Reducing Model Churn: Stable Re-training of Conversational Agents

Christopher Hidey

Fei Liu

Rahul Goel

Google Assistant
{chrishidey, liufe, goelrahul} @ google.com

Abstract

Retraining modern deep learning systems can
lead to variations in model performance even
when trained using the same data and hyper-
parameters by simply using different random
seeds. This phenomenon is known as model
churn or model jitter. This issue is often ex-
acerbated in real world settings, where noise
may be introduced in the data collection pro-
cess. In this work we tackle the problem of
stable retraining with a novel focus on struc-
tured prediction for conversational semantic
parsing. We first quantify the model churn by
introducing metrics for agreement between pre-
dictions across multiple re-trainings. Next, we
devise realistic scenarios for noise injection and
demonstrate the effectiveness of various churn
reduction techniques such as ensembling and
distillation. Lastly, we discuss practical trade-
offs between such techniques and show that
co-distillation provides a sweet spot in terms of
churn reduction with only a modest increase in
resource usage.

1 Introduction

Deep learning systems can perform inconsistently
across multiple runs, even when trained on the
same data with the same hyper-parameters. De-
ployment in real-world environments presents a
challenge, where constantly changing production
systems require frequent re-training of models. For
a conversational semantic parsing system such as
Google Assistant or Amazon Alexa, where the
goal is to convert users’ commands into executable
forms, this erratic behavior can have some unfor-
tunate practical consequences. Some examples
include irreproducibility, which limits the ability
to make meaningful comparisons between exper-
iments (Dodge et al., 2019, 2020), bias, which
creates credibility issues if systems consistently
struggle with members of a certain class (D’ Amour
et al., 2020), and user frustration, which can arise
due to unpredictable interactions over time.

14

Query will i need snow tires to drive the sierra
nevada mountains this afternoon?
Model Run 1 in:get_weather [sl:weather_attribute

[
snow tires | [sl:location sierra mountains
] [sl:date_time this afternoon]]

Model Run 2 [in:get_info_road_condition
[sl:road_condition snow tires |
[sl:location sierra mountains |
[sl:date_time this afternoon] |

Table 1: An example from the TOPv2 dataset (Chen
et al., 2020a) where two model runs re-trained on the
same data with the same hyper-parameters make differ-
ent predictions. Only the first matches the gold target,
but the second has an incorrect intent and slot.

The root cause of widely divergent behavior is
underspecification (D’ Amour et al., 2020), where
there are many equivalent but distinct solutions to
a problem. Non-determinism in model training
(e.g. different data orders or weight initializations)
can lead to finding local minima that obtain the
same measurements on a held-out test set but make
different predictions (also known as model churn).

Even in an academic setting, controlling for
all non-determinism is unrealistic - Table 1 pro-
vides an example of churn from the TOPv2
dataset (Chen et al., 2020a). In this case, re-training
the same model twice with the same data and hyper-
parameters results in two different predictions for
the given query. While at the token level the slots
and arguments overlap, the intents are different,
resulting in a drastically different user experience.
In this scenario, the dataset is static and yet we
still observe model churn. In a real-world setting,
the dataset may be constantly changing and noisy,
necessitating frequent re-training. The goal, then,
is to maintain consistency even in this scenario.

We thus conduct experiments to evaluate and re-
duce churn across multiple model re-training runs.
Our contributions are as follows:

1. We extend the notion of model churn to struc-
tured prediction. To this end, we introduce

Proceedings of the SIGdial 2022 Conference, pages 14-25
Heriot-Watt University, Edinburgh, UK. 07-09, September, 2022 ©2022 Association for Computational Linguistics

new metrics for agreement and exact match
agreement (Section 3).

We show that techniques such as ensem-
bling (Dietterich, 2000) and distillation/co-
distillation (Hinton et al., 2015; Kim and Rush,
2016; Anil et al., 2018), described in Sec-
tion 4, reduce churn on the TOP (Gupta et al.,
2018), TOPv2 (Chen et al., 2020a), MTOP
(Li et al., 2021), and SNIPS (Coucke et al.,
2018) datasets (Section 6).

We explore the effects of model churn in “real-
world” environments, conducting experiments
with a smaller model and two types of simu-
lated noise (random and systematic)! to rep-
resent various sources of error (Sections 5
and 6).

We make practical recommendations based
on resource usage (number of parameters) in
addition to accuracy and agreement and ob-
serve that co-distillation with label smoothing
provides the best tradeoff (Section 7).

To the best of our knowledge, we are the first to
study model churn for the structured prediction task
of spoken language understanding (SLU).

2 Background and Related Work

The problem of model churn (Milani Fard et al.,
2016), defined as the difference in predictions ob-
served across runs when re-training models, has tra-
ditionally been studied for classification tasks. In
contrast with previous work, we study the problem
of model churn for structured prediction, specif-
ically for SLU. Shamir and Coviello (2020) in-
troduced “anti-distillation” to increase diversity in
ensemble predictions and Shamir et al. (2020) in-
troduced the smooth-relu activation function; how-
ever, in our initial experiments we did not find
significant improvement using these methods when
applied to structured prediction. Other work has
explored forms of smoothing to reduce churn, ei-
ther by computing soft labels using the nearest
neighbors (Bahri and Jiang, 2021) or by weight-
ing the loss term of individual examples using the
predicted probabilities from a teacher model (Jiang
et al., 2022). As these methods were developed for

'Datasets can be found at https://github.com/
google/stable-retraining—-conversational-—
agents

15

classification, we leave the task of adapting them
to structured prediction for future work.

Other research has focused on related problems
such as reproducibility (McCoy et al., 2020) and
calibration (Guo et al., 2017; Mosbach et al., 2021).
Nie et al. (2020) argue that this phenomenon is
due to underlying task complexity and annotator
disagreement. D’ Amour et al. (2020) claim that
reproducibility is primarily due to underspecifica-
tion, where there are many distinct solutions to the
same problem. While these problems are related
to churn, both reproducibility and calibration met-
rics are computed relative to a target, rather than
accounting for agreement across re-training runs.

It has been well known that ensembling increases
reproducibility and model calibration (Hansen and
Salamon, 1990; Lakshminarayanan et al., 2017).
Since ensembles increase inference times, distilla-
tion (Hinton et al., 2015) is commonly used to train
a student model with similar inference resource us-
age. Reich et al. (2020) show that ensemble distil-
lation improves calibration for machine translation
and named entitity recognition. For our distilla-
tion baselines, we follow the recipe by Chen et al.
(2020b). For co-distillation, we follow the recipe
developed by Anil et al. (2018). In our work, we
look at the aforementioned approaches and com-
pare them in terms of resource usage, churn re-
duction, and effectiveness on the task of conversa-
tional semantic parsing (Gupta et al., 2018; Cheng
et al., 2020; Damonte et al., 2019; Aghajanyan
et al., 2020; Lialin et al., 2020).

3 Task Definition and Evaluation

We follow recent work (Rongali et al., 2020) and
treat conversational semantic parsing as sequence
generation using auto-regressive neural models.
The goal is to make a structured prediction given a
user command such as the example in Table 1. For
structured prediction, the task of churn reduction is,
given an input, to predict the exact same sequence
across multiple re-training runs. A re-training run
refers to the model parameters that result from dif-
ferent random weight initialization and data order
but the same data and hyper-parameters.

Our aim is to reduce churn across runs while
maintaining high accuracy on the gold labels. Thus,
we report exact match accuracy (EM) with the
mean over /N runs. While our goal is not to obtain
the state of the art, we do want to show which meth-
ods reduce churn without a loss in performance.

https://github.com/google/stable-retraining-conversational-agents
https://github.com/google/stable-retraining-conversational-agents
https://github.com/google/stable-retraining-conversational-agents

To measure churn, we need a way to compare
predictions across runs, independent of the gold la-
bels. While previous work (Shamir et al., 2020) has
used metrics such as prediction difference (similar
to Hamming distance), the focus was on classifi-
cation tasks only, making it necessary to compute
an alternative measure. Metrics such as edit dis-
tance or multiple sequence alignment would be
appropriate for sequence generation tasks such as
machine translation or paraphrasing, where churn
across output may differ locally by only a few to-
kens. Comparatively, the meaning of these met-
rics is unclear for structured prediction tasks such
as semantic parsing. For example, computing a
token-level distance between a prediction such as
“[in:unsupported]” and “[in:get_event [sl:date_time
this weekend]]” would not be a useful measure.
Thus, we report sequence-level model agreement
(AGR) across N runs, where each example has a
score of 1 if all IV runs agree on the exact same
predicted sequence and O otherwise. However, it is
possible for all runs to agree but make an incorrect
prediction; the goal ultimately is to consistently
make correct predictions. Consequently, we further
extend this metric to include the case where the pre-
dictions from all IV runs agree and the predictions
match the target. We refer to this metric as exact
match agreement (EM@N).

4 Methods for Churn Reduction

For our experiments, we explore three techniques
which have been effective on related problems such
as model calibration: ensembling, which com-
bines the predictions of multiple models, distil-
lation, which pre-trains a feacher model and uses
its predictions to train a student, and co-distillation,
which trains two or more peer models in parallel
and allows each model to learn from the predictions
of the other. Figure 1 displays these techniques.

4.1 Ensembling

We create ensembles by uniformly averaging the
probabilities of each model to obtain a point esti-
mate. As our semantic parser is an auto-regressive
sequence-to-sequence model, at every timestep we
create the ensemble distribution over the vocabu-
lary from a mixture of K distributions, as in Reich
et al. (2020):
K

1
Ezpk(yt‘yo-nyt—l:X)
k=1
(1)

P(Yelyo---yi—1, X)

16

During inference, the next token at each timestep
is determined as usual by taking the argmaxz (in
the case of a greedy decoding approach) or using
an algorithm such as beam search.

4.2 Distillation

As ensembling increases model size, distillation
(Hinton et al., 2015) was introduced to compress
the knowledge of an ensemble into a single model.
With distillation, a feacher model® provides a fixed
distribution used to train a student. The distillation
loss from the teacher can be combined with a loss
over the target distribution given by gold labels:

Lstudent = Lnrr(0,D)+AxLxp(pe,q,D) (2)

where D is the training dataset, £y, is negative
log-likelihood loss, and Lk p is knowledge distil-
lation loss. While Lxp may be any dissimilar-
ity measure, we use cross-entropy loss between
teacher probabilities ¢ and student probabilities py.

For a sequence generation task, computing the
exact probabilities (Y| X) and p(Y'| X) for a given
X is intractable as it would require a computation
over the space of all possible Y. One way to ad-
dress this problem is with sequence-level distilla-
tion (Kim and Rush, 2016), which approximates
these probabilities with M samples. However, in
practice, increasing training time by a factor of M
is often infeasible. Instead, we perform token-level
distillation, computing token probabilities ¢; and
p; at each timestep.

The teacher probability g; of a token 7 is com-
puted using the “softmax” of its logit z;,> adjusted
by a temperature T

= _cap(a/T)
TS eanlz/T)

While 7" usually is set to 1, the temperature can
be used to control the entropy of the distribution,
where a high temperature increases uniformity. As
the temperature approaches 0, the probability mass
is increasingly concentrated on a single token, even-
tually becoming equivalent to the argmazx (a tech-
nique known as hard distillation). Otherwise, the
method is referred to as soft distillation.

One challenge for distillation is computing the
sequence of targets prior to time ¢. One possibility
is to perform inference with a method such as beam

3)

Zwhich is not required to be an ensemble
3When distilling from an ensemble, we average the proba-
bilities as in Equation 1 and convert them back to logits.

/" Inference

Logitst H

4-layer
BERT

Prediction

sl

Mean
Pooling

4-layer
BERT

4-layer t
BERT ¢

Distillation
loss

Cross-entropy
loss

Inference

Prediction ¢

(c) Hard distillation.

+ Training

Distillation
loss

12-layer
BERT

Cross-entropy
loss

Prediction ¢

%, Inference

Cross-entropy |
loss

Co-distillation
loss

Cross-entropy

_______________) O -

Predictior}j

(d) Co-distillation.

Figure 1: Overview of churn-reducing methods. Dashed and dotted lines indicate the training and inference
stages. Rounded rectangular boxes represent seq2seq models with 4- or 12-layer BERT encoders. Ensembling and

distillation techniques are applied to the decoder.

search to obtain model predictions. Alternatively,
we can use teacher-forcing (Williams and Zipser,
1989; Reich et al., 2020) and condition on true
targets through time ¢ — 1. For soft distillation,
using model predictions would require expensive
pre-computation and storage of logits or slower
training by performing inference at every timestep.
However, for hard distillation, only teacher labels
are required, making it possible to pre-compute
teacher predictions in a single training set pass.

4.3 Co-Distillation

In contrast to distillation, which requires sequen-
tial training of the teacher and student, Anil et al.
(2018) introduced co-distillation, which involves
training multiple peer models in parallel. While dis-
tillation as an abstract idea only requires logits as a
signal, and thus the teacher may be a different ar-
chitecture or even a different dataset, co-distillation
has a few distinct features. First, the peer models
share an architecture and training data so that the
models can be trained online in parallel. Second,
the distillation loss is used before the models have

17

converged. Co-distillation loss is computed as:

K
£peers == Z ﬁNLL(eka D)+
k=1

> X« Lip(pe,. 4 D)
J#k

“

where each of K models is trained with negative
log likelihood loss (£ 1) on training data as well
as distillation loss (L p) on the predictions of all
other models.

The main advantage of co-distillation is that in-
ference time is equivalent to a single model as only
one of the peers is needed. Training time and mem-
ory usage are implementation and resource depen-
dent; however the worst case is a K-times increase
and may be reduced by, e.g. model parallelism or
asynchronous updates (Anil et al., 2018).

S Experiment Setup
5.1 Datasets

We showcase the problem of model churn on 4
conversational semantic parsing datasets. The TOP

Dataset Train Test

TOP 31,279 9,042
TOPv2 124,597 38,785
MTOP 15,667 4,386
SNIPS 13,784 700

Table 2: Data statistics (# of utterances).

dataset (Gupta et al., 2018) consists of queries with
hierarchical semantic parses in 2 domains. The
TOPv2 (Chen et al., 2020a) and MTOP (Li et al.,
2021) datasets expand to 6 more domains with both
linear and nested intents and 5 more languages, re-
spectively.* Table 1 gives an example of the data
format shared across all 3 datasets. We further eval-
uate on SNIPS (Coucke et al., 2018), another popu-
lar semantic parsing dataset with utterances from
7 domains (including AddToPlaylist, BookRestau-
rant, GetWeather, and PlayMusic). Data statistics
are shown in Table 2.

5.2 Noise Injection

We hypothesize that distillation combined with
noise reduces churn without a loss in performance.
On the one hand, adding noise is a common ap-
proach to improving model stability and robustness
(Szegedy et al., 2016; Miiller et al., 2019). On the
other hand, real-world environments often unin-
tentionally contain noise (due to labels collected
from multiple sources, e.g., annotators, users, or
distant supervision) and models should be resilient
to unexpected changes. We explore both scenar-
10s, reporting the results of experiments for label
smoothing (Szegedy et al., 2016) for the former
and random and systematic noise for the latter.

Label Smoothing Label smoothing is a widely-
used technique for calibration of deep learning
models, especially for distillation (Miiller et al.,
2019). Label smoothing can also be thought of as
a noise injection method. This technique is applied
by using a weighted average of the one-hot label at
a specific timestep and a uniform distribution over
all labels. Specifically, at time step ¢, we compute
a new “soft” target:

5
Iz &)

(1—a)d+a
where ¢ ; is the one-hot label if present, « is a pa-
rameter that controls the percentage of smoothing,
and L is the set of all labels. We follow the rec-
ommendations of (Miiller et al., 2019) in applying

* Although our work is limited to English only.

18

label smoothing only to student models. We set
a = 0.1 to match the random/systematic noise set-
tings and hold constant the amount of noise across
all experiments.

Random Noise To simulate noise that may occur
in a real-world scenario, we create an artificial ran-
dom noise dataset by randomly swapping 10% of
labels from a weighted distribution. To construct
this dataset, we first find all labels with the prefix
“[in:” (intents) and compute their probabilities in
training. Then, we randomly sample a replacement
intent from this distribution. We repeat this process
for slots (“[sL:”).

Systematic Noise High-quality labeled data for
SLU systems may be difficult to come by in large
quantities. Conversational agents are therefore of-
ten trained using “distant-labeled” data from an
earlier iteration. This process inevitably results in
noisy data, as no SLU system will obtain 100% on
all unseen examples. To simulate this distant su-
pervision, we construct a systematic noise dataset.
We train a baseline with a 4-layer BERT encoder
(see Section 5.3) on 90% of each training set and
label the remaining 10%. However, in order to
obtain labels that are both (a) systematic and (b)
incorrect, we select the prediction at the second
beam position rather than the first.’

5.3 Implementation details

Baselines The pointer generator network of Ron-
gali et al. (2020) obtained competitive performance
on the TOP datasets using pre-trained encoders. We
obtain similar results upon re-implementing this
work as a baseline. As our goal is to reduce churn
in a realistic environment, we use a ‘“production-
sized” encoder — the 4-layer BERT model of Turc
et al. (2019) with 4 heads and 256 dimensions — to
reflect what can reasonably be served to users at
a robust query-per-second rate. We selected this
model to evaluate distillation from a larger model
of the same type, 12-layer BERT-base (Devlin et al.,
2019), which differs only by the number of pa-
rameters. The 4-layer BERT was distilled from
BERT-base and obtained only a small decrease on
benchmark datasets compared to larger models.

3In practice, this results in less than 10% of the training
data being incorrect. However, on all datasets used in these
experiments, the percentage of correct predictions at the sec-
ond beam position is less than 5%, thus ensuring that at least
9.5% of the training data is noisy.

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 80.65 (70.29) 7548 83.88(73.12) 78.15 79.31(69.04) 73.64 86.90(77.12) 80.29
Ensemble 84.60 (78.55) 86.18 86.42(80.38) 88.17 84.59(78.52) 84.39 87.69 (80.58) 84.60
SD (ensemble) 81.20 (70.80) 76.16 84.00(73.47) 78.75 79.29 (67.40) 71.38 87.29(79.71) 83.45
SD (BERT-12) 80.93 (71.14) 76.80 84.12(73.87) 79.02 79.23 (68.71) 73.23 87.34(78.27) 80.86
HD (BERT-12) 80.72 (70.01) 75.03 83.84(72.57) 77.37 78.96 (68.61) 73.07 87.44(80.86) 84.75
Co-distillation ~ 81.43 (73.56) 80.41 84.21(76.10) 82.99 79.45(69.73) 74.87 87.50 (80.86) 84.75

(a) Original dataset (label smoothing with o« = 0.1).

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 77.02 (65.81) 71.58 82.60(71.03) 7596 68.12(45.88) 49.12 78.41(57.12) 58.85
Ensemble 78.67 (72.21) 80.55 83.78 (76.53) 83.89 72.37(58.78) 65.24 82.27 (67.23) 70.50
SD (ensemble) 79.44 (68.53) 73.78 83.22(72.40) 77.71 67.75(44.51) 47.23 77.89 (56.69) 58.99
SD (BERT-12) 77.11(65.47) 71.51 82.73(70.25) 74.65 66.67(41.00) 43.62 78.11(56.69) 58.85
HD (BERT-12) 77.33(59.83) 63.14 82.40(68.85) 72.76 67.99 (42.84) 4451 77.89(56.69) 58.99
Co-distillation ~ 80.21 (72.04) 78.86 83.18 (73.09) 78.85 73.50 (58.43) 62.22 82.00(66.33) 68.92

(b) 10% random noise.

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 78.15(61.36) 65.11 81.80(67.20) 70.86 74.72(57.09) 60.81 81.17(58.42) 60.43
Ensemble 79.87 (68.78) 74.52 83.40(73.60) 79.75 77.59(68.55) 75.80 84.50(71.22) 74.53
SD (ensemble) 79.85 (67.46) 72.36 83.04 (71.50) 76.60 74.84 (57.91) 61.99 81.96 (60.72) 63.02
SD (BERT-12) 79.28 (66.83) 71.70 81.84(67.47) 71.10 7497 (57.16) 61.01 81.67(59.71) 62.45
HD (BERT-12) 79.12 (65.93) 70.37 81.36(65.33) 68.47 74.51(56.72) 60.37 80.23 (56.26) 58.71
Co-distillation ~ 80.83 (72.14) 7845 81.97(70.12) 7591 75.03(58.16) 61.49 83.66 (68.78) 72.23

(c) 10% systematic noise.

Table 3: Model performance (over N = 10 runs) when trained on datasets with varying degrees of noise. All student
models use 4-layer BERT. BERT-4/12: 4/12-layer BERT. Ensemble: 4-layer ensemble. SD: soft distillation. HD:
hard distillation. EM: exact match (mean over 10 runs). EM @ 10: EM if all 10 models are correct. AGR: model

agreement. Bold: best non-ensemble.

Experiments For our experiments, we explore
different settings for ensembling and distillation.
For both our ensemble and ensemble distillation,
we use 4-layer BERT models with K = 3. We
use soft distillation and obtain teacher probabilities
with teacher forcing and Equation 1. While dis-
tilling from an ensemble may increase agreement
by preventing the student from assigning too much
probability to a single token and becoming over-
confident, we also explore soft distillation from a
12-layer teacher. We hypothesize that the 12-layer
model would have higher EM but lower AGR than
the 4-layer ensemble and this setup allows us to ex-
plore any tradeoff between these measurements. In
addition, we consider hard distillation from a 12-
layer model. For this setting, we use beam search
inference with a beam width of 3 to obtain predic-
tions, so that we can compare to teacher forcing for
soft distillation. We perform offline inference with

19

the 12-layer model on the entire training set and
use both the teacher-labeled data and the gold data
for every example. Finally, we use co-distillation
with K = 20 and A\ = 1. We distill from model pre-
dictions using weights updated at every timestep.

Hyperparameters To reduce non-determinism,
we use a single set of hyper-parameters for the 3
TOP datasets and all experiments. For SNIPS, we
select a single set of hyper-parameters by tuning the
baseline on 10% of the training data. Appendix B
lists all hyper-parameters.

6 Results

We test the effectiveness of the methods described
in Section 4 over N = 10 runs. We compile re-
sults in Table 3a for models trained on the original
datasets with label smoothing. We also report re-

%as recommended by Anil et al. (2018).

sults for the 10% random/systematic noise setting
(Tables 3b and 3c) as we assume this represents a
“real-world” scenario where labels are 90% correct.

Ensemble superior at the cost of much increased
computational cost First, ensemble sets a high
bar in almost all settings regardless of artificial
noise. While impressive, this approach requires
significantly more computation at inference time
and is sometimes deemed infeasible to deploy when
accounting for resource usage (see Table 8).

Co-distillation best among distillation-based
methods regardless of noise For label smooth-
ing (Table 3a) and the random/systematic noise
settings (Tables 3b and 3c), co-distillation clearly
and consistently outperforms the baseline in EM,
EM @10, and AGR. We also find that soft dis-
tillation from the ensemble occasionally obtains
the best performance (TOPv2 with systematic
noise) but more frequently performs worse than
the baseline (MTOP/SNIPS with random noise).
On the other hand, soft/hard distillation perform
merely on-par with the baseline or worse. Sur-
prisingly, in the 10% random/systematic noise set-
ting, co-distillation not only narrows the gap for
EM@10/AGR compared to the ensemble, but also
occasionally outperforms the ensemble in EM for
TOP/MTOP and TOP, respectively, which may be
due to increased robustness to noise during training,
rather than only during inference in the ensemble.

6.1 Effect of Task Difficulty

Table 4 shows the performance of the baseline mod-
els as we increase the task difficulty by reducing
the model size or increasing noise in the data. As
expected, EM decreases as the task becomes more
difficult. However, AGR decreases more rapidly be-
cause with lower EM the model has more degrees
of freedom to find solutions. These results also
show that EM alone is not enough to measure re-
producibility and validate the use of EM @ 10/AGR.

6.2 Effect of Label Smoothing

To better understand the effect of label smooth-
ing, we conduct a study of TOPv2 for the base-
line and co-distillation models (Table 5)”. On the
base dataset in the baseline setting (BERT-4), label
smoothing provides little to no benefit in all met-
rics. However, we observe a dramatic improvement
for co-distillation with label smoothing vs without

’see Appendix D for the full results

20

Model and Setting EM(@10) AGR
BERT-12 (0% random noise) 85.68 (76.11) 81.30
BERT-4 (0% random noise) 83.74 (73.18) 78.15
BERT-4 (10% random noise) 82.60 (71.03) 75.96
BERT-4 (25% random noise) 81.34 (69.04) 73.73
BERT-4 (50% random noise) 76.83 (62.87) 67.28

Table 4: Effect of Task Difficulty on TOPv2, varying
baseline model size (4/12-layer BERT) and random
noise. EM(@10): exact match (with all 10 runs cor-
rect). AGR: model agreement. Bold: best performance.

Model and Setting EM(@10) AGR
BERT-4 (o = 0) 83.74 (73.18) 78.47
BERT-4 (o = 0.1) 83.89 (73.12) 78.15
CD (a=0) 84.01 (73.96) 79.49
CD (a=0.1) 84.21 (76.10) 82.99
BERT-4 (o« = 0, 10% rand.) 82.60 (71.03) 75.96
BERT-4 (o« = 0.1, 10% rand.) 82.38 (71.11) 76.24
CD (a = 0, 10% rand.) 83.18 (73.09) 78.85
CD (a = 0.1, 10% rand.) 82.60 (73.06) 79.33
BERT-4 (a = 0, 10% sys.) 81.80 (67.20) 70.86
BERT-4 (o = 0.1, 10% sys.) 83.02(72.27) 71.74
CD (o = 0, 10% sys.) 81.97 (70.12) 75.91
CD (a = 0.1, 10% sys.) 83.19 (73.96) 80.50

Table 5: Effects of Label Smoothing on TOPv2. BERT-
4: baseline. CD: co-distillation. «: label smoothing wt.
EM(@10): exact match (with all 10 runs correct) AGR:
model agreement Bold: best performance.

in EM@10 (+2.14) and AGR (+3.5). On the other
hand, on the dataset with 10% random noise, we
do not observe any benefit with label smoothing for
either the baseline or co-distillation, perhaps due to
the noise already in the data. Finally, on the dataset
with 10% systematic noise, we observe that label
smoothing dramatically improves results for both
the baseline - EM @10 (+5.07) and AGR (+6.88)
- and co-distillation - EM@10 (+2.84) and AGR
(+4.59). Overall, in the most realistic scenarios
(“clean” or distant-labeled data), we find that co-
distillation can be effectively combined with label
smoothing. This result is in contrast to Miiller et al.
(2019), who found that training a teacher with label
smoothing is not effective. When both models are
teachers, it is clear that label smoothing helps.

7 Discussion

Qualitative Analysis To further understand what
queries cause the model to churn, we analyze cases
where multiple runs disagree. To keep the analysis
simple we compare the baseline with co-distillation
in Table 6 (additional examples in Appendix C).

Query play new matchbox 20

Model Run 1 [in:play_music [sl:music_artist_name
matchbox 20]]

Model Run 2 [in:play_music [sl:music_track_title
matchbox 20]]

Query repeat closer

Model Run 1 [in:replay_music [sl:music_track_title
closer]]

Model Run 2 [in:loop_music]

Table 6: Churn examples from TOPv2 fixed by co-
distillation. Model predictions are from the baseline.
In both cases, only Model Run 1 matches the target, but
Model Run 2 has an incorrect intent or slot.

The first row shows that the baseline model runs
are confused by semantically similar slots — mu-
sic_artist_name vs. music_track_title. The sec-
ond row demonstrates baseline confusion between
the intents loop_music vs. replay_music. In both
cases the co-distilled models agree across all train-
ing runs. Due to the semantic similarity of the
slots/intents, we can attribute this churn to under-
specification (D’ Amour et al., 2020), which is re-
duced by co-distillation.

We also explore the relation between agreement
and the length of the structured output sequences.
Figure 2 plots the number of models in agree-
ment against the number of intents and slots. In
making a structured prediction during inference,
as length increases the model has more freedom
to select incorrect tokens and therefore churn in-
creases. Co-distillation increases agreement for
longer sequences, but ensembling is especially ro-
bust. Table 7 reports the average target and pre-
diction length where all N models disagree. Sur-
prisingly, we observe that the models over-generate
compared to the target; however, the difference is
reduced with co-distillation/ensembling.

10
Bl Baseline

Co Distillation
BN Ensemble

Number of models which agree

2 6 10 14
Number of intents and slots

Figure 2: Agreement across trained models for various
methods vs prediction complexity.

Method Target Prediction
Baseline 3.66 391
Co-distillation 3.71 3.82
4 layer ensemble 3.56 3.70

Table 7: Average # of slots and intents for cases where
all N models disagree. When there is churn the model
over-generates (i.e. prediction length > target length).

Practical considerations We roughly compare
the methods along the resource usage dimension in
Table 8. As resource usage may be implementation
or architecture dependent, we report the number
of parameters, which correlates strongly with train-
ing/inference time and memory. While ensembling
is the strongest approach, it also comes with the
most expensive inference. Although wall-clock in-
ference time may be the same as the base model due
to parallelization, computing power and memory
scales by a factor of K. Further, while distillation
methods have the same inference time due to sim-
ilar sized outputs, they have different costs w.r.t.
training the teacher.® For ensemble distillation, the
teacher models can be trained in parallel, but still
have Kz storage requirements. For large-model
distillation, in practice our 12-layer teacher has
about P = 9 times the number of parameters as the
baseline. In both cases, the student must be trained
sequentially. Overall, co-distillation performs con-
sistently well across different datasets and noise
settings in terms of EM and model agreement while
striking a balance between computational cost and
performance, rendering it an attractive approach
for goal-oriented conversational semantic parsing.

Method Training (actual) Inference (actual)
Baseline T T
Ensemble P =3z P =3x

P +x=4x x
P +x=10x €T
P =2z T

Ens. distillation
Large distillation
Co-distillation

Table 8: Overview of resource usage by number of
parameters (relative to 4-layer baseline with x =~14
million parameters). FP,;;;.: Number of ensem-
ble/teacher/peer parameters. * denotes parallelism.

8 Conclusion

Our experiments showed that there exists substan-
tial churn across runs when re-training models on
the same conversational semantic parsing datasets.
We showed that for “production-sized”” models, co-

8Hard/soft distillation have equal number of parameters.

distillation with label smoothing increases agree-
ment without loss of accuracy. Furthermore, on
noisy data simulating a real-world environment,
the improvement is even more drastic. When we
account for resource usage along with accuracy,
we provide strong evidence that co-distillation pro-
vides the sweet spot compared to methods like
hard/soft distillation and ensembling.

In future work, we plan to explore how other
modeling decisions can increase or decrease model
churn. In this work, we limited our focus to BERT
encoders with different number of layers. Other
questions to explore include whether the choice
of pre-training technique affects churn or whether
pre-trained encoder-decoders show the same ef-
fects. Finally, we will examine whether alternative
decoding algorithms, such as non-autoregressive
approaches (Babu et al., 2021; Oh et al., 2022), can
reduce churn.

References

Armen Aghajanyan, Jean Maillard, Akshat Shrivastava,
Keith Diedrick, Michael Haeger, Haoran Li, Yashar
Mehdad, Veselin Stoyanov, Anuj Kumar, Mike Lewis,
and Sonal Gupta. 2020. Conversational semantic
parsing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5026-5035, Online. Association for
Computational Linguistics.

Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert
Ormandi, George E. Dahl, and Geoffrey E. Hinton.
2018. Large scale distributed neural network training
through online distillation. In International Confer-
ence on Learning Representations.

Arun Babu, Akshat Shrivastava, Armen Aghajanyan,
Ahmed Aly, Angela Fan, and Marjan Ghazvininejad.
2021. Non-autoregressive semantic parsing for com-
positional task-oriented dialog. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2969-2978,
Online. Association for Computational Linguistics.

Dara Bahri and Heinrich Jiang. 2021. Locally adap-
tive label smoothing improves predictive churn. In
Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 532-542. PMLR.

Xilun Chen, Asish Ghoshal, Yashar Mehdad, Luke
Zettlemoyer, and Sonal Gupta. 2020a. Low-resource
domain adaptation for compositional task-oriented
semantic parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5090-5100, Online. As-
sociation for Computational Linguistics.

22

Yen-Chun Chen, Zhe Gan, Yu Cheng, Jingzhou Liu, and
Jingjing Liu. 2020b. Distilling knowledge learned in
BERT for text generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7893-7905, Online. Association
for Computational Linguistics.

Jianpeng Cheng, Devang Agrawal, Héctor
Martinez Alonso, Shruti Bhargava, Joris Driesen,
Federico Flego, Dain Kaplan, Dimitri Kartsaklis,
Lin Li, Dhivya Piraviperumal, Jason D. Williams,
Hong Yu, Diarmuid O Séaghdha, and Anders
Johannsen. 2020. Conversational semantic parsing
for dialog state tracking. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8107-8117,
Online. Association for Computational Linguistics.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maél Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces. CoRR, abs/1805.10190.

Marco Damonte, Rahul Goel, and Tagyoung Chung.
2019. Practical semantic parsing for spoken lan-
guage understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Industry Papers),
pages 16-23, Minneapolis, Minnesota. Association
for Computational Linguistics.

Alexander D’Amour, Katherine A. Heller, Dan
Moldovan, Ben Adlam, Babak Alipanahi, Alex Beu-
tel, Christina Chen, Jonathan Deaton, Jacob Eisen-
stein, et al. 2020. Underspecification presents chal-
lenges for credibility in modern machine learning.
CoRR, abs/2011.03395.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Thomas G. Dietterich. 2000. Ensemble methods in
machine learning. In MULTIPLE CLASSIFIER SYS-
TEMS, LBCS-1857, pages 1-15. Springer.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019. Show your
work: Improved reporting of experimental results. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2185—
2194, Hong Kong, China. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/2020.emnlp-main.408
https://doi.org/10.18653/v1/2020.emnlp-main.408
https://openreview.net/forum?id=rkr1UDeC-
https://openreview.net/forum?id=rkr1UDeC-
https://doi.org/10.18653/v1/2021.naacl-main.236
https://doi.org/10.18653/v1/2021.naacl-main.236
https://proceedings.mlr.press/v139/bahri21a.html
https://proceedings.mlr.press/v139/bahri21a.html
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.emnlp-main.413
https://doi.org/10.18653/v1/2020.acl-main.705
https://doi.org/10.18653/v1/2020.acl-main.705
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2020.emnlp-main.651
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
https://doi.org/10.18653/v1/N19-2003
https://doi.org/10.18653/v1/N19-2003
http://arxiv.org/abs/2011.03395
http://arxiv.org/abs/2011.03395
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D19-1224
https://doi.org/10.18653/v1/D19-1224

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah A. Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping. CoRR, abs/2002.06305.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Elliot Karro, and D. Sculley,
editors. 2017. Google Vizier: A Service for Black-
Box Optimization.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Wein-
berger. 2017. On calibration of modern neural net-
works. In ICML, pages 1321-1330.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787-2792, Brussels, Belgium. Association
for Computational Linguistics.

. K. Hansen and P. Salamon. 1990. Neural network
ensembles. IEEE Trans. Pattern Anal. Mach. Intell.,
12(10):993-1001.

Geoftrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning
Workshop.

Heinrich Jiang, Harikrishna Narasimhan, Dara Bahri,
Andrew Cotter, and Afshin Rostamizadeh. 2022.
Churn reduction via distillation. In International
Conference on Learning Representations.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317—1327, Austin,
Texas. Association for Computational Linguistics.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
In Advances in Neural Information Processing Sys-
tems, volume 30. Curran Associates, Inc.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950-2962, Online. Association for Computa-
tional Linguistics.

Vladislav Lialin, Rahul Goel, Andrey Simanovsky,
Anna Rumshisky, and Rushin Shah. 2020. Con-
tinual learning for neural semantic parsing. CoRR,
abs/2010.07865.

Ilya Loshchilov and Frank Hutter. 2017.
weight decay regularization in adam.
abs/1711.05101.

Fixing
CoRR,

23

R. Thomas McCoy, Junghyun Min, and Tal Linzen.
2020. BERTs of a feather do not generalize together:
Large variability in generalization across models with
similar test set performance. In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 217-227,
Online. Association for Computational Linguistics.

Mahdi Milani Fard, Quentin Cormier, Kevin Canini, and
Maya Gupta. 2016. Launch and iterate: Reducing
prediction churn. In Advances in Neural Information
Processing Systems, volume 29. Curran Associates,
Inc.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2021. On the stability of fine-tuning
{bert}: Misconceptions, explanations, and strong
baselines. In International Conference on Learning
Representations.

Rafael Miiller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help? In
Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Yixin Nie, Xiang Zhou, and Mohit Bansal. 2020. What
can we learn from collective human opinions on nat-
ural language inference data? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9131-9143,
Online. Association for Computational Linguistics.

Geunseob Oh, Rahul Goel, Christopher Hidey, Shachi
Paul, Aditya Gupta, Pararth Shah, and Rushin
Shah. 2022. Improving top-k decoding for non-
autoregressive semantic parsing via intent condition-
ing. CoRR, abs/2204.06748.

Steven Reich, David Mueller, and Nicholas Andrews.
2020. Ensemble Distillation for Structured Predic-
tion: Calibrated, Accurate, Fast—Choose Three. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5583-5595, Online. Association for Computa-
tional Linguistics.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t Parse, Generate! A Se-
quence to Sequence Architecture for Task-Oriented
Semantic Parsing, page 2962-2968. Association for
Computing Machinery, New York, NY, USA.

Gil I. Shamir and Lorenzo Coviello. 2020. Anti-
distillation: Improving reproducibility of deep net-
works. CoRR, abs/2010.09923.

Gil I. Shamir, Dong Lin, and Lorenzo Coviello. 2020.
Smooth activations and reproducibility in deep net-
works. CoRR, abs/2010.09931.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the inception architecture for computer vision.
In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2818-2826.

http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
http://arxiv.org/abs/2002.06305
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://proceedings.mlr.press/v70/guo17a.html
http://proceedings.mlr.press/v70/guo17a.html
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.1109/34.58871
https://doi.org/10.1109/34.58871
http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=HbtFCX2PLq0
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://doi.org/10.18653/v1/2021.eacl-main.257
https://doi.org/10.18653/v1/2021.eacl-main.257
http://arxiv.org/abs/2010.07865
http://arxiv.org/abs/2010.07865
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://proceedings.neurips.cc/paper/2016/file/dc5c768b5dc76a084531934b34601977-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/dc5c768b5dc76a084531934b34601977-Paper.pdf
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://proceedings.neurips.cc/paper/2019/file/f1748d6b0fd9d439f71450117eba2725-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.18653/v1/2020.emnlp-main.734
https://doi.org/10.48550/arXiv.2204.06748
https://doi.org/10.48550/arXiv.2204.06748
https://doi.org/10.48550/arXiv.2204.06748
https://doi.org/10.18653/v1/2020.emnlp-main.450
https://doi.org/10.18653/v1/2020.emnlp-main.450
https://doi.org/10.1145/3366423.3380064
https://doi.org/10.1145/3366423.3380064
https://doi.org/10.1145/3366423.3380064
http://arxiv.org/abs/2010.09923
http://arxiv.org/abs/2010.09923
http://arxiv.org/abs/2010.09923
http://arxiv.org/abs/2010.09931
http://arxiv.org/abs/2010.09931
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. CoRR, abs/1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ronald J. Williams and David Zipser. 1989. A Learning
Algorithm for Continually Running Fully Recurrent
Neural Networks. Neural Computation, 1(2):270—
280.

A Ethics

The TOP and SNIPS datasets used in this experi-
ments are intended for research purposes only. We
verified that the datasets do not contain personally
identifiable information. The risks of dual use for
task-oriented conversational semantic parsers are
low as we are not performing open-ended genera-
tion; however, the models are likely to overfit to
certain demographic groups and underperform on
others.

B Hyper-parameter Search and Settings

We run our experiments on the TPU v2 available
through Google Cloud.’

We use the same hyper-parameters for all 3 TOP
datasets and SNIPS, except for SNIPS we use a
different number of training steps and learning
rate. The hyper-parameters were selected using
the Google Cloud black box optimizer (Golovin
et al., 2017). We tuned the parameters using 64
re-runs over the settings described in Table 9. For
SNIPS, we held out 10% of the training data for
tuning the training steps (100000) and learning
rate (0.000031) and trained the final models on
100% of the training data with the selected hyper-
parameters. For distillation experiments we ad-
justed the learning rate to 1e — 5 and the batch size
to 128 to prevent overfitting.

We train all models (including teacher and stu-
dent) for 300000 steps on the TOP datasets and
100000 on SNIPS. We use the Adam optimizer with
weight decay (Loshchilov and Hutter, 2017) and
the relu activation function. To follow the pointer
generator approach of Rongali et al. (2020), we
embed the output vocabulary in 128-dimensional
vectors and project the BERT embeddings from

*https://cloud.google.com/tpu

24

the input to 128 dimensions as well. For our trans-
former decoder (Vaswani et al., 2017), we use 2
heads and 2 layers (see Table 9) with 256 dimen-
sions for the attention and feed forward layers. We
also use a maximum output length of 51. We use
dropout on the input wordpiece embeddings, af-
ter the contextual BERT embeddings, and on the
output embeddings before the softmax layer.

Hyper-parameter Range/Set Selected Value
Learning rate [2e — 5, 2e — 4] 4e-5
Decoder Heads {2,4,8} 2
Decoder Layers {2,4,8} 4
Batch Size {128,256} 256
Dropout [0.01,0.1] 0.0316

Table 9: Tuned Hyper-parameters and their Possible
Values

C Additional Examples

Table 10 provides additional examples where en-
sembling fixes errors still present in co-distilled
models. In these cases, the co-distilled models
over-generate (the phenomenon indicated in Table
7) whereas the lengths of the ensemble predictions
are correctly calibrated to the target lengths.

D Additional Results

We present the full set of results from Table 5 in
Table 11. The results in Table 11a provide strong
evidence that co-distillation with label smoothing
(Table 11b) is clearly preferable. When we examine
the full set of datasets and methods combined with
label smoothing in the random/systematic noise
setting, we also see that soft distillation from an en-
semble performs well. However, in some cases soft
ensemble distillation performs worse than the base-
line; swapping occasionally slightly better perfor-
mance for occasionally much worse performance
would not be an acceptable tradeoff in most cases.
Co-distillation is more stable in terms of consis-
tently outperforming the baseline. Furthermore,
co-distillation requires fewer resources and can be
trained in parallel.

http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://cloud.google.com/tpu

Query Ground Truth Model predictions
play new matchbox 20 [in:play_music [sl:music_artist_name [in:play_music [sl:music_track_title matchbox
matchbox 20]] 2071
[in:play_music [sl:music_artist_name match-
box 20 1]

repeat closer [in:replay_music

closer]]

[sl:music_track_title [in:replay_music [sl:music_track_title closer]]

[in:loop_music]

Churn examples fixed by co-distillation. Model predictions are from the baseline model

show me alarms for to- [in:get_alarm [sl:date_time for tomorrow
MOITow 1]

[in:get_alarm [sl:alarm_name
[sl:date_time for tomorrow]]]]
[in:get_alarm [sl:date_time for tomorrow]]

[in:get_time

take out my wednesday [in:delete_alarm [sl:alarm_name

alarm.

[in:delete_alarm [sl:alarm_name [in:get_time
[sl:date_time wednesday]]]]

[in:get_time [sl:date_time wednesday]]]] [in:silence_alarm [sl:alarm_name [in:get_time

[sl:date_time wednesday]]]]

Churn examples further fixed by ensembling. Model predictions from the co-distilled model

Table 10: Qualitative comparison on TOPv2 of the types of errors fixed by co-distillation and ensembling.

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 81.51(72.14) 77.85 83.74(73.18) 78.47 80.13(68.71) 72.54 86.83(75.25) 78.42
Ensemble 84.60 (78.55) 86.18 86.42(80.38) 88.17 84.59(78.52) 84.39 87.69 (80.58) 84.60
SD (ensemble) 81.36 (71.63) 77.25 83.73(72.62) 77.72 79.50(68.11) 71.97 86.80(75.11) 77.84
SD (BERT-12) 81.31 (71.16) 76.43 83.51(72.13) 77.10 79.87 (67.36) 70.76 86.37 (73.96) 76.69
HD (BERT-12) 81.33 (70.91) 75.92 83.56 (72.15) 76.99 79.66 (67.09) 70.39 86.93 (77.12) 80.29
Co-distillation ~ 81.31 (72.04) 77.98 84.01(73.96) 79.49 79.55(68.48) 7295 87.39(79.28) 82.59

(a) Original dataset (no noise)

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 77.90 (64.28) 68.76 82.39(71.11) 76.24 70.01 (44.97) 46.63 76.59 (51.08) 52.95
Ensemble 78.67 (72.21) 80.55 83.78 (76.53) 83.89 72.37(58.78) 65.24 82.27(67.23) 70.50
SD (ensemble) 80.14 (70.59) 76.45 83.51(74.31) 80.46 71.14(48.89) 51.27 80.96 (61.01) 63.17
SD (BERT-12) 78.71 (66.96) 72.05 82.71(70.75) 75.50 69.83 (45.26) 47.09 78.59 (53.09) 55.54
HD (BERT-12) 77.71 (64.77) 69.54 81.11(60.39) 63.08 69.63 (44.78) 46.52 76.70 (47.34) 48.92
Co-distillation ~ 78.91 (68.42) 74.54 82.60(73.07) 79.34 73.74 (57.64) 61.22 82.50(68.35) 71.80

(b) 10% random noise and label smoothing with o = 0.1.

TOP TOPv2 MTOP SNIPS
Model EM (@10) AGR EM (@10) AGR EM (@10) AGR EM (@10) AGR
BERT-4 79.66 (65.28) 70.17 83.03(72.27) 77.74 74.58 (58.50) 62.86 84.19 (68.20) 70.94
Ensemble 79.87 (68.78) 74.52 83.40(73.60) 79.75 77.59 (68.55) 75.80 84.50(71.22) 74.53
SD (ensemble) 81.02 (71.71) 77.87 83.85(74.46) 80.68 74.97 (58.87) 63.30 82.24(57.12) 59.14
SD (BERT-12) 80.75(71.22) 77.15 83.25(73.19) 78.97 75.01(59.28) 63.30 82.59(63.02) 65.90
HD (BERT-12) 79.49 (64.51) 69.10 82.93(72.27) 77.94 75.21(57.11) 60.51 81.57(59.71) 62.88
Co-distillation ~ 80.84 (73.61) 81.27 83.19(73.96) 80.50 76.98 (63.64) 68.09 85.49 (72.09) 76.26

(c) 10% systematic noise and label smoothing with o = 0.1.

Table 11: Model performance (over N = 10 runs) when trained on datasets with varying degrees of noise. All
student models use 4-layer BERT. BERT-4/12: 4/12-layer BERT. Ensemble: 4-layer ensemble. SD: soft distillation.
HD: hard distillation. EM: exact match (mean over 10 runs). EM@10: EM if all 10 models are correct. AGR:
model agreement. Bold: best non-ensemble.

25

