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Abstract

Memes have become quite common in day-to-
day communications on social media platforms.
They often appear to be amusing, evoking and
attractive to audiences. However, some memes
containing malicious content can be harmful to
targeted groups. In this paper, we study misogy-
nous meme detection, a shared task in SemEval
2022 - Multimedia Automatic Misogyny Identi-
fication (MAMI). The challenge of misogynous
meme detection is to co-represent multi-modal
features. To tackle with this challenge, we pro-
pose a Multi-modal Multi-task Variational Au-
toEncoder (MMVAE) to learn an effective co-
representation of visual and textual features in
the latent space. Our goal is to automatically
determine if a meme contains misogynous in-
formation and then identify its fine-grained cat-
egory. Our model achieves Fj scores of 0.723
on the MAMI sub-task A and 0.634 on sub-task
B. We carry out comprehensive experiments on
our model’s architecture and show that our ap-
proach significantly outperforms several strong
uni-modal and multi-modal approaches. Our
code is released on github'.

1 Introduction

With the rapid development of social media, the
use of image-based memes has been growing. Peo-
ple use memes for various purposes, such as to
express humor (Velioglu and Rose, 2020), or to
attract greater attention. Enabling this, simple web-
sites that allow people to easily create new memes
have further seen their proliferation.

However, this easy composition has allowed
people to easily embed harmful messages within
memes, often circumventing more traditional text-
based moderation tools (Malmasi and Zampieri,
2017). This paper particularly focuses on misogy-
nous memes (i.e. hatred towards women) — see
Figure 1 for two examples. As some platforms may
choose to limit the sharing of such material, we

"https://github.com/MMVAE-project/MMVAE
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argue it is vital to build tools that can automatically
identify misogynous memes at scale.
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(b) A misogynous meme
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Figure 1: Examples of misogynous memes. In (a), the
embedded text is misogynous. In (b), both the image
and the embedded text are misogynous.

Many prior works have sought to analyze the
content of memes. Some have looked into meme
emotion analysis (Sharma et al., 2020; Smitha et al.,
2018), meme ecosystem measurements (Zannettou
et al., 2018) and meme auto-generation (Vyalla and
Udandarao, 2020). Past efforts have also shed light
on hateful meme detection (Kiela et al., 2020) or
offensive meme detection (Sabat et al., 2019) more
generally.

This paper builds on these prior works to auto-
matically detect misogynous meme content (Fersini
et al., 2022). This comes with several key chal-
lenges. First, a meme usually comes with both a
visual and a textual part. Sometimes the standalone
image or text is not necessarily hateful or toxic, but
when combined together, the semantic meaning
becomes harmful. To effectively understand the
semantic meaning of a meme, information encoded
in both modalities should be considered. Second,
different memes frequently have the same image,
but are embedded with different text (and thus have
different and even opposite meanings). This makes
reliance on image-hash lists ineffective. It is also
common that the image and text of a meme are
unrelated, as in Figure 1a. In this case, finding an
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accurate co-representation of both visual and tex-
tual features is vital. Finally, malicious information
contained in a meme can have granular labels and
even belong to multiple categories. Thus, it is often
necessary to devise a more nuanced taxonomy.

With the above challenges in mind, we propose
MMVAE: a pipeline to determine if a meme con-
tains misogynous information, and to identify its
fine-grained hateful labels accordingly. Specifi-
cally, our contributions are as follows:

1. We propose a Multi-modal Multi-task Vari-
ational AutoEncoder (MMVAE) that effec-
tively co-represents the textual and visual fea-
tures of the meme. We use this to predict if
a meme is misogynous/non-misogynous. We
further expand our model to predict more fine-
grained labels, e.g. shaming, violence, objec-
tification.

2. We evaluate our model on SemEval compe-
tition Task 5: Multimedia Automatic Misog-
yny Identification (Fersini et al., 2022). We
achieve an Fj score of 0.723 on sub-task A
and 0.634 on sub-task B.

3. We analyze the strengths and weaknesses of
our multi-modal approach by presenting a
text-based error analysis and case study. Our
model is better at identifying misogynous
memes with a high precision, yet less effec-
tive in determining the correct label for non-
misogynous memes.

2 Background

Our approach leverages multi-modal learning, pre-
trained model, variational autoencoder and multi-
task learning. Below, we provide a brief overview
of these concepts.

2.1 Multi-modal Feature Representation

We leverage multi-modal learning to co-represent
features from both image and text. Common multi-
modal features co-representation techniques (Zeng
et al., 2021) include fusion mechanism (early at
feature level (Su et al., 2020), or late at deci-
sion/scoring level (Poria et al., 2016)), tensor fac-
torization (Zadeh et al., 2017; Mai et al., 2019) and
complex attention mechanisms which can be fur-
ther classified as dot-product attention (Yu et al.,
2021), multi-head attention (Cao et al., 2021; Wu
et al., 2021), hierarchical attention (Pramanick

etal., 2021), attention on attention (Liu et al., 2021)
among others. These techniques have proven to be
effective in encoding multi-modal features. How-
ever, leveraging multi-modal features doesn’t al-
ways enhance the task performance. Hence, an-
other topic that has raised concern in multi-modal
learning is the uni-modal contribution analysis. A
straightforward approach (Hessel and Lee, 2020;
Frank et al., 2021) is to ablate cross-modal inputs
or interactions in order to evaluate the model’s per-
formance on uni-modal data. Zeng et al. (2021)
demonstrated that multi-modal models might not
achieve optimal performance because there are
noises contained in each modality.

2.2 Pre-trained Model

We adopt pre-trained models to embed the text and
image of a meme.

Usually trained on large dataset corpus, pre-
trained models have achieved state-of-the-art
(SOTA) performances on various Natural Lan-
guage Processing (NLP) and Computer Vision
(CV) benchmark tasks. Thus, they can be used as a
powerful embedding tool or be easily fine-tuned on
downstream tasks. Popular language pre-trained
models such as BERT (Devlin et al., 2019), LASER
(Artetxe and Schwenk, 2019) and LaBSE (Feng
et al., 2020) have constantly updated the SOTA per-
formance on downstream NLP tasks. Similarly, im-
age pre-trained models including ResNet (He et al.,
2016), VGG (Simonyan and Zisserman, 2015), and
Inception (Szegedy et al., 2016) have proved their
effectiveness in multiple tasks. Recently, there
has been increasing interest in pre-training multi-
modal models. Lu et al. (2019) proposed ViLBert,
which extends BERT to multi-modal two-stream
models that interacts through co-attentional trans-
former layers and can be easily transferred into per-
forming multiple visual-and-language tasks. Sim-
ilarly, LXMERT (Tan and Bansal, 2019) further
included a cross-modality encoder that captures
cross-modality relationships. Instead of implement-
ing two stream models, Su et al. (2020) input the
caption and image regions all together to the modi-
fied BERT model named VL-BERT. Radford et al.
(2021) jointly trained an image encoder and a text
encoder known as CLIP to match the image and its
corresponding caption by contrastive learning.

2.3 VAE Overview

We later use Variational AutoEncoder (VAE) to
fuse multi-modal features. Thus, here we introduce

701



the basic structure and loss calculation of a VAE.
A VAE is an unsupervised approach for learning
a lower-dimensional feature representation from
unlabeled training data (Li et al., 2019a). The aim
of finding a representation in the latent space is to
capture meaningful factors of variation in the data
(Lietal., 2019a). Typically, a VAE consists of an
encoder and a decoder, which look "symmetrical"
in the model’s architecture. The encoder learns a
latent variable space where a latent variable z is
sampled from and input to the decoder for original
data reconstruction. Figure 2 shows the structure
of a simple VAE.

original latent  reconstructed
input data variable input data

Jepooeq

Figure 2: A simple VAE example.

Encoder. The encoder network of a VAE can have
various structures. For textual input, the common
structure is the Recurrent Neural Networks (RNN),
e.g. Bi-LSTM (Cheng et al., 2020). For image
input, the common encoder structure is the Convo-
lutional Neural Networks (CNN). Mathematically,
the encoder can be described as gy (z|x), where ¢
is the parameters of the encoder network. g¢(z|x)
stands for the probability distribution of latent vari-
able z given x.

Decoder. Generally, the decoder network of a VAE
is symmetrical to the encoder. It reconstructs the
input by sampling from the learned latent variable
space subject to a Gaussian distribution. The de-
coder can be described as pg(x|z), where 0 is the
parameters of the decoder network. pg(x|z) stands
for the probability distribution of reconstructed x
given z.

Loss. In order to compute the loss of VAE in our
model, we first introduce how to compute the loss
of a general VAE. Since VAE models the prob-
abilistic generation of data {z()}, the goal is to
maximize the (log) data likelihood (Kingma and
Welling, 2014):

log po(x”) = Dicr(qp(zIx™)|Ipo (zx"))

7
+L(0, ¢;x")) @

where 6 and ¢ are parameters of the decoder
and encoder network respectively. The first KL
divergence term on the right hand side can’t be

computed explicitly but it is non-negative. The sec-
ond term is called the lower bound on the marginal
likelihood of datapoint ¢ and can be rewritten as
(Kingma and Welling, 2014):

L£(0,¢;x") = —Dr1(g4(2x)||po(z))
B, () [0z po(xV]2)]

Hence, to maximize the log likelihood, we only
need to maximize £(80, ¢;x?). To achieve that,
the KL divergence term in eq. 2 should be mini-
mized and the expected log likelihood of datapoint
1 should be maximized (equivalent to minimizing
the expected reconstruction error).

2.4 Multi-task Learning

Our work leverages the concept of multi-task learn-
ing to learn fine-grained category labels of misogy-
nistic memes. According to Ruder (2017), as long
as a model is optimized by more than one loss func-
tions, it is doing multi-task learning. When the
tasks are relevant and the knowledge learned from
one task could benefit the learning of other tasks,
applying multi-task learning will have promising
performances (Caruana, 1997). Multi-task learn-
ing has been successfully applied in many NLP
tasks such as text classification (Cheng et al., 2020;
Khattar et al., 2019), sentiment analysis (Majumder
et al., 2019), neural machine translation (Niehues
and Cho, 2017), etc. However, the most common
issue of multi-task learning is the negative transfer
when the performance on single task is undermined.
Lee et al. (2016) avoids negative transfer by allow-
ing asymmetric transfer between tasks. Wu et al.
(2020) observes that misalignment between tasks
can cause negative transfer. Wu et al. (2019) pro-
posed a method to filter and select shared feature
to prevent adverse features being integrated into
certain tasks.

3 Problem Statement

The paper strives to build a classifier that can dis-
tinguish misogynous vs. non-misogynous memes.
We break this down into two sub-tasks:

* Sub-task A: Given a meme’s image [ and its
corresponding text transcription 7', we must
predict its binary (0/1) label on misogyny
(Fersini et al., 2022).

* Sub-task B: Given a meme’s image I and its
corresponding text transcription 7', we must
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predict its binary (0/1) label on the following
classes: shaming, stereotype, objectification
and violence (Fersini et al., 2022), which are
types of misogyny.

Note, the meme’s image I has the embedded
text on it, and T is transcribed from the meme’s
embedded text.

4 Our Approach

As illustrated in Figure 3, our MMVAE model
consists of 3 components: (i) the Image/Text em-
bedding Module, (ii) the Variational AutoEncoder
Module and (i) the Multi-Task Learning Module.
The embedding module turns the inputs into uni-
modal vector representations. After that, the VAE
module fuses multi-modal representations and gen-
erates a co-representation. Finally, the multi-task
learning module gives the label prediction. In this
section, we first introduce each part of our proposed
model, and then demonstrate how to put them all
together and jointly train the model.

4.1 Image/Text Embedding Module

In our pipeline, we first adopt two pre-trained mod-
els to embed the meme’s text and image (illus-
trated in Figure 3 left part). We directly input the
provided text transcription and meme’s image to
the pre-trained models to get embeddings as mod-
ule output. However, when using ResNet-50 and
BERT as pre-trained models, we apply data pre-
processing beforehand.

Image Embeddings. To obtain the meme’s image
embedding, we have experimented with 2 different
pre-trained models: ResNet-50 (He et al., 2016)
pre-trained on ImageNet (Deng et al., 2009) and
the multi-lingual version of OpenAl CLIP-ViT-B32
(Radford et al., 2021). When using ResNet-50 to
embed images, we transform the input images by
resizing it to 224 x224, applying random rotation,
random horizontal flip, random crop and normal-
ization for data augmentation. We use the last fully
connected layer’s output as our image embedding.
When using CLIP to embed images, although we
have experimented with data transformation tech-
niques, our optimal performance is achieved by
directly embedding the raw image.

Text Embedding. To obtain the meme’s text
embeddings, we experiment with 4 different pre-
trained models: BERT for sentence classifica-
tion (Devlin et al., 2019), LASER (Artetxe and
Schwenk, 2019), LaBSE (Feng et al., 2020) and the

multi-lingual version of OpenAl CLIP-ViT-B32.
We set the maximum input sentence length to 512
tokens when using BERT while we directly input
the meme’s text to other pre-trained models.

4.2 Variational AutoEncoder (VAE) Module

The next module in our pipeline takes the em-
beddings as an input and finds a multi-modal co-
representation. We assume that there is an effective
multi-modal co-representation in the latent space
which can better capture the inter-relationship be-
tween text and image data.

In our pipeline, we leverage VAE to learn the
multi-modal co-representation (illustrated in Fig-
ure 3 middle part). The input to this module are the
embeddings generated from the pre-trained mod-
els, and the output is the reconstructed embeddings.
Yet what we need for later meme detection classi-
fiers is the latent variable generated from the VAE
encoders.

Encoders. We build a text encoder and an im-
age encoder to first learn the latent variables of
the text embedding and image embedding sepa-
rately. In our case, since the input embeddings
are already semantically meaningful, there is less
need to further extract semantic information using
complex and deep layers. Therefore, we decide to
use 1 fully connected layer for each modality as
the encoder structure. And then we concatenate
the learned latent variables to form a multi-modal
co-representation z in the latent space.

Decoders. Accordingly, we build a text decoder
and an image decoder to reconstruct the text em-
bedding and image embedding from the learned
multi-modal co-representation z. Our decoders
still consists of 1 fully connected layer, with the
number of output channels equal to the number of
input channels in the encoder network.

Losses. We calculate the reconstructed image em-
bedding loss L;y,g, the reconstructed text embed-
ding loss L.+ (corresponding to the 2nd part of eq.
2) and the KL loss K L D (corresponding to the 1st
part of eq. 2) from the sampled latent variable z for
gradient descent. The reconstruction loss is calcu-
lated by Lo loss function (squared error). The KL
loss is calculated using the formula in Appendix B
of Kingma and Welling (2014).

4.3 Multi-task Learning

We leverage multi-tasking learning because we ex-
pect that learning the fine-grained hateful class la-
bels will benefit the misogyny meme detection and
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Figure 3: The architecture of our proposed Multi-modal Multi-task VAE (MM VAE) model. The upper part illustrates
the image/text embedding module and the VAE module from left to right. The lower part shows the multi-task

learning module.

vice versa. The input to this module is the latent
variable z (colored yellow in Figure 3) learned in
Section 4.2 and the output is label predictions on
each class.

Our model learns 5 tasks at the same time:
misogyny detection, shaming detection, stereotype
detection, objectification detection and violence de-
tection. The latter 4 classes are more specific types
of misogyny. Note, if a meme is misogynous, it
could fall into more than one specific misogyny
classes.

The architectures are the same across all the sub-
networks in our model as shown in Figure 3: 1 fully
connected layer followed by the softmax binary
classifier. Yet the sub-networks are independent -
the parameters are not shared.

Here the cross entropy loss function is used to
calculate the loss for each task:

Ly =—Ey.y, [ylogy: + (1 — y)log (1 — u)]
3)
where y is the ground-truth label of data point
in t detection (e.g. misogyny detection) and y; is
the predicted probability of x belonging to class ¢

(e.g. misogyny).

4.4 Putting It All Together

We have introduced each module in our MM VAE
and how to calculate their standalone losses. Next,
we introduce how to jointly train the model by
putting three modules together.

The total loss used to compute gradient descent
is composed of the reconstructed image error L,

reconstructed text error Ly, KL divergence K LD,
and multi-task cross entropy losses L;, where t €
{misogyny, shaming, stereotype, objectification, vi-
olence}. This can be expressed as:

Liotal = NiLimg + MLiat + Mg K LD + Z ALt
¢
“4)

where As are used to adjust the learning focus,
so that we can direct the focus of learning to the
task we care more about. We calculate gradient
descent on L.+ and back propagate it to update
model’s parameters.

S Experimental Setup

In this section, we first introduce the Multime-
dia Automatic Misogyny Identification (MAMI)
dataset released by the task organizer (Fersini et al.,
2022) and then discuss our experimental settings.

5.1 Dataset

The MAMI dataset contains 10,000 memes in the
training set and 1,000 memes in the test set. Each
meme has an associated text transcription in En-
glish and labels on 5 classes. The label distributions
of given classes are not balanced and are summa-
rized in Table 1. Only in the misogyny class, the
labels are totally balanced. Detailed task descrip-
tions can be found in Section 3.

5.2 Experimental Settings

We have experimented with different latent variable
(2) sizes of 256, 512, and 1024. 512 has the best
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Class # Positive # Negative
Misogyny 5,000 5,000
Shaming 1,274 8,726
Stereotype 2,810 7,190
Objectification 2,202 7,798
Violence 953 9,047

Table 1: Number of positive labels and negative labels
in each class.

performance on the validation set. Hence, we set
the latent variable size to 512 during the evaluation
phase.

Different pre-trained models generate embed-
dings with different dimensions, D. In both en-
coders, we map the input embeddings’ dimension
from D to half of z’s dimension.

For the optimizer, we use the Adam optimizer
with weight decay set to le-5. The batch size is
set to 64. In addition, the initial learning rate is
le-4 and divided by 4 every 8 training epochs. The
model is trained for 30 epochs in total with early
stopping.

We split the training set into the training and
validation set with a ratio of 9:1. We train our
model on 9,000 memes from the original training
set and test it on the rest of 1,000 memes to evaluate
our model’s performance.

5.3 Baselines

BERT (Devlin et al., 2019). As the text-only
baseline, we use BERT for sequence classification.
Here, only the text transcription is used for misog-
yny detection. BERT has achieved SOTA perfor-
mances on most NLP benchmark tasks. Therefore,
we consider it as a robust textual baseline model
for this task.
ResNet-50 (He et al., 2016). As the image-only
baseline, we use ResNet-50. Here, only the im-
age is used for misogyny detection. ResNet-50
has achieved SOTA performances on ImageNet, a
benchmark task in CV. Therefore, we consider it as
a robust image baseline model for this task.
CNN-Based VAE. We build an image-only VAE
model whose encoder and decoder are both com-
posed of 5 CNN layers. Here, only the meme image
is used for misogyny detection. This image-only
input model is used to compare with our MM VAE:
both of them are constructed based on VAE.

Note, we only experiment with BERT and
ResNet-50 with sub-task A because we directly

use the pre-trained model’s architecture without
incorporating multi-task learning into them.

6 Results and Analysis

In this section, we present our model’s perfor-
mances on both tasks, and give further analysis
on its strengths and weaknesses.

6.1 Evaluation Metrics

The main evaluation metric for both tasks is F}
score (macro-F} for sub-task B), which calculates
the average of F} for both labels:
_ pos_F1 4+ neg_F )
2
We also extend it to include precision and recall
by calculating the average score similarly.

I

6.2 Results

Table 2 summarizes the performances of our model
and the baselines. The first group of models are uni-
modal. The second group of models share the same
architecture, MMVAE, but with different embed-
ding methods. Furthermore, MM VAEs used in the
third group come from the best performed model
of the second group, i.e. MMVAE] asgr+cLip- In
the third group, we have tried a number of tech-
niques to mitigate the overfitting problem: adding
different dropout rates, concatenating the word em-
beddings generated by LASER and LaBSE, adding
one more liner layer to the text VAE encoder, and
introducing image transforms.

For sub-task A, the optimal F} performance is
0.723, which is achieved by applying batch nor-
malization layers and set dropout = 0.2 after each
linear layer in the encoders and decoders of the
VAE. Among all the tweaks we apply to reduce
overfitting, introducing dropout is the most effec-
tive by which we get our top two F} scores (0.723
and 0.714). Instead of dropping more parame-
ters, keeping 80% of them produces a better re-
sult (0.723).This might because the number of pa-
rameters in our model is not large, so excluding
more will harm the learning capability. We also see
a performance improvement to 0.712 by concate-
nating text embeddings from LASER and LaBSE,
which introduces more information, thereby reduc-
ing overfitting. The other two attempts fail to im-
prove the performance, the reason might be that
adding more layers doesn’t make the model more
generalizable and image transforms is not effective
when applying pre-trained models to embed.
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Model Sub-task A Sub-task B
Precision Recall F1 Precision Recall macro-F1

BERT 0.608 0.632 0.589 - - -
ResNet-50 0.635 0.656 0.622 - - -
CNN-VAE 0.526 0.550 0.462 0.514 0.545 0.469
MM VAERERT:ResNet 0.640 0.653 0.632 0.543 0.590 0.532
MMVAERgRT+CLIP 0.707 0.752  0.693 0.586 0.633 0.589
MMVAE;| ASER+CLIP 0.721 0.756 0.711 0.594 0.648 0.600
MMVAE, ,gSE+CLIP 0.707 0.751 0.694 0.578 0.686 0.575
MMVAEcy ipicLip 0.712 0.760 0.698 0.587 0.658 0.592
MMVAE dropout=0.5 0.724 0.759 0.714 0.606 0.656 0.616
MMVAE,, 4ropout=0.2 0.730 0.756  0.723 0.613 0.647 0.622
MMVAE, concat 0.721 0.751 0.712 0.602 0.657 0.609
MMVAE, inore layers 0.710 0.750 0.698 0.631 0.649 0.634
MMVAE 4img transform 0.710 0.756 0.696 0.605 0.651 0.615

Table 2: Performance of our MM VAE model and variants on the test set.

For sub-task B, the optimal performance in F7 is
0.634, which is achieved by applying batch normal-
ization layers after each linear layer in the encoders
and decoders, and adding one more linear layer to
the text encoder in the VAE.

Our MMVAE’s best performance on sub-task A
is significantly higher than that of the uni-modal
baselines: 22.8% higher than the text-only BERT
baseline, and 16.2% higher than the image-only
ResNet-50 baseline. This confirms that our pro-
posed model has effectively learned from both tex-
tual and visual features.

Our constructed image-only CNN-based VAE
produces the least I score, probably because CNN
layers are less effective in capturing complex se-
mantic information contained in meme images.

6.3 Text-Based Error Analysis

We observe that on our randomly selected vali-
dation set (10% of memes from the training set),
MMVAE obtains nearly 0.87 as F} score on sub-
task A. But on the test set, we see a 16.7% perfor-
mance drop. Thus, there is a large gap between our
model’s performance on the validation set and the
test set. We speculate that multiple factors could
cause the misclassifications, for instance, similari-
ties between images that are associated with differ-
ent text. For simplicity, here we only investigate the
impact of hateful text on the classification results.
We delay further investigations to future work.

To start, we compute the confusion matrix of
our best model: MMVAE , 4ropout=0.2, Which is dis-
played in Figure 4. There are 500 misogynous

memes and 500 non-misogynous memes in the test
set. As a result, the number of false negative (56) is
much lower compared to the false positives (214).
Our model correctly classifies 88.8% of misogy-
nous memes yet only 57.2% of non-misogynous
memes.

prediction
misogynous

non-misogynous

ground truth

Figure 4: Confusion matrix of MMVAE_ gropout=0.2’S pre-
diction.

We conjecture that issues with performance may
be driven by the nature of hateful text. To analyze
this, we calculate the hateful scores on the memes’
text using the sentiment analysis toolkit in (Pérez
et al., 2021). Figure 5 presents boxplots showing
the scores. We observe that for true positives (TP)
and false negatives (FN), the hateful score distribu-
tions are similar, although the former’s 2nd quar-
tile is much higher. In contrast, we find that true
negatives (TN) contain less hateful text in memes
compared to false positives (FP), and the mean
score value is significantly different. Apparently,
non-misogynous memes tend to have lower hateful
scores for their text. Based on our analysis, we
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infer that our model is more confident in assign-
ing the correct non-misogynous label to a meme
with less hateful text content. Yet, when assigning
misogynous labels (although FNs have comparably
lower hateful scores), our model is less accurate.
As such, we cannot tell the decision boundary be-
tween FN and TP by simply looking at the hateful
messages contained in meme’s text.
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Figure 5: Boxplots of hateful scores on true positives
(TP), false negatives (FN), true negatives (TN) and false
positives (FP). Green triangle indicates the mean value
of the given class. Blue and pink respectively refer
to misogynous and non-misogynous memes in ground-
truth.

Manual inspection on FPs suggests that the mis-
classification is potentially driven by several differ-
ent types of meme. The misogynous text is crossed
out in the left meme of Figure 6, but it’s still in-
cluded in the text transcription, which can be con-
fusing for the classifier. Similarly, although the
other meme in Figure 6 is not misogynous, it is
related to women. We suspect that the presence
of certain words associated with femininity e.g.
woman, girl, is a another determinate in the pre-
diction. We will test this hypothesis in our future
work.
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(a) Hateful score: 0.017 (b) Hateful score: 0.086

Figure 6: Two examples of FPs, i.e. the ground-truth
labels are non-misogynous while the predicted labels
are misogynous.

7 Related Work

The misogynous meme detection task is novel,
but has similarities to other more general hate-
ful meme detection tasks. Related datasets has
been released on a number of shared hateful
meme detection/classification tasks (Kiela et al.,
2020; Mostafazadeh Davani et al., 2021). Most
of the prize-winning models adopted visual-and-
linguistic pre-trained models. Velioglu and Rose
(2020) utilized pre-trained VisualBERT (Li et al.,
2019b) to encode the meme image regions and cap-
tion all together. Sharif et al. (2021) and Zia et al.
(2021) leveraged visual and textual pre-trained
models to encode the meme image and the embed-
ded text respectively, and then learned multi-modal
co-representation through vector concatenation. In-
stead of concatenating the vectors, Pramanick et al.
(2021) applied self-attention to learn intra-modality
semantic alignments. Lippe et al. (2021) used an
ensemble of existing multi-modal pre-trained mod-
els based on UNITER (Chen et al., 2020). Zhu
(2020) showed that directly applying state-of-the-
art multi-modal models on hateful meme classifi-
cation won’t get the optimal performance. They
used various data pre-processing approaches to get
sufficient features, e.g. entity tags, as additional
inputs to the pre-trained models. Note, there have
also been studies of misogyny in uni-modal plat-
forms (Guest et al., 2021; Zeinert et al., 2021; Jiang
et al., 2022).

Our work differs from the above. Many of these
previous works directly leverage uni-modal em-
beddings produced by pre-trained models. They
then build a relatively simple model afterwards, of
which the learnt multi-modal features are not in-
tegrated. In contrast, we strive to overcome this
limitation via the co-representation of both textual
and image modalities. Moreover, we differ in that
we are focusing on misogynous meme detection,
rather than the broader topic of hateful meme de-
tection.

8 Conclusion

The spread of hateful memes targeting certain
groups has become an important problem on so-
cial media platforms. To mitigate the negative
consequences brought by misogynous memes, we
propose a Multi-modal Multi-task Variational Au-
toEncoder (VAE) to identify them and assign them
more fine-grained labels. Our model consists of
three main components: the Image/Text Embed-
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ding Module, the Variational AutoEncoder Mod-
ule, and the Multi-Task Learning Module. Our
model’s performance outperforms the state-of-the-
art unimodal baselines by 22.8% and 16.2%. It
effectively learns the co-representation of visual
and textual features, and is jointly trained on multi-
ple downstream classification tasks. In our future
work, we plan to integrate attention mechanism
into our model and carry out more comprehensive
statistical analysis on model’s results.
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