Publishing, Switzerland. Original-date: 2014.
- Ritesh Kumar, Bornini Lahiri, Deepak Alok Atul Kr. Ojha, Mayank Jain, Abdul Basit, and Yogesh Dawar. 2018. Automatic identification of closely-related Indian languages: Resources and experiments. In *Proceedings of the 4th Workshop on Indian Language Data Resource and Evaluation (WILDRE-4)*, Paris, France. European Language Resources Association (ELRA).
- Agathe Lasch. 1914. *Mittelniederdeutsche Grammatik*. Max Niemeyer Verlag.
- Peter Makarov and Simon Clematide. 2020. CLUZH at SIGMORPHON 2020 shared task on multilingual grapheme-to-phoneme conversion. In *Proceedings*

of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 171–176, Online. Association for Computational Linguistics.

- Arya D. McCarthy, Christo Kirov, Matteo Grella, Amrit Nidhi, Patrick Xia, Kyle Gorman, Ekaterina Vylomova, Sabrina J. Mielke, Garrett Nicolai, Miikka Silfverberg, Timofey Arkhangelskiy, Nataly Krizhanovsky, Andrew Krizhanovsky, Elena Klyachko, Alexey Sorokin, John Mansfield, Valts Ernštreits, Yuval Pinter, Cassandra L. Jacobs, Ryan Cotterell, Mans Hulden, and David Yarowsky. 2020. UniMorph 3.0: Universal Morphology. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 3922–3931, Marseille, France. European Language Resources Association.
- Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu, Chaitanya Malaviya, Lawrence Wolf-Sonkin, Garrett Nicolai, Christo Kirov, Miikka Silfverberg, Sabrina J. Mielke, Jeffrey Heinz, Ryan Cotterell, and Mans Hulden. 2019. The SIGMORPHON 2019 shared task: Morphological analysis in context and crosslingual transfer for inflection. In Proceedings of the 16th Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 229–244, Florence, Italy. Association for Computational Linguistics.
- Tatiana Merzhevich, Nkonye Gbadegoye, Leander Girrbach, Jingwen Li, and Ryan Soh-Eun Shim. 2022. Modelling Morphological Inflection with Data-Driven and Rule-Based Approaches. In Proceedings of the SIGMORPHON 2022 Shared Task: Morphological Inflection, Seattle. North American Chapter of the Association for Computational Linguistics.
- J. Mistrík. 1988. A Grammar of Contemporary Slovak. Slovenské pedagogické nakladatel'stvo.
- Zoljargal Munkhjargal, Altangerel Chagnaa, and Purev Jaimai. 2016. Morphological transducer for Mongolian. In *International Conference on Computational Collective Intelligence*, pages 546–554. Springer.
- Saliha Muradoglu, Nicholas Evans, and Ekaterina Vylomova. 2020. Modelling verbal morphology in Nen. In Proceedings of the The 18th Annual Workshop of the Australasian Language Technology Association, pages 43–53, Virtual Workshop. Australasian Language Technology Association.
- Temir Nabiyev. 2015. *Kazakh Language: 101 Kazakh Verbs*. Preceptor Language Guides, Online.
- Naonori Nagaya. 2011. *The Lamaholot language of Eastern Indonesia*. Ph.D. thesis, Rice University, Houston, TX.
- Naonori Nagaya. 2012. *The Lamaholot language of eastern Indonesia*. Ph.D. thesis, Rice University.
- Garrett Nicolai and Miikka Silfverberg. 2020. Noise isn't always negative: Countering exposure bias in

sequence-to-sequence inflection models. In *Proceed-ings of the 28th International Conference on Computational Linguistics*, pages 2837–2846, Barcelona, Spain (Online). International Committee on Computational Linguistics.

- I Novak, M Penttonen, A Ruuskanen, and L Siilin. 2019. Karel'skiy yazyk v grammatikakh (Karelian in grammars). Sravnitel'noe issledovanie foneticheskoy I morfologicheskoy sistem–Petrozavodsk: KarRC RAS, page 22.
- Tiago Pimentel, Maria Ryskina, Sabrina J. Mielke, Shijie Wu, Eleanor Chodroff, Brian Leonard, Garrett Nicolai, Yustinus Ghanggo Ate, Salam Khalifa, Nizar Habash, Charbel El-Khaissi, Omer Goldman, Michael Gasser, William Lane, Matt Coler, Arturo Oncevay, Jaime Rafael Montoya Samame, Gema Celeste Silva Villegas, Adam Ek, Jean-Philippe Bernardy, Andrey Shcherbakov, Aziyana Bayyr-ool, Karina Sheifer, Sofya Ganieva, Matvey Plugaryov, Elena Klyachko, Ali Salehi, Andrew Krizhanovsky, Natalia Krizhanovsky, Clara Vania, Sardana Ivanova, Aelita Salchak, Christopher Straughn, Zoey Liu, Jonathan North Washington, Duygu Ataman, Witold Kieraś, Marcin Woliński, Totok Suhardijanto, Niklas Stoehr, Zahroh Nuriah, Shyam Ratan, Francis M. Tyers, Edoardo M. Ponti, Grant Aiton, Richard J. Hatcher, Emily Prud'hommeaux, Ritesh Kumar, Mans Hulden, Botond Barta, Dorina Lakatos, Gábor Szolnok, Judit Ács, Mohit Raj, David Yarowsky, Ryan Cotterell, Ben Ambridge, and Ekaterina Vylomova. 2021. SIGMORPHON 2021 shared task on morphological reinflection: Generalization across languages. In Proceedings of the 18th SIGMOR-PHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 229–259, Online. Association for Computational Linguistics.
- Donald A Ringe. 2017. From Proto-Indo-European to Proto-Germanic, volume 1. Oxford University Press.
- Carol Rounds. 2009. *Hungarian: An essential grammar*. Routledge.
- Mohammad Salehi and Aydin Neysani. 2017. Receptive intelligibility of Turkish to Iranian-Azerbaijani speakers. *Cogent Education*, 4(1):1326653.
- Andreas Scherbakov. 2020. The UniMelb submission to the SIGMORPHON 2020 shared task 0: Typologically diverse morphological inflection. In Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 177–183.
- Andrey Scherbakov and Ekaterina Vylomova. 2022. Morphology is not just a Naïve Bayes! In *Proceedings of the SIGMORPHON 2022 Shared Task: Morphological Inflection*, Seattle. North American Chapter of the Association for Computational Linguistics.
- Simon Clematide Silvan Wehrli and Peter Makarov. 2022. CLUZH at SIGMORPHON 2022 Shared

Tasks on Morpheme Segmentation and Inflection Generation. In *Proceedings of the SIGMORPHON* 2022 Shared Task: Morphological Inflection, Seattle. North American Chapter of the Association for Computational Linguistics.

- Dima Taji, Salam Khalifa, Ossama Obeid, Fadhl Eryani, and Nizar Habash. 2018. An Arabic morphological analyzer and generator with copious features. In *Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonology, and Morphology*, pages 140–150, Brussels, Belgium. Association for Computational Linguistics.
- Turkicum. 2019. *The Kazakh Verbs: Review Guide*. Preceptor Language Guides, Online.
- Francis Tyers and Karina Mishchenkova. 2020. Dependency annotation of noun incorporation in polysynthetic languages. In *Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020)*, pages 195–204.
- G.K. Verner. 1997. Jeniseiskije jazyki. Jazyki mira. Paleoasiatskije jazyki., pages 169–177.
- Ekaterina Vylomova, Jennifer White, Elizabeth Salesky, Sabrina J. Mielke, Shijie Wu, Edoardo Maria Ponti, Rowan Hall Maudslay, Ran Zmigrod, Josef Valvoda, Svetlana Toldova, Francis Tyers, Elena Klyachko, Ilya Yegorov, Natalia Krizhanovsky, Paula Czarnowska, Irene Nikkarinen, Andrew Krizhanovsky, Tiago Pimentel, Lucas Torroba Hennigen, Christo Kirov, Garrett Nicolai, Adina Williams, Antonios Anastasopoulos, Hilaria Cruz, Eleanor Chodroff, Ryan Cotterell, Miikka Silfverberg, and Mans Hulden. 2020. SIGMORPHON 2020 shared task 0: Typologically diverse morphological inflection. In Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 1-39, Online. Association for Computational Linguistics.
- Marcin Woliński and Witold Kieraś. 2016. The online version of grammatical dictionary of Polish. In *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)*, pages 2589–2594, Portorož, Slovenia. European Language Resources Association (ELRA).
- Marcin Woliński, Zygmunt Saloni, Robert Wołosz, Włodzimierz Gruszczyński, Danuta Skowrońska, and Zbigniew Bronk. 2020. *Słownik gramatyczny języka polskiego*, 4th edition. Warsaw. http://sgjp.pl.
- Shijie Wu, Ryan Cotterell, and Mans Hulden. 2021. Applying the transformer to character-level transduction. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 1901–1907, Online. Association for Computational Linguistics.
- Changbing Yang, Ruixin Yang, Garrett Nicolai, and Miikka Silfverberg. 2022. Generalizing Morphological Inflection Systems to Unseen Lemmas. In *Proceedings of the SIGMORPHON 2022 Shared Task:*

Morphological Inflection, Seattle. North American Chapter of the Association for Computational Linguistics.

He Zhou, Juyeon Chung, Sandra Kübler, and Francis Tyers. 2020. Universal dependency treebank for Xibe. In Proceedings of the Fourth Workshop on Universal Dependencies (UDW 2020), pages 205–215.

A Lemma and Feature Overlap in 2018

Under the hypothesis that systems struggle at generalization to novel lemmas or feature sets, the proportion of test items which are novel should serve as a performance ceiling. Tables 2-3 show an apparent ceiling effect for two closely related highly agglutinative languages, Turkish and Azeri. This appendix provides performance and ceiling numbers for both lemma and feature overlap for the best performing system on each language on the low training size condition in the 2018 inflection task (Cotterell et al., 2018). This condition was chosen for illustration because it showed the most language-to-language variation in overlaps.

Tables 10-11 show a ceiling effect for feature overlap in the low training condition in 2018 task. The best systems manage to surpass the hypothesized ceiling for only 17 of 104 languages, most of which are agglutinative. In contrast, lemma overlap, shown in Tables 12-13, does not seem to produce a ceiling effect. The best systems surpass it for 74 of 104 languages, which can only possible if the systems possess a significant ability to generalize to unseen lemmas.

Language	F Overlap%	Acc%	Δ	Language	F Overlap%	Acc%	Δ
Adyghe	98.3	90.6	-7.7	Macedonian	79.2	68.8	-10.4
Albanian	54.8	36.4	-18.4	Maltese	99.0	49.0	-50.0
Arabic	54.2	45.2	-9.0	Mapudungun	88.0	86.0	-2.0
Armenian	55.3	64.9	9.6	Middle French	86.7	84.5	-2.2
Asturian	65.2	74.6	9.4	Middle High German	94.0	84.0	-10.0
Azeri	71.0	65.0	-6.0	Middle Low German	92.0	54.0	-38.0
Bashkir	98.0	77.8	-20.2	Murrinhpatha	98.0	38.0	-60.0
Basque	5.6	13.3	7.7	Navajo	88.9	20.8	-68.1
Belarusian	86.3	33.4	-52.9	Neapolitan	90.0	89.0	-1.0
Bengali	83.0	72.0	-11.0	Norman	88.0	66.0	-22.0
Breton	74.0	72.0	-2.0	Northern Sami	69.1	35.8	-33.3
Bulgarian	66.1	62.9	-3.2	North Frisian	85.0	45.0	-40.0
Catalan	86.9	72.5	-14.4	Norwegian Bokmaal	99.3	90.1	-40.0
	95.0	96.0	-14.4 1.0		99.3 98.3		-14.7
Classical Syriac				Norwegian Nynorsk		83.6	
Cornish	68.0	40.0	-28.0	Occitan	91.0	77.0	-14.0
Crimean Tatar	98.0	91.0	-7.0	Old Armenian	47.4	42.0	-5.4
Czech	56.7	46.5	-10.2	Old Church Slavonic	97.0	53.0	-44.0
Danish	96.2	87.7	-8.5	Old English	81.0	46.5	-34.5
Dutch	95.2	69.3	-25.9	Old French	65.8	46.2	-19.6
English	100.	91.8	-8.2	Old Irish	46.0	8.0	-38.0
Estonian	70.3	35.2	-35.1	Old Saxon	68.3	46.6	-21.7
Faroese	85.7	49.8	-35.9	Pashto	59.0	48.0	-11.0
Finnish	58.1	25.7	-32.4	Persian	54.7	67.6	12.9
French	85.5	66.6	-18.9	Polish	75.9	49.4	-26.5
Friulian	89.0	79.0	-10.0	Portuguese	73.7	75.8	2.1
Galician	73.0	61.1	-11.9	Quechua	21.4	70.2	48.8
Georgian	93.8	88.2	-5.6	Romanian	79.4	46.2	-33.2
German	79.6	67.1	-12.5	Russian	80.2	53.5	-26.7
Greek	57.7	32.3	-25.4	Sanskrit	68.9	58.0	-10.9
Greenlandic	100.	80.0	-20.0	Scottish Gaelic	100.	74.0	-26.0
Haida	45.0	63.0	18.0	Serbo Croatian	34.5	44.8	10.3
Hebrew	82.4	56.7	-25.7	Slovak	90.0	51.8	-38.2
Hindi	38.8	78.0	39.2	Slovene	70.8	58.0	-12.8
Hungarian	78.9	48.2	-30.7	Sorani	38.2	40.1	1.9
Icelandic	92.2	56.2	-36.0	Spanish	82.7	73.2	-9.5
Ingrian	100.	46.0	-54.0	Swahili	39.0	73.2 72.0	33.0
Irish	82.7	37.7	-34.0	Swalin	95.0	72.0	-16.0
Italian				Tatar			
	82.8	57.4	-25.4		98.0	90.0	-8.0
Kabardian	99.0	92.0	-7.0	Telugu	86.0	96.0	10.0
Kannada	74.0	61.0	-13.0	Tibetan	100.	58.0	-42.0
Karelian	88.0	94.0	6.0	Turkish	39.6	39.5	-0.1
Kashubian	100.	68.0	-32.0	Turkmen	100.	90.0	-10.0
Kazakh	100.	86.0	-14.0	Ukrainian	85.4	57.1	-28.3
Khakas	100.	86.0	-14.0	Urdu	41.3	72.5	31.2
Khaling	22.0	33.8	11.8	Uzbek	75.0	92.0	17.0
Kurmanji	90.2	87.4	-2.8	Venetian	88.5	78.8	-9.7
Ladin	77.0	72.0	-5.0	Votic	94.0	34.0	-60.0
Latin	52.3	33.1	-19.2	Welsh	88.0	55.0	-33.0
Latvian	80.1	57.3	-22.8	West Frisian	100.	56.0	-44.0
Lithuanian	65.4	32.6	-32.8	Yiddish	100.	87.0	-13.0
Livonian	73.0	35.0	-38.0	Zulu	43.5	33.0	-10.5
Lower Sorbian	75.9	54.3	-21.6				

Table 10: Difference between proportion of 2018 test set items with *feature overlap* and best performance in the low training condition (Adyghe-Lower Sorbian). Bolded rows indicate better percent correct than overlap.

B Full Results by Language

This section provides performance breakdowns by overlap type for each individual language for both small training (Tables 14-16) and large training (17-18) conditions. Data partition sizes can be found in Table 5. Table 11: Difference between proportion of 2018 test set items with *feature overlap* and best performance in the low training condition (Macedonian-Zulu). Bolded rows indicate better percent correct than percent overlap.

C Performance by Part-of-Speech

This section provides performance breakdowns by part-of-speech for both small training (Tables 19-22) and large training (Tables 23-26) conditions. Information on the four most common parts-ofspeech in the data overall: verbs V, nouns N, adjectives ADJ, and participles V.PTCP is provided. Results for TüMorph-FST are provided separately in Table 27.

Language	L Overlap%	Acc%	Δ	Language	L Overlap%	Acc%	Δ
Adyghe	4.6	90.6	86.0	Macedonian	0.8	68.8	68.
Albanian	26.3	36.4	10.1	Maltese	54.0	49.0	-5.0
Arabic	3.4	45.2	41.8	Mapudungun	100.	86.0	-14.
Armenian	2.2	64.9	62.7	Middle French	17.5	84.5	67.
Asturian	22.0	74.6	52.6	Middle High German	98.0	84.0	-14.
Azeri	36.0	65.0	29.0	Middle Low German	78.0	54.0	-24
Bashkir	8.7	77.8	69.1	Murrinhpatha	98.0	38.0	-60
Basque	87.8	13.3	-74.5	Navajo	17.9	20.8	2.9
Belarusian	10.2	33.4	23.2	Neapolitan	96.0	89.0	-7.
Bengali	53.0	72.0	19.0	Norman	100.	66.0	-34
Breton	86.0	72.0	-14.0	North Frisian	88.0	45.0	-43
Bulgarian	5.4	62.9	57.5	Northern Sami	6.3	35.8	29.
Catalan	5.5	72.5	67.0	Norwegian Bokmaal	2.1	90.1	88.
Classical Syriac	47.0	96.0	49.0	Norwegian Nynorsk	1.5	83.6	82.
Cornish	100.	40.0	-60.0	Occitan	43.0	77.0	34.
Crimean Tatar	4.0	91.0	87.0	Old Armenian	3.7	42.0	38.
Crimean Tatar	3.4	46.5	43.1	Old Church Slavonic	53.0	53.0	0.0
Danish	3.2	87.7	4 3.1 84.5	Old English	10.3	46.5	36.
Dutch	5.2 1.4	69.3	67.9	Old English Old French	5.9	46.5	
		09.3 91.8	91.3	Old Irish	90.0		
English	0.5					8.0	-82. 28.
Estonian	12.8	35.2	22.4	Old Saxon	18.4	46.6	
Faroese	3.0	49.8	46.8	Pashto	35.0	48.0	13.
Finnish	0.2	25.7	25.5	Persian	30.3	67.6	37.
French	1.6	66.6	65.0	Polish	1.6	49.4	47.
Friulian	42.0	79.0	37.0	Portuguese	2.2	75.8	73.
Galician	17.8	61.1	43.3	Quechua	17.0	70.2	53.
Georgian	3.0	88.2	85.2	Romanian	4.0	46.2	42.
German	0.8	67.1	66.3	Russian	0.4	53.5	53.
Greek	2.1	32.3	30.2	Sanskrit	13.3	58.0	44.'
Greenlandic	100.	80.0	-20.0	Scottish Gaelic	80.0	74.0	-6.0
Haida	100.	63.0	-37.0	Serbo Croatian	0.9	44.8	43.
Hebrew	17.4	56.7	39.3	Slovak	10.4	51.8	41.
Hindi	33.1	78.0	44.9	Slovene	5.3	58.0	52.
Hungarian	0.6	48.2	47.6	Sorani	52.5	40.1	-12.
Icelandic	2.2	56.2	54.0	Spanish	2.5	73.2	70.
Ingrian	94.0	46.0	-48.0	Swahili	78.0	72.0	-6.0
Irish	2.7	37.7	35.0	Swedish	1.0	79.0	78.
Italian	1.5	57.4	55.9	Tatar	5.0	90.0	85.
Kabardian	33.0	92.0	59.0	Telugu	100.	96.0	-4.0
Kannada	51.0	61.0	10.0	Tibetan	80.0	58.0	-22.
Karelian	100.	94.0	-6.0	Turkish	2.6	39.5	36.
Kashubian	88.0	68.0	-20.0	Turkmen	84.0	90.0	6.0
Kazakh	100.	86.0	-14.0	Ukrainian	5.9	57.1	51.
Khakas	76.0	86.0	10.0	Urdu	76.9	72.5	-4.4
Khaling	18.1	33.8	15.7	Uzbek	100.	92.0	-4.
Kurmanji	1.1	33.8 87.4	86.3	Venetian	24.3	92.0 78.8	-o.(54.
Ladin	47.0	87.4 72.0	80.3 25.0	Votic	24.3 92.0	7 8.8 34.0	-58.
			25.0 32.2	Votic Welsh	92.0 39.0		
Latin Latvian	0.9	33.1				55.0	16.
Latvian	1.4	57.3	55.9	West Frisian	61.0	56.0	-5.0
Lithuanian	9.3	32.6	23.3	Yiddish	7.0	87.0	80.
Livonian	40.0	35.0	-5.0	Zulu	18.9	33.0	14.
Lower Sorbian	10.3	54.3	44.0				

Table 12: Difference between proportion of 2018 test set items with *lemma overlap* and best performance in the low training condition (Adyghe-Lower Sorbian). Bolded rows indicate better percent correct than overlap.

Table 13: Difference between proportion of 2018 test set items with *lemma overlap* and best performance in the low training condition (Macedonian-Zulu). Bolded rows indicate better percent correct than percent overlap.

both 70.253 58.861 - - 66.456 72.785 68.354 43.670 lemma 38.710 17.512 - - 34.562 38.710 42.396 8.756 neither 38.511 12.709 - - 32.092 34.660 36.072 11.933 ara overall 66.566 32.581 - - 62.857 47.870 65.652 22.757 both 71.429 50.000 - - 61.290 54.839 65.591 0 74.666 2.051 0 74.766 75.077 42.256 61.128 2.051 asm overall 57.286 30.452 - - 38.995 55.025 54.673 262.31 both 74.760 57.692 - - 56.093 65.711 61.649 56.452 reatures 72.043 65.591 - - 56.093 65.711 61.649 56.452 neit	Lang	Partition	CLUZH	Flexica	OSU	TüM FST	TüM Main	UBC	Neural	NonNeur
both 70.253 58.861 - - - 66.456 72.785 68.354 43.671 features 70.307 61.330 - - 38.222 66.503 61.350 88.03 neither 38.511 12.709 - - 32.092 34.660 36.072 11.933 ara overall 66.566 32.581 - - 62.857 47.870 65.965 22.757 both 71.429 50.000 - - 67.857 60.714 75.00 39.280 features 74.614 58.719 - - 71.530 55.215 64.632 26.331 both 74.766 57.692 - - 38.995 55.025 54.673 26.231 lemma 40.562 0.0 - - 15.637 43.436 11.892 - 38.995 5.025 54.673 76.032 76.902 - 31.34 56.131 51.641 38.	ang	overall	54.241	37.075	_	_	45.962	51.346	49.822	33.215
features 70.307 61.350 - - 58.282 66.503 61.350 63.072 11.933 ara overall 66.566 32.581 - - - 32.87 67.857 60.714 75.00 59.2275 both 71.429 50.000 - - 67.857 60.714 75.00 53.231 70.700 53.282 neither 59.487 10.667 - - 53.995 55.025 54.673 26.313 asm overall 75.286 30.452 - - 38.995 55.025 54.673 26.371 61.418 20.331 asm overall 40.562 0.591 - - - 56.033 65.131 55.015 54.633 75.902 - 15.637 65.131 55.445 75.902 - 15.314 56.131 55.455 57.902 25.000 18.101 75.902 23.460 24.912 23.46 23.482 23.48	U	both	70.253		_	_	66.456		68.354	43.671
neither 38:511 12.709 - - 32.092 34.660 36.071 11.933 ara overall 65.366 32.881 - - 62.857 60.714 75.000 39.280 lemma 63.441 9.677 - - 61.290 54.339 65.501 7.000 47.560 neither 59.487 10.667 - - 55.077 42.256 61.128 2.051 asm 0.004 74.760 57.092 - - 63.702 68.029 70.192 2.47.113 lemma 40.552 0.0 - - 55.073 43.366 41.892 0.385 preither 43.436 0 - - 56.033 65.711 61.649 66.432 preither 43.436 0.5041 57.002 - 51.314 56.31 57.902 21.873 preither 72.443 8.826 57.902 - 53.134 56.13		lemma	38.710	17.512	_	_	34.562	38.710	42.396	8.756
ara both for any for		features	70.307	61.350	-	_	58.282	66.503	61.350	58.037
both 71.429 50.000 - - - 61.280 54.83 65.591 0 features 74.614 58.719 - - 71.530 52.313 70.700 47.568 asm overall 57.286 30.452 - - 35.077 42.256 61.128 20.51 asm overall 67.362 - - 35.077 42.256 61.128 20.51 both 74.760 57.692 - - 63.702 68.029 70.192 47.118 reither 43.436 65.591 - - 56.093 65.771 61.495 64.530 neither 43.436 58.856 57.902 - 53.134 56.131 55.041 57.902 lemma 01.554 58.856 57.902 - 53.134 56.13 55.041 25.00 88.493 66.522 12.021 21.817 lemma 01.60.01 00 0 0		neither	38.511	12.709	-	_	32.092	34.660	36.072	11.938
lemma features 63.441 9.677 - - - 61.290 54.839 65.91 0. asm overall 57.286 30.452 - - - 73.500 52.313 70.700 47.566 both 74.760 57.692 - - - 53.072 68.092 70.192 47.115 lemma 40.562 0 - - - 55.073 65.318 43.171 47.178 18.181 18.070 features 74.656 0 - - 55.073 65.435 18.92 0.38 both 26.562 25.002 - 13.13 55.038 64.393 66.438 72.600 reinther 77.686 76.033 76.033 - 67.806 62.173 65.522 71.625 70.523 70.532 70.532 70.532 70.532 70.532 70.532 70.533 70.033 - 68.97 70.060 70.00 70.00	ara	overall	66.566	32.581	-	_	62.857	47.870	65.965	22.757
features 74.614 58.719 - - 71.530 52.313 70.00 47.562 asm overall 57.286 30.452 - - 55.077 42.256 61.128 2.051 asm overall 57.286 30.452 - - 63.702 68.029 70.192 47.117 47.189 1.807 features 72.043 65.591 - - 55.037 45.436 41.892 0.336 bra overall 60.354 58.856 57.902 - 53.134 56.131 55.041 57.902 bra overall 26.562 25.602 7.000 - 65.77 25.000 24.1875 25.000 24.387 71.6637 features 74.668 76.027 71.233 - 67.808 68.493 66.438 72.602 70.223 76.033 etatures 100.00 0 0 0 0 0 0 0 0 <		both	71.429	50.000	-	_	67.857	60.714	75.000	39.286
neither 59.487 10.667 - - 55.075 42.256 61.128 2.051 asm overall 57.286 30.452 - - 38.995 55.025 54.673 26.231 both 74.760 57.692 - - 37.02 68.029 70.192 47.113 lemma 40.562 0 - - 55.033 65.771 61.649 56.452 neither 74.343 65.52 25.652 25.600 - 21.875 25.000 28.125 21.87 lemma 21.739 17.391 18.012 - 16.770 22.360 20.477 18.013 features 74.686 76.033 76.033 - 68.871 71.625 70.523 76.033 ckt overall 10.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th></th> <th>lemma</th> <th>63.441</th> <th>9.677</th> <th>-</th> <th>_</th> <th>61.290</th> <th>54.839</th> <th>65.591</th> <th></th>		lemma	63.441	9.677	-	_	61.290	54.839	65.591	
asm overall 57.286 30.452 - - 38.995 55.025 54.673 22.64.73 22.64.73 22.64.73 22.64.73 24.711 lemma 40.562 0 - - 63.702 68.029 70.192 47.113 reatures 72.043 65.591 - - 55.037 61.649 55.041 57.041 67.892 53.134 56.131 55.041 57.047 71.523 70.533 70.633 70.633 70.633 70.633 70.533 70.633 70.533 70.503 66.891 20.500 21.500 0 0 0 0 0 0 0 0 0 0 0 0		features			-	_				47.568
both 74.760 57.692 - - 63.702 68.029 70.192 47.1189 1.807 features 72.043 65.591 - - 23.494 44.177 47.189 1.807 neither 43.436 0 - - 15.637 43.436 1.802 0.314 55.611 55.001 28.125 21.875 25.000 28.125 21.875 1.807 1.200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					_	_				
lemma 40,562 0 - - 23,494 44,177 47,189 1.807 neither 43,436 0 - - 56,093 65,771 61,649 56,455 neither 43,436 0 - - 15,637 43,436 41,892 0.386 bra 600,552 26,562 25,500 - 53,114 56,131 55,041 57,902 lemma 74,658 76,027 71,233 - 67,808 68,493 66,438 72,053 76,033 - 67,808 68,493 66,438 72,060 0	asm				-	_				26.231
features 72.043 65.591 - - 56.093 65.771 61.649 56.437 neither 43.436 0 - - 15.637 43.436 41.892 0.386 bra 0.0354 58.856 57.902 - 53.134 55.61131 55.041 57.902 both 26.562 26.500 - 21.875 25.000 28.125 21.875 neither 77.686 76.027 71.233 - 67.808 68.493 66.438 72.603 neither 77.686 76.033 70.03 19.555 8.696 21.739 6.522 13.043 both 0 0 0 0 0.00 0 0.00 0 0.00 0<					-	-				
neither 43.436 0 - - 15.637 43.436 41.892 0.386 bra overall 60.354 58.856 57.902 - 53.134 56.131 55.041 57.902 lemma 21.739 17.391 18.012 - 16.770 22.360 28.125 71.637 18.012 neither 77.686 76.033 76.033 - 68.871 71.625 70.523 76.033 ckt overall 10.870 10.870 19.565 8.696 21.739 6.522 13.043 bth 0 <					-	-				
bra overall 60.354 58.856 57.902 - 53.134 56.131 55.041 57.907 lemma 26.562 25.000 - 21.875 25.000 28.125 21.875 lemma 71.686 76.027 71.233 - 67.808 68.493 66.438 72.603 ckt overall 13.043 10.870 19.565 8.696 21.739 6.522 13.043 both 0					-	-				
both 26.562 25.000 - 21.875 25.000 28.125 21.875 lemma 21.739 17.391 18.012 - 16.770 22.360 20.497 18.012 neither 77.686 76.023 76.033 - 68.871 71.625 70.523 76.033 ekt overall 13.043 10.870 19.565 8.696 21.739 6.522 13.043 both 0 <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th>						_				
lemma features 21,739 17,391 18,012 - - 16,770 22,360 20,497 18,012 neither 77,686 76,027 71,233 - 67,808 68,493 66,438 72,603 ckt overall 13,043 10,870 10,870 19,565 8,696 21,739 6,522 13,043 both 0 <th>bra</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th>	bra					-				
features neither 74.658 76.027 71.233 - 67.808 68.493 66.438 72.603 ckt overall 13.043 10.870 <th></th>										
neither 77.686 76.033 76.033 - 68.871 71.625 70.523 76.033 ckt overall 13.043 10.870 10.870 10.870 19.565 8.696 21.739 6.522 13.043 inther 17.241 13.079 0 <										
ckt overall 13.043 10.870 10.870 19.565 8.696 21.739 6.522 13.043 both 0 <t< th=""><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th></t<>						_				
both 0						-				
lemma features 0 0 6.250 100.00 12.500 18.750 0 12.500 0 10.000 0 100.00 0 100.00 0 12.500 0 14.7241 evn overall 28.514 3.328 - - 23.867 34.481 29.260 25.514 gant both 81.258 2.312 - - 0 50.000 50.000 0 neither 34.480 3.604 - - 27.191 39.394 32.432 31.612 gant overall 56.704 26.257 20.950 - - - - - - - - - - - - - - - - <td< th=""><th>ckt</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	ckt									
features neither 100.00 100.00 0 100.00 0 100.00 0 100.00 evn overall 28.514 3.328 - - 23.867 34.481 29.260 25.014 both 100.00 100.00 - - 100.00 100.00 100.00 100.00 100.00 100.00 100.00 lemma 14.258 2.312 - - 15.992 22.736 21.580 9.441 features 50.000 50.000 3.604 - - 0 50.000 50.000 0 neither 34.480 3.604 - - 27.191 39.394 32.432 31.613 got overall 56.704 26.257 20.950 - - 44.693 42.737 22.063 both 88.095 71.429 33.33 - - 38.924 35.442 42.456 got overall 66.702 40.224 52										
neither 17.241 13.793 17.241 24.138 6.897 20.690 3.448 17.241 evn overall 28.514 3.328 - - 23.867 34.481 29.260 25.014 both 100.00 100.013.0										
evn overall 28.514 3.328 - - 23.867 34.481 29.260 25.014 both 100.00 100										
both 100.00 100.00 - - - 100.00 <th1< th=""><th></th><th></th><th></th><th></th><th>17.241</th><th></th><th></th><th></th><th></th><th></th></th1<>					17.241					
lemma 14.258 2.312 - - 15.992 22.736 21.580 9.441 features 50.000 50.000 - - 0 50.000 50.000 0 neither 34.480 3.604 - - 27.191 39.394 32.432 31.613 gml overall 56.704 26.257 20.950 - - 44.693 42.737 22.065 both 88.095 71.429 33.333 - - 88.095 97.619 40.476 lemma 52.522 20.253 19.304 - - 38.924 35.443 19.620 features 5.2 20.253 19.304 -	evii				-	—				
features neither 50.000 50.000 - - 0 50.000 50.000 0 gnl overall 56.704 26.257 20.950 - - 44.693 42.737 22.067 both 88.095 71.429 33.33 - - 88.095 97.619 40.477 lemma 52.532 20.253 19.304 - - 38.924 35.443 19.620 features -					-	—				
neither 34.480 3.604 - - 27.191 39.394 32.432 31.612 gml overall 56.704 26.257 20.950 - - 44.693 42.737 22.067 both 88.095 71.429 33.333 - - 88.095 97.619 40.476 lemma 52.532 20.253 19.304 - - 38.924 35.443 19.620 features -					_	_				
gnl overall 56.704 26.257 20.950 - - 44.693 42.737 22.067 both 88.095 71.429 33.333 - - 88.095 97.619 40.476 lemma 52.532 20.253 19.304 - - 38.924 35.443 19.620 neither -					_	_				
both 88.095 71.429 33.333 - - 88.095 97.619 40.476 lemma 52.532 20.253 19.304 - - 38.924 35.443 19.620 neither -	σml				20.950	_				
lemma features 52.532 20.253 19.304 - - 38.924 35.443 19.620 neither - <t< th=""><th>8</th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th></t<>	8						_			
features neither -						_	_			
neither - </th <th></th> <th></th> <th>_</th> <th></th> <th>_</th> <th>_</th> <th>_</th> <th></th> <th>_</th> <th>_</th>			_		_	_	_		_	_
both 84.853 66.620 87.237 - 76.578 81.487 84.151 63.114 lemma 32.500 8.875 15.125 - 26.500 31.875 30.125 15.125 neither 52.121 16.970 32.727 - 49.697 54.545 41.212 32.727 got overall 51.204 18.154 - - 47.693 61.384 60.582 38.816 both 78.082 36.301 - - 81.507 89.041 86.986 72.603 features 76.196 32.057 - - 68.660 78.349 76.675 71.292 neither 26.730 3.699 - - 23.628 41.527 42.005 7.757 guj overall 66.924 47.141 49.253 - 40.855 63.112 39.979 48.429 both 96.728 86.518 96.073 - 64.136 94.895 63		neither	_	_	_	_	_	_	_	_
both 84.853 66.620 87.237 - 76.578 81.487 84.151 63.114 lemma 32.500 8.875 15.125 - 26.500 31.875 30.125 15.125 features 93.970 90.955 95.980 - 69.849 91.457 75.377 87.435 neither 52.121 16.970 32.727 - 49.697 54.545 41.212 32.727 got overall 51.204 18.154 - - 47.693 61.384 60.582 38.816 both 78.082 36.01 - - 81.507 89.041 86.986 72.602 lemma 26.437 5.747 - - 63.660 78.349 76.675 71.292 neither 26.730 3.699 - - 23.628 41.527 42.005 7.757 guj overall 66.924 47.141 49.253 - 40.855 63.112 39.	goh	overall	60.629	40.224	52.637	-	52.158	59.03	56.420	42.568
features 93.970 90.955 95.980 - 69.849 91.457 75.377 87.437 got overall 51.204 18.154 - - 49.697 54.545 41.212 32.727 got overall 51.204 18.154 - - 47.693 61.384 60.582 38.816 both 78.082 36.301 - - 81.507 89.041 86.986 72.603 lemma 26.437 5.747 - - 34.483 52.299 50.575 4.023 features 76.196 32.057 - - 68.660 78.349 76.675 71.292 neither 26.730 3.699 - - 23.628 41.527 42.005 7.757 guj overall 66.924 47.141 49.253 - 40.855 63.112 39.979 48.429 both 96.728 86.518 96.073 - 64.136 94.895	0	both	84.853	66.620	87.237	_	76.578	81.487	84.151	63.114
neither 52.121 16.970 32.727 - 49.697 54.545 41.212 32.727 got overall 51.204 18.154 - - 47.693 61.384 60.582 38.816 both 78.082 36.301 - - 81.507 89.041 86.986 72.603 lemma 26.437 5.747 - - 34.483 52.299 50.575 4.023 features 76.196 32.057 - - 68.660 78.349 76.675 71.292 neither 26.730 3.699 - - 23.628 41.527 42.005 7.757 guj overall 66.924 47.141 49.253 - 40.855 63.112 39.979 48.429 both 96.728 86.518 96.073 - 64.136 94.895 63.743 93.717 lemma 34.143 5.468 1.580 - 17.861 30.741 12.272 <th></th> <th>lemma</th> <th>32.500</th> <th>8.875</th> <th>15.125</th> <th>_</th> <th>26.500</th> <th>31.875</th> <th>30.125</th> <th>15.125</th>		lemma	32.500	8.875	15.125	_	26.500	31.875	30.125	15.125
got overall 51.204 18.154 - - 47.693 61.384 60.582 38.816 both 78.082 36.301 - - 81.507 89.041 86.986 72.603 lemma 26.437 5.747 - - 34.483 52.299 50.575 4.023 features 76.196 32.057 - - 68.660 78.349 76.675 71.292 neither 26.730 3.699 - - 23.628 41.527 42.005 7.757 guj overall 66.924 47.141 49.253 - 40.855 63.112 39.979 48.429 both 96.728 86.518 96.073 - 64.136 94.895 63.743 93.717 lemma 34.143 5.468 1.580 - 17.861 30.741 12.272 1.580 neither 58.000 16.000 14.667 - 22.667 40.000 31.333 <th></th> <th>features</th> <th>93.970</th> <th>90.955</th> <th>95.980</th> <th>_</th> <th>69.849</th> <th>91.457</th> <th>75.377</th> <th>87.437</th>		features	93.970	90.955	95.980	_	69.849	91.457	75.377	87.437
both 78.082 36.301 - - 81.507 89.041 86.986 72.603 lemma 26.437 5.747 - - 34.483 52.299 50.575 4.023 features 76.196 32.057 - - 68.660 78.349 76.675 71.292 neither 26.730 3.699 - - 23.628 41.527 42.005 7.757 guj overall 66.924 47.141 49.253 - 40.855 63.112 39.979 48.429 both 96.728 86.518 96.073 - 64.136 94.895 63.743 93.717 lemma 34.143 5.468 1.580 - 17.861 30.741 12.272 1.580 features 94.118 90.686 91.667 - 22.667 40.000 31.333 14.667 heither 58.000 16.000 14.667 - 26.667 40.000 31.333 1		neither			32.727	_				32.727
lemma 26.437 5.747 - - 34.483 52.299 50.575 4.023 features 76.196 32.057 - - 68.660 78.349 76.675 71.292 neither 26.730 3.699 - - 23.628 41.527 42.005 7.757 guj overall 66.924 47.141 49.253 - 40.855 63.112 39.979 48.429 both 96.728 86.518 96.073 - 64.136 94.895 63.743 93.717 lemma 34.143 5.468 1.580 - 17.861 30.741 12.272 1.580 features 94.118 90.686 91.667 - 22.667 40.000 31.333 14.667 neither 58.000 16.000 14.667 - 22.667 40.000 31.333 14.667 both 77.804 44.630 - - 66.826 71.838 81.862 2	got			18.154	-	_				38.816
features 76.196 32.057 - - 68.660 78.349 76.675 71.292 guj overall 66.924 47.141 49.253 - 40.855 63.112 39.979 48.425 both 96.728 86.518 96.073 - 64.136 94.895 63.743 93.717 lemma 34.143 5.468 1.580 - 17.861 30.741 12.272 1.580 features 94.118 90.686 91.667 - 59.804 91.667 69.118 92.647 neither 58.000 16.000 14.667 - 22.667 40.000 31.333 14.667 both 77.804 44.630 - - 66.826 71.838 81.862 28.640 lemma 5.066 0.220 - - 0.881 0.441 1.322 61.67 both 77.804 44.630 - - 0.881 0.441 1.322 61.67 <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>-</th> <th></th> <th></th> <th></th> <th>72.603</th>					-	-				72.603
neither 26.730 3.699 - - 23.628 41.527 42.005 7.757 guj overall 66.924 47.141 49.253 - 40.855 63.112 39.979 48.429 both 96.728 86.518 96.073 - 64.136 94.895 63.743 93.717 lemma 34.143 5.468 1.580 - 17.861 30.741 12.272 1.580 features 94.118 90.686 91.667 - 59.804 91.667 69.118 92.647 neither 58.000 16.000 14.667 - 22.667 40.000 31.333 14.667 both 77.804 44.630 - - 66.826 71.838 81.862 28.640 lemma 5.066 0.220 - - 0.881 0.441 1.322 61.67 features 74.182 33.907 - - 57.487 68.675 75.904 20.48					-	-				
guj overall 66.924 47.141 49.253 - 40.855 63.112 39.979 48.429 both 96.728 86.518 96.073 - 64.136 94.895 63.743 93.717 lemma 34.143 5.468 1.580 - 17.861 30.741 12.272 1.580 features 94.118 90.686 91.667 - 59.804 91.667 69.118 92.647 neither 58.000 16.000 14.667 - 22.667 40.000 31.333 14.667 both 77.804 44.630 - - 66.826 71.838 81.862 28.640 lemma 5.066 0.220 - - 0.881 0.441 1.322 6.167 features 74.182 33.907 - - 57.487 68.675 75.904 20.482 neither 6.777 0 - - 0.916 0.183 0.549 5.128					-	-				
both 96.728 86.518 96.073 - 64.136 94.895 63.743 93.717 lemma 34.143 5.468 1.580 - 17.861 30.741 12.272 1.580 features 94.118 90.686 91.667 - 59.804 91.667 69.118 92.647 neither 58.000 16.000 14.667 - 22.667 40.000 31.333 14.667 both 77.804 44.630 - - 66.826 71.838 81.862 28.640 lemma 5.066 0.220 - - 0.881 0.441 1.322 6.167 features 74.182 33.907 - - 0.916 0.183 0.549 5.128 neither 6.777 0 - - 0.916 0.183 0.549 5.128 both - - - - - - - - - - -					-	_				
lemma 34.143 5.468 1.580 - 17.861 30.741 12.272 1.580 features 94.118 90.686 91.667 - 59.804 91.667 69.118 92.647 neither 58.000 16.000 14.667 - 22.667 40.000 31.333 14.667 heb overall 40.850 19.250 - - 31.150 35.150 39.650 14.750 both 77.804 44.630 - - 66.826 71.838 81.862 28.640 lemma 5.066 0.220 - - 0.881 0.441 1.322 6.167 features 74.182 33.907 - - 0.916 0.183 0.549 5.128 hsb overall 15.000 13.750 8.750 83.750 7.500 3.750 5.000 10.000 both - - - - - - - -	guj									
features 94.118 90.686 91.667 - 59.804 91.667 69.118 92.647 neither 58.000 16.000 14.667 - 22.667 40.000 31.333 14.667 heb overall 40.850 19.250 - - 31.150 35.150 39.650 14.750 both 77.804 44.630 - - 66.826 71.838 81.862 28.640 lemma 5.066 0.220 - - 0.881 0.441 1.322 6.167 features 74.182 33.907 - - 57.487 68.675 75.904 20.482 neither 6.777 0 - - 0.916 0.183 0.549 5.128 hsb overall 15.000 13.750 8.750 83.750 7.500 3.750 5.000 10.000 both - - - - - - - - -<						_				
neither 58.000 16.000 14.667 - 22.667 40.000 31.333 14.667 heb overall 40.850 19.250 - - 31.150 35.150 39.650 14.750 both 77.804 44.630 - - 66.826 71.838 81.862 28.640 lemma 5.066 0.220 - - 0.881 0.441 1.322 6.167 features 74.182 33.907 - - 57.487 68.675 75.904 20.482 neither 6.777 0 - - 0.916 0.183 0.549 5.128 hsb overall 15.000 13.750 8.750 83.750 7.500 3.750 5.000 10.000 both -						_				
heb overall 40.850 19.250 - - 31.150 35.150 39.650 14.750 both 77.804 44.630 - - 66.826 71.838 81.862 28.640 lemma 5.066 0.220 - - 0.881 0.441 1.322 6.167 features 74.182 33.907 - - 57.487 68.675 75.904 20.482 neither 6.777 0 - - 0.916 0.183 0.549 5.128 hsb overall 15.000 13.750 8.750 83.750 7.500 3.750 5.000 10.000 both -						_				
both 77.804 44.630 - - 66.826 71.838 81.862 28.640 lemma 5.066 0.220 - - 0.881 0.441 1.322 6.167 features 74.182 33.907 - - 57.487 68.675 75.904 20.482 neither 6.777 0 - - 0.916 0.183 0.549 5.128 hsb overall 15.000 13.750 8.750 83.750 7.500 3.750 5.000 10.000 both -	hah				14.007	_				
lemma 5.066 0.220 - - 0.881 0.441 1.322 6.167 features 74.182 33.907 - - 57.487 68.675 75.904 20.482 neither 6.777 0 - - 0.916 0.183 0.549 5.128 hsb overall 15.000 13.750 8.750 83.750 7.500 3.750 5.000 10.000 both - <th>neb</th> <th></th> <th></th> <th></th> <th>-</th> <th>_</th> <th></th> <th></th> <th></th> <th></th>	neb				-	_				
features neither 74.182 33.907 - - 57.487 68.675 75.904 20.482 neither 6.777 0 - - 0.916 0.183 0.549 5.128 hsb overall 15.000 13.750 8.750 83.750 7.500 3.750 5.000 10.000 both - <th></th> <th></th> <th></th> <th></th> <th>_</th> <th>_</th> <th></th> <th></th> <th></th> <th></th>					_	_				
neither 6.777 0 - - 0.916 0.183 0.549 5.128 hsb overall 15.000 13.750 8.750 83.750 7.500 3.750 5.000 10.000 both -					_	_				
hsb overall 15.000 13.750 8.750 83.750 7.500 3.750 5.000 10.000 both -					_	_				
both -	hsh				8 750	83 750				
lemma 7.692 0 0 61.538 0	1150		-	-	-	_		-		
features 100.00 66.667 66.667 66.667 0 33.333 100.00			7 692	0	0	61.538	0	0	0	0
		neruiei	12.500	11.002	7.012	02.004	0.250	1.000	1.000	7.012

Table 14: Partitioned test performance in the small training condition (ang-hsb). No *feature overlap* or *neither overlap* items for gml and no *both overlap* items for hsb were included in the test set.

Lang	Partition	CLUZH	Flexica	OSU	TüM FST	TüM Main	UBC	Neural	NonNeur
hsi	overall	16.667	13.333	20.000	96.667	0	13.333	0	20.000
	both	0	0	0	100.00	0	0	0	0
	lemma	11.111	5.556	16.667	94.444	0	16.667	0	16.667
	features	-	_	-	-	_	-	-	-
	neither	27.273	27.273	27.273	100.00	0	9.091	0	27.273
hun	overall	60.000	25.900	-	_	51.850	61.750	65.000	23.900
	both	85.000	60.000	-	_	85.000	85.000	90.000	52.500
	lemma	40.000	0	-	_	27.500	45.000	65.000	0
	features	80.295	51.423	-	-	71.338	80.400	78.925	47.313
	neither	39.959	0.618	-	-	32.441	43.254	50.360	0.824
hye	overall	82.350	39.250	-	-	61.450	86.250	64.750	38.750
	both	95.862	80.690	-	-	52.414	95.172	51.724	82.759
	lemma	67.722	0	-	-	43.038	74.684	45.570	3.165
	features	91.050	79.714	-	_	68.377	89.737	69.093	76.611
	neither	74.272	0	_	-	59.604	83.469	66.240	0.931
itl	overall	33.333	31.210	31.487	-	33.056	34.441	34.257	28.163
	both	42.353	41.176	43.529	-	47.059	43.529	48.235	28.235
	lemma	3.141	0	0	-	3.665	6.283	6.283	0
	features	65.702	65.702	66.370	_	60.802	62.138	59.465	61.247
	neither	6.704	2.235	1.676	_	10.615	12.570	14.246	1.676
kat	overall	59.200	34.350	-	-	47.800	51.800	60.200	43.600
	both	51.852	43.210	-	_	51.852	48.148	57.407	53.704
	lemma	16.995	3.695	-	_	7.389	14.532	23.399	6.404
	features	95.284	73.925	-	—	92.372	90.430	93.620	94.730
-	neither	48.383	9.705	-	-	24.754	34.740	47.961	10.689
kaz	overall	61.735	34.203	-	—	55.165	65.747	55.667	42.879
	both	96.800	64.800	-	-	83.467	96.800	83.467	85.611
	lemma	36.471	1.569	-	—	30.392	45.098	31.373	0
	features	98.686	70.115 0.800	-	_	94.745	97.701	95.567	100.00
ket	neither overall	16.200 33.577	18.978	35.036		<u>11.000</u> <u>13.139</u>	24.600 26.277	11.000	0 32.847
кеі	both	23.077	30.769	30.769	_	38.462	30.769	30.769	23.077
	lemma	12.500	0	12.500	_	2.083	2.083	0	12.500
	features	50.000	50.000	12.300 57.143	_	57.143	57.143	35.714	42.857
	neither	48.387	24.194	48.387	_	6.452	37.097	9.677	48.387
khk	overall	41.768	22.374		_	39.495	29.899	41.616	28.182
i i i i i	both	83.902	48.293	_	_	89.268	61.951	92.195	56.098
	lemma	0	0	_	_	0	0.352	0	0.352
	features	83.122	43.655	_	_	76.015	58.629	80.584	55.584
	neither	0	0	_	_	0	0.284	0	0.569
kor	overall	50.509	30.957	_	_	17.821	44.348	23.523	28.870
	both	70.588	59.276	_	_	41.176	57.466	54.299	55.656
	lemma	33.061	0.408	_	_	18.776	33.061	28.163	0
	features	71.658	62.433	_	_	20.989	62.968	25.134	59.358
	neither	29.200	1.200	_	_	7.467	25.600	11.333	0
krl	overall	41.333	23.497	_	-	10.421	45.842	16.182	5.411
	both	68.919	37.838	_	_	16.216	68.919	22.297	1.351
	lemma	19.540	1.149	-	_	2.299	27.011	9.195	0.575
	features	63.389	45.735	-	_	16.588	63.744	22.986	8.886
	neither	18.554	3.012	-	_	4.819	27.470	9.639	3.614
lud	overall	87.702	88.006	_	_	46.559	84.565	46.609	88.715
	both	91.954	95.402	-	-	93.103	93.103	91.954	96.552
	lemma	18.095	16.190	_	-	2.857	17.143	3.810	18.095
	features	94.091	95.227	-	-	93.977	95.114	93.409	95.909
	neither	89.159	88.606	-	_	0.996	81.305	1.659	89.159
mag	overall	64.419	58.140	57.209	-	51.163	56.744	51.163	55.349
-	both	53.333	44.444	37.778	-	31.111	51.111	40.000	31.111
	lemma	15.888	4.673	4.673	-	5.607	7.477	3.738	4.673
		0666	02 010	02 010		76.190	80.952	70.049	70.049
	features	86.667 83.815	83.810 79.191	83.810	-	/0.190	73.988	79.048	79.048 78.613

Table 15: Partitioned test performance in the small training condition (hsi-mag). No *feature overlap* items were included in the hsi test set.

Lang	Partition	CLUZH	Flexica	OSU	TüM FST	TüM Main	UBC	Neural	NonNeur
nds	overall	47.789	31.316	34.947	-	21.947	50.421	25.789	16.053
	both	65.560	46.863	72.079	_	38.376	67.897	43.665	32.226
	lemma	32.799	16.239	1.603	_	7.906	36.859	10.256	1.603
	features	57.547	48.113	59.434	-	29.245	52.830	34.906	26.415
	neither	15.556	24.444	0	_	0	11.111	4.444	0
non	overall	48.820	39.126	-	_	47.313	52.436	55.902	30.638
	both	61.602	50.276	-	_	56.630	62.431	69.613	47.238
	lemma	37.330	22.851	-	_	47.738	49.548	58.824	5.430
	features	63.054	61.248	_	_	49.918	61.741	56.322	60.755
	neither	34.602	21.280	-	_	38.408	38.581	44.637	7.785
pol	overall	71.800	43.300	-	_	53.850	78.350	59.250	30.100
	both	75.000	87.500	-	_	100.00	100.00	100.00	87.500
	lemma	90.909	9.091	-	_	72.727	90.909	72.727	0
	features	85.596	70.130	-	_	61.393	86.423	65.289	68.123
	neither	61.287	23.280	-	_	47.707	72.046	54.321	1.587
poma	overall	50.975	29.315	-	-	45.873	46.023	51.426	22.311
	both	70.588	64.706	-	_	58.824	47.059	70.588	52.941
	lemma	42.857	21.429	_	_	42.857	35.714	50.000	0
	features	61.020	44.694	-	_	55.816	54.388	57.041	42.245
	neither	40.789	13.563	-	_	35.830	37.854	45.547	2.328
sjo	overall	71.998	65.751	68.174	-	54.496	76.737	58.643	67.905
	both	71.739	73.370	70.652	_	70.652	75.543	76.087	68.478
	lemma	36.014	20.280	24.476	_	27.273	50.699	36.713	24.476
	features	93.103	91.512	91.512	_	89.257	92.971	89.125	91.379
	neither	63.191	53.397	59.400	_	20.695	69.510	27.172	59.400
slk	overall	74.500	51.600	-	-	56.05	84.100	61.000	38.450
	both	75.000	75.000	-	_	50.000	75.000	50.000	75.000
	lemma	80.000	60.000	-	_	80.000	80.000	80.000	20.000
	features	87.457	83.774	-	_	65.823	89.413	67.664	82.739
	neither	64.439	26.560	-	_	48.396	80.036	55.793	4.100
slp	overall	29.114	8.861	6.329	-	12.658	30.380	15.190	5.063
	both	100.00	100.00	100.00	_	100.00	100.00	100.00	100.00
	lemma	25.000	3.571	0	_	10.714	28.571	16.071	0
	features	66.667	33.333	66.667	_	33.333	33.333	33.333	33.333
	neither	27.778	11.111	5.556	_	5.556	27.778	0	5.556
tur	overall	61.250	18.350	-	_	19.250	85.800	34.600	16.600
	both	80.18	54.655	-	_	17.718	95.796	28.228	51.952
	lemma	58.957	0	-	_	10.087	89.391	24.000	0
	features	72.068	39.446	_	_	37.740	85.501	51.173	31.983
	neither	45.104	0	-	-	14.607	77.368	35.313	1.445
vep	overall	40.291	20.622	-	-	27.446	42.097	35.575	21.325
	both	54.762	47.619	-	-	42.857	52.381	45.238	40.476
	lemma	25.862	1.724	-	-	15.517	32.759	24.138	1.724
	features	56.624	40.598	-	_	39.850	53.632	46.154	40.385
	neither	24.556	1.045	-	-	15.361	30.930	25.496	3.03
								1	

Table 16: Partitioned test performance in the small training condition (nds-vep).

Lang	Partition	CLUZH	Flexica	OSU	TüM Main	UBC	Neural	NonNeur
ang	overall	64.855	41.138	44.540	60.945	59.980	61.097	43.118
	both	82.496	73.171	80.488	82.066	80.918	83.070	78.479
	lemma	48.356	11.693	10.840	42.509	41.778	41.048	10.840
	features	76.619	64.388	73.741	71.942	74.101	73.381	68.705
	neither	53.179	14.451	12.717	45.665	39.306	47.977	12.717
ara	overall	75.890	37.544	40.902	75.338	67.218	78.546	26.917
	both	79.964	66.302	80.874	81.603	74.317	81.239	52.823
	lemma	73.913	10.397	1.323	71.834	71.078	77.316	1.323
	features	81.655	65.548	78.747	78.523	65.548	81.879	50.783
	neither	67.872	7.872	2.766	68.936	56.170	73.617	2.766
asm	overall	70.653	34.271	43.467	63.065	75.628	76.784	31.859
	both	90.807	68.744	86.313	77.222	85.393	83.861	62.615
	lemma	50.909	0	1.111	49.091	65.758	69.697	1.111
	features	83.333	75.000	75.000	91.667	83.333	83.333	83.333
	neither	33.333	0	0	22.222	88.889	77.778	0
evn	overall	48.939	3.844	24.957	52.037	57.487	57.717	25.072
	both	66.667	66.667	0	66.667	66.667	66.667	66.667
	lemma	40.376	1.878	12.582	45.634	52.394	53.427	12.582
	features	_	_	_	_	_	_	_
	neither	62.370	6.667	44.593	62.074	65.481	64.444	44.593
got	overall	65.747	21.264	51.254	65.346	73.370	72.166	46.038
8	both	95.515	38.182	95.879	93.333	95.758	95.758	84.606
	lemma	35.723	3.522	4.654	38.239	52.201	49.560	4.654
	features	92.899	41.420	94.083	91.716	91.716	93.491	87.574
	neither	40.000	5.366	17.073	36.098	50.244	47.317	17.073
heb	overall	51.750	28.000	50.000	47.900	43.950	48.450	20.350
neo	both	94.100	55.900	94.400	94.400	86.500	96.600	35.100
	lemma	9.400	0.100	5.600	1.400	1.400	0.300	5.600
	features	_	-	-	-	-	-	-
	neither	_	_	_	_	_	_	_
hun	overall	72.350	32.950	47.100	68.150	74.900	77.200	37.250
nun	both	94.805	64.286	94.156	94.481	93.831	94.805	75.000
	lemma	54.603	2.540	1.270	45.397	60.000	61.905	1.270
	features	93.497	62.861	93.064	92.775	91.474	94.364	73.121
	neither	49.051	2.628	0.584	41.898	56.496	58.978	0.584
hye	overall	86.05	42.750	48.900	66.700	93.400	69.800	44.850
nye	both	97.935	85.841	97.640	61.357	98.083	61.947	90.708
	lemma	72.448	0	1.818	55.105	88.671	60.280	1.818
	features	94.410	84.783	94.099	91.304	94.720	90.062	83.540
	neither	82.456	0	0	80.702	92.632	89.474	0
kat	overall	74.350	45.100	52.400	78.850	83.200	87.250	45.500
και	both	95.098	79.289	94.608	95.956	98.284	97.426	77.696
	lemma	53.005	7.572	94.008 9.255	93.930 61.779	68.990	77.163	9.255
	features	96.739	95.652	9.233 96.739	96.739	96.739	97.283	9.233
		90.739 54.762						
ko-	neither		9.524	12.500	60.714	65.476	76.786	12.500
kaz	overall	58.375	34.203	49.198	53.611	65.747	55.667	42.879
	both	96.170	67.702	98.758	89.959	97.516 34.375	90.683	85.611
	lemma	20.867	0.806	0	17.44	34.375	20.867	0
	features	100.00	71.429	96.429	96.429	92.857	96.429	100.00
	neither	0	0	0	0	25.000	0	0

Table 17: Partitioned results on large training (ang-kaz). No *feature overlap* evn items and no *feature overlap* or *both overlap* heb items were included in the test set.

Lang	Partition	CLUZH	Flexica	OSU	TüM Main	UBC	Neural	NonNeur
khk	overall	47.879	23.384	49.242	47.727	46.263	49.141	38.03
	both	95.492	46.619	97.746	95.184	92.316	98.053	75.102
	lemma	0	0	0.508	0	0	0	0.508
	features	94.118	47.059	94.118	94.118	88.235	94.118	88.235
	neither	0	0	0	0	0	0	0
kor	overall	51.833	33.198	29.990	47.556	54.684	56.161	32.332
	both	79.007	67.494	61.738	69.300	76.185	78.668	66.140
	lemma	25.946	0.865	0	28.000	35.351	36.865	0
	features	71.084	55.422	50.602	56.627	60.241	62.651	59.036
	neither	27.143	0	0	20.000	31.429	18.571	0
krl	overall	58.367	37.876	45.190	24.098	64.429	27.104	5.361
	both	88.557	72.264	87.811	29.975	88.06	31.468	4.478
	lemma	27.328	2.083	0.858	8.578	39.828	13.725	0.858
	features	87.500	69.792	85.938	57.812	85.417	57.812	20.833
	neither	33.696	13.043	13.043	32.065	48.370	35.326	13.043
lud	overall	73.077	89.221	89.676	50.506	72.419	52.986	89.372
	both	94.839	95.871	96.774	96.000	94.710	96.516	95.871
	lemma	21.212	51.515	51.515	11.111	39.057	20.202	51.515
	features	87.264	91.981	92.925	93.396	88.208	94.340	93.396
	neither	66.618	97.110	97.110	3.324	56.936	5.636	97.110
non	overall	76.896	47.162	48.016	79.759	87.243	84.982	37.318
	both	90.763	68.743	90.548	89.796	93.340	92.374	67.991
	lemma	63.900	25.207	5.705	70.851	82.054	78.838	5.705
	features	85.246	77.049	85.246	80.328	90.164	88.525	80.328
	neither	51.429	25.714	17.143	57.143	62.857	51.429	17.143
pol	overall	86.500	52.850	47.800	67.700	90.950	69.450	43.600
-	both	91.803	78.689	90.164	77.049	95.082	78.689	85.246
	lemma	84.286	15.714	0	71.429	87.143	68.571	0
	features	96.060	85.942	94.888	74.015	95.740	74.441	86.262
	neither	76.667	20.538	1.075	60.430	86.129	63.871	1.075
poma	overall	60.430	33.867	36.568	58.829	61.481	63.882	24.462
-	both	73.373	48.521	74.556	69.231	69.822	75.148	40.828
	lemma	46.512	12.791	1.744	47.674	50.581	59.884	1.744
	features	76.145	54.458	70.120	69.398	73.253	74.096	47.831
	neither	44.928	14.614	2.415	48.430	50.242	52.174	2.415
slk	overall	85.550	58.250	47.400	65.750	93.950	70.100	47.450
	both	87.500	87.500	89.286	57.143	89.286	57.143	87.500
	lemma	89.362	44.681	2.128	51.064	95.745	57.447	2.128
	features	93.538	90.042	92.161	70.445	95.657	71.081	92.373
	neither	77.335	25.708	2.833	62.329	92.445	70.514	2.833
tur	overall	87.200	35.600	48.500	33.600	94.150	39.650	36.400
	both	97.941	72.654	96.224	36.041	98.398	37.414	72.654
	lemma	80.667	0.345	0.230	23.360	93.326	31.415	0.230
	features	93.651	57.937	95.238	80.159	92.857	79.365	66.667
	neither	52.672	0.763	5.344	40.458	72.519	70.992	5.344
vep	overall	57.451	30.457	36.929	44.104	62.268	48.821	32.413
-	both	75.485	58.01	72.330	55.825	70.146	57.039	64.078
	lemma	42.757	1.402	1.402	25.935	54.907	33.879	1.402
	features	71.527	58.834	69.983	57.461	68.782	59.177	60.377
	neither	41.053	3.333	4.211	35.614	55.439	43.509	4.211

Table 18: Partitioned results on large training (khk-vep).

_			_			
Lang	#	CLUZH	Flexica	OSU	TüM-M	UBC
ang	483	43.478	36.025	-	32.091	58.799
ara	341	32.551	11.730	-	27.859	52.199
asm	809	38.072	14.339	-	31.397	51.545
bra	208	21.635	17.308	-	17.788	18.269
ckt	20	10.000	10.000	5.000	0	5.000
evn	504	5.952	0.794	-	12.103	30.556
gml	229	63.755	23.581	-	-	93.886
goh	976	48.053	29.611	-	36.578	83.402
got	1003	41.874	19.541	-	36.491	80.160
guj	1214	57.908	36.903	-	28.007	93.987
heb	1729	43.493	18.681	-	33.372	79.294
hsb	21	4.762	0	71.429	0	0
hsi	19	10.526	5.263	100.00	0	15.789
hun	370	33.243	23.784	-	27.027	60.000
hye	764	74.215	37.696	-	26.702	96.859
itl	401	6.484	3.741	-	6.484	9.975
kat	453	5.519	5.298	-	6.402	47.461
kaz	576	72.222	23.438	-	56.771	92.188
ket	38	5.263	2.632	-	0	2.632
khk	78	1.282	6.410	-	1.282	30.769
kor	918	64.488	34.423	-	23.203	63.834
krl	1595	41.944	22.696	-	6.959	72.727
lud	903	85.050	86.157	-	1.661	91.251
mag	175	28.571	14.286	-	13.714	33.143
nds	880	43.523	37.273	-	28.636	75.114
non	585	41.709	34.188	_	39.316	60.000
pol	501	66.267	46.307	_	30.539	81.238
poma	747	54.217	27.711	_	49.665	63.989
sjo	297	29.630	10.438	-	35.690	56.902
slk	660	75.455	54.848	_	17.121	87.121
slp	63	26.984	6.349	_	12.698	57.143
tur	1446	65.698	19.018	_	11.549	91.978
vep	740	31.081	20.000	-	12.027	62.703

Table 19: Performance on verbs (V) in the small training condition

Lang	#	CLUZH	Flexica	OSU	TüM-M	UBC	
ang	342	68.421	49.708	_	52.632	57.895	
ara	833	67.827	31.933	-	65.306	49.340	
asm	1103	73.255	44.152	-	44.968	70.898	
bra	368	79.076	79.620	_	71.739	73.913	
ckt	14	0	0	21.429	14.286	21.429	
evn	867	45.559	0.231	-	35.409	47.174	
gml	16	50.000	31.250	-	-	62.500	
goh	839	77.116	54.470	-	71.514	75.924	Г
got	206	34.466	12.136	-	28.155	43.204	t
guj	700	81.286	66.714	-	61.143	74.857	L
heb	226	28.761	27.434	-	20.354	28.761	
hsb	37	16.216	10.811	91.892	8.108	2.703	
hsi	5	40.000	40.000	100.00	0	20.000	
hun	1287	64.180	28.127	-	55.245	63.403	-
hye	884	86.991	40.611	-	81.787	85.747	
itl	217	49.309	50.230	-	54.839	54.378	
kat	1505	74.684	42.724	-	59.801	64.518	
kaz	1418	57.475	38.575	-	54.513	59.520	
ket	44	18.182	15.909	-	18.182	20.455	
khk	1847	44.721	23.714	-	42.285	32.052	
krl	285	40.000	29.474	-	23.860	37.895	
lud	878	91.230	90.774	-	90.319	91.344	
mag	77	84.416	83.117	-	72.727	76.623	
non	541	53.420	45.841	-	42.884	52.680	
pol	259	63.707	69.884	-	55.212	65.251	
poma	133	61.654	60.902	-	61.654	60.902	
sjo	447	94.183	95.973	-	92.841	95.526	
slk	111	65.766	63.964	-	54.955	63.063	
slp	1	100.00	0	-	100.00	100.00	
tur	538	50.929	16.543	-	40.335	73.978	
vep	971	44.490	19.876	-	35.015	43.151	
-		•					

Table 20: Performance on verbs (N) in the small training condition

Lang	#	CLUZH	Flexica	OSU	TüM-M	UBC
ang	1085	57.512	35.484	-	52.535	57.419
ara	821	79.415	41.900	-	74.909	59.440
bra	69	57.971	55.072	-	55.072	59.420
ckt	1	0	0	100.00	0	0
evn	49	24.490	8.163	-	38.776	59.184
gml	78	57.692	39.744	-	-	50.000
got	309	59.547	12.945	-	58.900	67.961
hsb	18	22.222	27.778	77.778	16.667	5.556
hsi	4	0	0	75.000	0	0
hun	343	73.178	19.825	-	65.889	79.300
hye	315	94.603	38.730	-	89.206	93.651
itl	30	66.667	66.667	-	63.333	63.333
kat	42	83.333	47.619	-	64.286	73.810
ket	1	0	0	-	0	0
kor	221	69.683	42.534	-	21.267	57.466
krl	50	38.000	14.000	-	22.000	36.000
lud	105	92.381	92.381	-	92.381	90.476
mag	3	100.00	100.00	-	66.667	100.00
nds	887	49.605	21.082	-	13.191	55.919
non	652	50.920	35.583	-	56.748	58.896
pol	428	70.327	54.907	-	82.710	91.822
poma	242	66.529	54.959	-	58.678	60.744
sjo	2	0	0	-	0	50.000
slk	1142	75.569	48.862	-	77.758	87.916
tur	16	6.250	18.750	-	6.250	18.750
vep	233	54.506	26.180	-	45.064	57.082

Table 21: Performance on verbs (ADJ) in the small training condition

Lang	#	CLUZH	Flexica	OSU	TüM-M	UBC
ang	59	0	1.695	-	0	0
asm	78	30.769	3.846	-	33.333	23.077
ckt	2	50.000	50.000	50.000	0	50.000
evn	30	0	0	_	0	0
gml	31	12.903	6.452	-	-	12.903
goh	62	35.484	14.516	-	35.484	22.581
got	476	72.689	21.218	_	72.479	82.563
hun	12	25.000	33.333	_	33.333	8.333
hye	19	73.684	73.684	_	89.474	73.684
kor	127	63.780	45.669	-	15.748	48.031
krl	55	41.818	29.091	_	32.727	40.000
nds	133	63.910	60.150	_	36.090	55.639
non	213	50.235	46.479	_	51.643	53.521
pol	615	81.138	25.203	-	58.374	79.512
poma	875	42.400	18.857	-	36.800	37.371
sjo	246	33.333	15.041	-	25.203	40.244
slk	62	74.194	51.613	-	83.871	88.710
slp	8	50.000	25.000	-	12.500	50.000
vep	25	36.000	28.000	-	32.000	36.000

Table 22: Performance on verbs (V.PTCP) in the small training condition

Lang	#	CLUZH	Flexica	OSU	TüM-M	UBC
Lang						
ang	483	62.733	45.963	52.174	51.967	51.346
ara	341	65.396	21.408	37.243	65.982	58.651
asm	809	65.760	20.643	38.072	54.141	67.367
evn	504	33.532	0.595	0	36.706	37.698
got	1003	52.044	20.538	47.856	54.337	64.806
heb	1729	52.747	27.357	50.781	48.120	44.997
hun	370	56.757	31.622	48.919	53.514	58.378
hye	764	80.628	42.670	50.131	32.068	92.016
kat	453	71.082	16.777	39.735	84.768	91.391
kaz	576	62.674	23.438	40.625	54.688	81.076
khk	78	11.538	8.974	14.103	12.821	11.538
kor	918	64.815	38.562	37.255	61.547	70.044
krl	1595	58.621	37.743	44.389	14.420	63.699
lud	903	53.045	87.375	88.372	3.765	51.717
non	585	69.231	38.632	38.120	72.308	80.513
pol	501	79.641	51.497	41.717	36.926	81.637
poma	747	60.241	34.806	42.704	65.060	63.989
slk	660	87.273	60.606	46.515	23.788	93.030
tur	1446	92.600	38.036	48.548	22.407	97.994
vep	740	54.730	29.459	31.486	17.432	59.865

Table 23: Performance on verbs (V) in the large training condition

Lang	#	CLUZH	Flexica	OSU	TüM-M	UBC
ang	342	80.117	54.094	58.772	73.977	71.053
ara	833	72.389	37.935	34.454	71.909	61.825
asm	1103	76.156	45.603	47.235	71.079	83.409
evn	867	65.052	0.231	43.599	68.166	73.818
got	206	61.165	20.874	56.796	52.427	58.738
heb	226	54.425	38.496	53.982	55.752	44.690
hun	1287	73.660	34.266	49.728	69.852	75.913
hye	884	90.498	43.439	50.113	88.575	94.796
kat	1505	75.083	53.223	55.880	77.010	80.731
kaz	1418	56.629	38.575	52.680	53.173	59.520
khk	1847	50.731	24.689	52.084	50.514	49.053
krl	285	58.246	38.947	48.772	64.912	71.228
lud	878	91.230	92.027	92.141	93.508	92.141
non	541	78.373	51.386	59.704	73.752	83.549
pol	259	79.923	74.903	62.934	81.467	84.942
poma	133	74.436	70.677	60.902	73.684	80.451
slk	111	76.577	74.775	72.973	80.180	78.378
tur	538	72.862	29.182	48.513	63.941	83.829
vep	971	59.423	29.763	40.886	58.805	62.925

Table 24: Performance on verbs (N) in the large training condition

Lang	#	CLUZH	Flexica	OSU	TüM-M	UBC
ang	1085	64.332	37.143	39.078	64.147	63.594
ara	821	83.800	43.849	48.965	82.704	76.248
evn	49	69.388	8.163	8.163	71.429	71.429
got	309	84.790	19.094	59.223	82.524	89.644
hun	343	84.257	29.446	35.277	77.551	88.921
hye	315	91.429	40.635	41.270	90.476	96.190
kat	42	83.333	59.524	64.286	80.952	83.333
kor	221	77.828	41.629	35.747	65.611	72.851
krl	50	64.000	36.000	54.000	68.000	70.000
lud	105	92.381	92.381	92.381	92.381	90.476
non	652	82.822	46.319	48.006	91.411	96.626
pol	428	83.645	58.645	55.140	96.028	99.065
poma	242	77.686	59.091	48.760	69.835	72.314
slk	1142	85.639	54.991	45.184	87.653	96.848
tur	16	81.250	31.250	43.750	25.000	93.750
vep	233	61.803	35.193	37.339	68.240	69.528

Table 25: Performance on verbs (ADJ) in the large training condition

Lang	#	CLUZH	Flexica	OSU	TüM-M	UBC
ang	59	3.390	0	0	0	0
asm	78	43.590	15.385	46.154	42.308	51.282
evn	30	3.333	0	0	10.000	16.667
got	476	84.244	24.370	50.840	82.983	87.185
hun	12	41.667	25.000	33.333	41.667	33.333
hye	19	78.947	78.947	78.947	94.737	78.947
kor	127	70.079	52.756	41.732	60.630	62.205
krl	55	50.909	41.818	50.909	52.727	49.091
non	213	76.056	62.441	45.540	79.812	86.385
pol	615	94.959	42.764	42.764	72.846	94.797
poma	875	53.829	20.571	24.343	48.343	53.600
slk	62	95.161	70.968	54.839	95.161	96.774
vep	25	52.000	44.000	48.000	52.000	64.000

Table 26: Performance on verbs (V.PTCP) in the largetraining condition

Lang	v	Ν	ADJ	V.PTCP
ckt	5.000	21.429	100.00	50.000
hsb	71.429	91.892	77.778	-
hsi	100.00	100.00	75.000	-

Table 27: TüMorph-FST results by POS. TüMorph-FST was only run on three languages, all in the small training condition.