
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 679 - 688
July 14-15, 2022 ©2022 Association for Computational Linguistics

Codec at SemEval-2022 Task 5: Multi-Modal Multi-Transformer
Misogynous Meme Classification Framework

Ahmed Mahran
Codec AI

Alexandria, Egypt
ahmed@codec.ai

Carlo Alessandro Borella
Codec AI

WC1N 2EB, London, UK
carlo@codec.ai

Konstantinos Perifanos
Codec AI

WC1N 2EB, London, UK
kostas@codec.ai

Abstract

In this paper we describe our work towards
building a generic framework for both multi-
modal embedding and multi-label binary clas-
sification tasks, while participating in task 5
(Multimedia Automatic Misogyny Identifica-
tion) of SemEval 2022 competition.

Since pretraining deep models from scratch is
a resource and data hungry task, our approach
is based on three main strategies. We combine
different state-of-the-art architectures to cap-
ture a wide spectrum of semantic signals from
the multi-modal input. We employ a multi-
task learning scheme to be able to use multiple
datasets from the same knowledge domain to
help increase the model’s performance. We
also use multiple objectives to regularize and
fine tune different system components.

1 Introduction

In this paper, we present the system that we have
built to participate in SemEval 2022 task 5 (Fersini
et al., 2022), Multimedia Automatic Misogyny
Identification (MAMI) challenge. The task is tar-
geted at identification of misogynous memes by ba-
sically using the meme’s image and pre-extracted
English text content as input sources. The task is
divided into two main sub-tasks: Sub-task A is a
binary classification task where a meme should be
categorized either as misogynous or not misogy-
nous, Sub-task B is a multi-label binary classifica-
tion task, where the type of misogyny should be
recognized among the potential overlapping cat-
egories: stereotype, shaming, objectification and
violence. Generally, meme classification is a chal-
lenging task as memes are multi-modal, rely heav-
ily on implicit knowledge, and are subject to human
misinterpretation especially among different back-
grounds and cultures.

We have used transformer (Vaswani et al., 2017)
based architectures and took a transformer based

approach to combine them. Transformer based
architectures are achieving state-of-the-art perfor-
mance for Natural Language Processing and Com-
puter Vision related tasks. There are architectures
for language, vision, and language and vision com-
bined. There are also architectures for other modal-
ities however in MAMI’s scope, we are interested
in images and text only.

Pretraining a deep neural network and a trans-
former based architecture from scratch is a data
hungry and computation resources demanding task.
Especially in a multi-modal domain where input
can have multiple image and text modalities. The
literature is rich in a variety of architectures which
achieve competitive performance in different tasks
for different modalities. In our work, we took an
approach towards building a framework that would
allow us to combine different pretrained architec-
tures. With relatively few epochs and using rel-
atively less compute resources, our goal was to
build and train a classifier framework that could
harness the power of pretrained architectures as
backbones, using relatively limited resources: no
multiple GPUs for training and constrain the cost to
be relatively small, in the range of hundred dollars
in total.

We have assumed that using as many different
backbone architectures which are trained on differ-
ent tasks for different modalities can allow us to
capture a wide spectrum of semantic signals from
the input modalities. Then we just need to build
a classifier to learn the relationship between these
signals and the target classes.

We have also found and discuss below that
there are available text and image datasets for hate
speech, sexism and hateful memes which sound
related to this task and could be used to augment
MAMI’s dataset. Eventually, our goal was to com-
bine different datasets in a multi-task classifier.

In order to guide the model during training to-
wards the main objective, which is to minimize

679



(a) Multi-modal shared transformer encoder (b) Uni-modal multi transformer encoders

Figure 1: Sequence embedding

the classification loss, we have employed different
auxiliary objectives. Breaking down the whole ar-
chitecture into components, each component has a
sub-target. We have assumed that if we could as-
sure that each component performs well on the sub-
target, then the whole system would perform better
on the main target. A component producing a clear
signal can facilitate the learning of the downstream
dependent components. This could increase model
performance in terms of either accuracy or conver-
gence speed. So, if we could formulate an objective
function for each component, we can linearly com-
bine them with the main objective function. This
helps fine tuning and regularizing the components
of the system.

We have built a generic classification frame-
work and applied it to both sub-tasks A and
B. During the evaluation phase of the com-
petition, we have achieved, for sub-task A, a
macro-average F1-Measure of 0.715, and for
sub-task B, a weighted-average F1-Measure of
0.698. During post-evaluation phase we have
achieved higher score for sub-task A of 0.761. Our
code is available at https://github.com/
ahmed-mahran/MAMI2022.

2 Background

Datasets: Besides MAMI dataset, there are many
datasets that could be used to train our model. The
input could be uni-modal as text only or image only,
or bi-modal as pairs of image and text. (Vidgen and
Derczynski, 2020) reviews 63 publicly available
training datasets and they have published a dataset
catalogue on a dedicated website 1. We have used

1hatespeechdata.com

the hateful meme dataset created by Facebook AI
(Kiela et al., 2020) which consists of 10K memes
labeled hateful or not.

Multi-modal frameworks: MMBT (Kiela et al.,
2019) concatenates, into a single sequence, linear
projection of ResNet (He et al., 2016) output for
image pooled to N different vectors, with BERT
(Devlin et al., 2018) tokens embeddings for text.
The sequence is fed into a transformer encoder, they
call it a bi-transformer, after adding positional em-
beddings and segment embeddings to distinguish
which part is image and which part is text. The
architecture is generic enough to use different im-
age encoders. As a variant of how we combine
signals from image and text, we extend the MMBT
architecture to combine more than two encoders
however that wasn’t our top performing variant.
MMCA (Wei et al., 2020) combines Faster R-CNN
(Ren et al., 2015) with BERT to compute two em-
bedding types for each modality: self-attention em-
bedding to capture intra-modality interactions, and
cross-attention embedding to capture both intra-
and inter-modality interactions.

3 System overview

3.1 Tokens embedding
At this stage, we encode each input modality into a
sequence of vectors in a unified dimension space.
We also generate a binary mask vector with length
equal to the sequence’s length to indicate which
part of the sequence the model should consider.
This produces the output at "Token Embedding"
and "Tokens Binary Mask" layers illustrated in fig-
ure 1. We can use different encoders per modality
and generate different sequence types to capture as

680

https://github.com/ahmed-mahran/MAMI2022
https://github.com/ahmed-mahran/MAMI2022
https://hatespeechdata.com/


Figure 2: Classifiers: (a) using pooled sequence embedding, (b) using the whole non-pooled sequence embedding.

many semantic signals as possible. For our setup,
we have tested CLIP (Radford et al., 2021) and
DETR (Carion et al., 2020) encoders for image
modality and BERT (Devlin et al., 2018) encoder
for text modality.

CLIP image embedding: We split the image
into 4 equal size patches (2× 2) then we use CLIP
(Radford et al., 2021) to encode the whole image
along with its 4 slices into a sequence of 5 vec-
tors. Then we project each vector into the model
hidden dimension space. In our experiments, we
have used CLIP model named "RN50x4" (which
uses as backbone ResNet-50 scaled up 4x using the
EfficientNet scaling rule (Tan and Le, 2019))2.

DETR image objects embedding: We use
DETR (Carion et al., 2020) 3 to encode the im-
age into a sequence of 100 image objects represen-
tations. DETR’s transformer decoder produces a
sequence of 100 possible object boxes representa-
tions that we use as objects embeddings. However,
not all of the objects are real objects as DETR can
produce a no-object prediction. So, we use DETR’s
classifier which is trained on the object detection
task to generate masks for no-objects. For each
box from the 100, the classifier produces 92 log-
its which correspond to 92 possible object labels.
We take the softmax of the 92 logits and mask out
the corresponding object box if the label with the
highest softmax probability is the no-object label.

2We have used OpenAI implemantion on https://
github.com/openai/CLIP

3We have used Huggingface Transformers implementation
of DETR

We fallback to another masking strategy if all the
100 boxes are masked out; we ignore the logit of
the no-object label and then take the softmax of the
rest labels to select 4 out of 100 boxes with highest
softmax probabilities. Similarly with CLIP out-
put, we project each vector into the model hidden
dimension space.

BERT text embedding: We use BERT (Devlin
et al., 2018) 4 pre-trained on hate speech (Mathew
et al., 2020) to tokenize input text and generate
tokens embeddings (for a maximum of 120 tokens).
We don’t project BERT’s embeddings as we use
its output space as the model’s hidden dimension
space (which has length of 768 dimensions).

3.2 Sequence embedding

At this stage, the model generates one combined
sequence of vectors using tokens embedding from
the tokens’ embedding stage. This is the output
in the "Sequence Embedding" layer illustrated in
figure 1. For the token embedding output, we add
token type embedding and positional embeddings
that encode the position of each token in the corre-
sponding input sequence per type then we apply a
layer normalization (Ba et al., 2016). Along with
input masks, the layer normalized sum of embed-
dings is fed to a multi-layer transformer encoder
stage to produce the final sequence embedding at
the "Sequence Embedding" layer in figure 1. The
output sequence has the same number and dimen-

4We have used Huggingface Transformers implementation
of BERT with weights from "Hate-speech-CNERG/bert-base-
uncased-hatexplain"

681

https://github.com/openai/CLIP
https://github.com/openai/CLIP
https://huggingface.co/docs/transformers/v4.18.0/en/model_doc/detr
https://huggingface.co/docs/transformers/v4.18.0/en/model_doc/detr
https://huggingface.co/docs/transformers/v4.18.0/en/model_doc/bert
https://huggingface.co/docs/transformers/v4.18.0/en/model_doc/bert
https://huggingface.co/Hate-speech-CNERG/bert-base-uncased-hatexplain
https://huggingface.co/Hate-speech-CNERG/bert-base-uncased-hatexplain


sionality of the input tokens. We have two variants
for the transformer encoder stage:

Shared transformer encoder: The general ar-
chitecture of the shared transformer encoder vari-
ant is illustrated in Figure 1a. What distinguishes
this variant is that we use a shared multi-layer
transformer encoder to capture the intra- and inter-
modality interactions. Because of this, for each
input embedding type, we add token type embed-
ding which is the same for each input encoder to
distinguish which tokens are from which input en-
coder. In our setup, we have three token types;
that is one for each of: CLIP, DETR and BERT
encoders. We also append a special [SEP] token at
the end of each sequence type and we prepend to
the whole combined sequence a global and special
[CLS] token. We use the pre-trained BERT trans-
former encoder as the shared transformer encoder.

Multiple transformer encoders: The general
architecture of this variant is illustrated in Figure
1b. The difference here is that instead of using
one shared transformer encoder, we use a multi-
layer transformer encoder per token type. We still
add a token type embedding such that each trans-
former encoder learns its own token type param-
eters. We think we can remove this step however
we have not tested this. Also, in this variant we
don’t need to add the extra [SEP] token per type
and the global [CLS] token however we add a lo-
cal [CLS] and [SEP] tokens for BERT only. For
CLIP and DETR, we use PyTorch’s implementa-
tion of the transformer encoder which is described
in (Vaswani et al., 2017) with 8 heads and 6 lay-
ers but for BERT we keep it as in (Devlin et al.,
2018). Then the final output sequence is just the
concatenation of all sequences from each trans-
former encoder.

3.3 Classification

We have two modes of classification depending on
the sequence length of the output of the transformer
encoder stage. As shown in figure 2, we either use
the whole sequence of vectors or pool it to one
vector.

Multi-head MLP classifier: We use the pooled
sequence embedding as classifier input. In our
setup, we have used the first [CLS] token in the
shared transformer encoder variant. The classifier
is a two feed forward linear layers with a GELU
activation in between and a hidden size of 768. The
final layer produces number of logits equals to num-

ber of classes and we apply a sigmoid activation to
compute each binary label probability.

Transformer decoder with single-head shared
MLP classifier: Here the whole sequence embed-
ding along with the binary mask is fed into a multi-
head transformer decoder as a source sequence.
Then the target sequence is formed by a learnable
target class query embedding for each class in the
target classes. The transformer decoder learns how
each class interacts with each input modality signal
through the cross-attention mechanism between
the source and target sequences. Moreover, the
decoder learns the dependency among the target
classes through the self-attention mechanism for
the target sequence. The decoder output is then
fed into a single-head MLP classifier that shares
parameters for all classes such that MLP (qi) is the
logit of label i using the corresponding class query
embedding, qi, from the decoder output. The MLP
classifier has the same architecture as the previous
one in terms of number of layers, type of activation
and hidden size, and similarly as well we compute
the binary label probability for each class. We use
PyTorch’s implementation of the transformer de-
coder which is described in (Vaswani et al., 2017)
with 8 heads and 6 layers.

3.4 Multi-task learning
In order to use more training data from other but
similar datasets, we have followed a multi-task
learning approach. For each dataset D, there is
a set of target labels L, we can define as many
tasks as the sets of labels in the power set P+(L)
(excluding the empty set) such that it is possible
to use the same label in more than one task. Each
task has a separate MLP classifier while all tasks
across the datasets share the rest of the parame-
ters including the learnable classes queries. During
training, each mini-batch contains data from only
one dataset and we compute the targets per task for
all the tasks of the dataset.

3.5 Multi-objective
For a training instance i, we use xi to refer to
the input regardless from its actual representation,
yi,c ∈ {0, 1} is the value of the target binary label
c, and θ is the set of learnable parameters.

Main objective: We use a binary cross entropy
to minimize the loss per label.

L0(i, c) = yi,c. log p(c|xi, θ)
+(1− yi,c). log(1− p(c|xi, θ))

(1)

682



Algorithm 1 Multi-task learning

datasets← {D1, D2, ...}
tasksPerD ← {(D1, {T1, T2, ...}), ...}
labelsPerT ← {(T1, {l1, l2, ...})}
for epoch ∈ epochs do

for b ∈ mini-batches do
dataset← sample 1 from datasets
tasks← tasksPerD[dataset]
for task ∈ tasks do

learn b, task, labelsPerT [task]
end for

end for
end for

Token encoding projection alignment: We lin-
early project modal encoding into the hidden model
space (as described in section 3.1). In order to
preserve a similar structure of data points across
spaces, we impose a cosine similarity constraint
such that for any two input instances, xi and xj ,
the similarity, s(., .), between their encoding, f(.),
is the same as the similarity between the projection,
g(.), of their encoding. We apply this to all pairs in
each batch.

L1(i, j) = |s(f(xi), f(xj))
−s(g(f(xi)), g(f(xj)))|

(2)

Contrastive embedding loss: This is intended
at regularizing the embedding space of the MLP
classifier to make instances of dissimilar labels
more separable. For any two input instances, xi
and xj , we apply the embedding loss per class c on
the input, hl−1, of each layer l of the MLP classifier.

L2(i, j, c) =
1

2

∑

l

1− sc(yi, yj)sh(h
l−1
i,c , hl−1

j,c )
(3)

sc(yi, yj) = (2yi,c − 1)(2yj,c − 1) (4)

sc(., .) ∈ {−1, 1} is the labels similarity for class
c of two instances; −1 indicates dissimilar labels
while 1 indicates similar labels. sh(., .) ∈ [−1, 1]
is the cosine similarity of layer input when compar-
ing two instances. It is worth noting that in case of
the multi-head MLP classifier, hl−1

i,c is the same for
all classes. We also apply this loss to all pairs in
each batch. This loss encourages the transformer
encoder in case of the multi-head MLP classifier,

the decoder in case of the shared single head MLP
classifier, as well as the hidden layers of the MLP
classifier to produce embeddings with structures
that capture labels similarity such that instances
with the same label value get closer embeddings
than instances with different label value.

The overall loss per batch and task given a
dataset d:

Ldt =
1

NiN t
c

∑

i,c

L0(i, c)

+
1

Ni(Ni − 1)

∑

i ̸=j

L1(i, j)

+
1

Ni(Ni − 1)N t
c

∑

i ̸=j,c

L2(i, j, c)

(5)

The overall loss per batch for all tasks of the
dataset is the average task loss:

Ld =
1

Nd
t

∑

t

Ldt (6)

Ni is the batch size, Nd
t is the number of tasks for

dataset d, and N t
c is the number of classes for task

t.

4 Experimental setup

In addition to MAMI’s dataset, we have used Face-
book’s hateful memes dataset. We have set the
tasks configurations as shown in table 1.

Dataset Task Labels

MAMI

MAMI {misogynous, shaming , stereotype
, objectification, violence}

Task_A {misogynous}
Task_B {shaming, stereotype

, objectification, violence}
FBHM Hateful {hateful}

Table 1: Tasks labels configurations per dataset. FBHM
is short for Facebook Hateful Meme.

We have added the redundant task MAMI for the
MAMI dataset to make sure that the decoder learns
the dependency among all labels as Task_B’s labels
depend on Task_A’s label we wanted to make sure
that the model captures this dependency.

We have split both datasets into 80% train
and 20% dev sets using stratified sampling. We
have used the data provided at post-evaluation
period of the competition as the test set. We have
used a batch size of 16 and number of epochs
as 15. We have used MADGRAD (Defazio and
Jelassi, 2021) for optimization. Learning rate

683



was set to 2 × 10−4 and we used a learning
rate linear scheduler with a warmup period 5.
Gradients are accumulated every 20 batches so
there was a total gradient accumulation steps of:
total number of batches/20 × number of epochs.
We have set the warmup period to:
total gradient accumulation steps/10. For all
parameters except biases and layer normalization
weights, we have used a weight decay of 5× 10−4.
We clip gradients to overall norm of 0.5. Our
implementation is PyTorch based and we have
used HuggingFace Transfomers implementation
for both BERT and DETR. We have run our
experiments on Google Colab Pro plus using one
Tesla P100 GPU. We didn’t perform any special
data preprocessing, just the requirements for each
backbone. Also, to make experiments quicker,
we didn’t perform any fine tuning for any of the
backbones and we pre-generated and stored each
backbone output instead of re-evaluating the same
data across epochs and experiments.

We used the official accuracy measures to score
how the model performs on each task. For the
single class tasks, we have used macro-average F1-
Measure and we called it scoreA. In particular, for
each class label (i.e. true and false) the correspond-
ing F1-Measure will be computed, and the final
score will be estimated as the arithmetic mean of
the two F1-Measures. For the multi class tasks, we
have used weighted-average F1-Measure and we
called it scoreB. In particular, the F1-Measure will
be computed for each label and then their average
will be weighted by support, i.e. the number of true
instances for each label.

5 Results

5.1 Ablations

We have the following system configurations 6

which would result in different architecture varia-
tions.

Transformer encoder (Xformer Enc) whether to
use shared transformer (Shared) or multi trans-
formers (Multi).

Encoder output pooling (Pooling) whether the
whole sequence is pooled using [CLS] embedding

5We used get_linear_schedule_with_warmup from Hug-
gingface Transformers.

6We give each item a short name in parenthesis to be able
to refer to corresponding items in experiments results tables
compactly.

([CLS]), this means we use the multi-head MLP
classifier and no decoder), or no pooling (No) or
only text tokens are pooled using text’s [CLS] token
(txt [CLS]), this means we use the decoder with
the shared single head MLP classifier.

Token encoding projection alignment (Proj
Align) whether to enable it (Yes) or not (No).

Contrastive embedding loss (Contrastive)
whether to enable it (Yes) or not (No).

Multi-task learning (Multi-task) whether to use
Facebook’s hateful meme dataset (Yes) or not (No).

Image encoders (Backbones) whether to use
CLIP only (CLIP), DETR only (DETR), or both
together (CLIP and DETR).

We plan experiments as tournament of rounds such
that in each round we test subset of the configura-
tions fixing the rest. Then we use the winning con-
figuration values for subsequent rounds. For each
experiment, we report the max score for Task_A
and Task_B on all splits. Appendix A contains
more details on scores distributions.

5.1.1 Round 1
At this round we compare transformer encoder and
encoder output pooling methods. We perform four
experiments with configurations and results sum-
maized in table 2. The winner of this round is the
multi-transformers encoders without output pool-
ing architecture variant.

Experiment 00 01 02 03
Xformer Enc Shared Shared Multi Multi
Pooling [CLS] No No txt [CLS]
Proj Algn No
Contrastive No
Multi-task No
Backbones CLIP and DETR
Score
Test - Task_A 0.6819 0.7226 0.7436 0.7329
Test - Task_B 0.5886 0.6422 0.6785 0.6772
Dev - Task_A 0.8395 0.8355 0.8564 0.8519
Dev - Task_B 0.6650 0.6933 0.7420 0.7310
Train-Task_A 0.9253 0.9121 0.9066 0.8998
Train-Task_B 0.7006 0.7242 0.7782 0.7647

Table 2: Experiments configurations for round 1 and
corresponding results.

5.1.2 Round 2
At this round, we test the significance of the multi-
objective approach. The configurations and corre-
sponding results are summarized in table 3. To-

684

https://huggingface.co/docs/transformers/v4.18.0/en/main_classes/optimizer_schedules#transformers.get_linear_schedule_with_warmup


ken encoding projection alignment makes improve-
ments on both tasks on the test split when enabled
alone. Also, contrastive embedding loss seems to
slightly improve Task_B. After performing statisti-
cal tests and comparing distributions of the scores,
we pick experiment 10 as the winner variant.

Experiment 02 10 12 13
Xformer Enc Multi
Pooling No
Proj Algn No Yes No Yes
Contrastive No No Yes Yes
Multi-task No
Backbones CLIP and DETR
Score
Test - Task_A 0.7436 0.7504 0.7358 0.7467
Test - Task_B 0.6785 0.6798 0.6823 0.6777
Dev - Task_A 0.8564 0.8535 0.8515 0.8535
Dev - Task_B 0.7420 0.7387 0.7371 0.7313
Train-Task_A 0.9066 0.8983 0.9090 0.8988
Train-Task_B 0.7782 0.7679 0.7676 0.7573

Table 3: Experiments configurations for round 2 and
corresponding results compared to best configurations
from round 1.

5.1.3 Round 3
At this round, we test the significance of the image
encoders backbones, namely: CLIP and DETR.
The configurations and corresponding results are
summarized in table 4. It seems that our use of
DETR was incompetent to CLIP.

Experiment 10 20 21
Xformer Enc Multi
Pooling No
Proj Algn Yes
Contrastive No
Multi-task No
Backbones CLIP and DETR CLIP DETR
Score
Test - Task_A 0.7504 0.7426 0.7010
Test - Task_B 0.6798 0.6865 0.6306
Dev - Task_A 0.8535 0.8560 0.7979
Dev - Task_B 0.7387 0.7347 0.6784
Train-Task_A 0.8983 0.8990 0.8186
Train-Task_B 0.7679 0.7628 0.6704

Table 4: Experiments configurations for round 3 and
corresponding results compared to best configurations
from round 2.

5.1.4 Round 4
At this round, we test the significance of the addi-
tional training data from Facebook’s hateful meme
dataset. The configurations and corresponding re-
sults are summarized in table 5. This time we train
for more 15 epochs (i.e. total 30 epochs). We can

notice a significant improvement when using more
training data from the external dataset.

Experiment 10 30
Xformer Enc Multi
Pooling No
Proj Algn Yes
Contrastive No
Multi-task No Yes
Backbones CLIP and DETR
Score
Test - Task_A 0.7504 0.7609
Test - Task_B 0.6798 0.6958
Dev - Task_A 0.8535 0.8502
Dev - Task_B 0.7387 0.7429
Train-Task_A 0.8983 0.9127
Train-Task_B 0.7679 0.7815

Table 5: Experiments configurations for round 4 and
corresponding results compared to best configurations
from round 2.

5.2 Visualizations
In figure 3, we show t-SNE projections of the trans-
former decoder output per class and the correspond-
ing class learnt input query embedding. We use
data from experiment 30 in section 5.1.4. It is in-
teresting that, for all classes, the class learnt query
embedding is positioned on the side with denser
positive labels. This indicates that the learnt class
queries can be thought of as centers of positive
labels.

In figure 4, we show average attention weights
per transformer decoder layer. Figure 4a illus-
trates the dependencies between each class and
other classes. As shown in the figure, numbers are
very close which indicates that each class depends
uniformly on other classes. Figure 4b shows the
average cross-attention weights between the source
and target sequences from the transformer decoder
layers and aggregated per input encoder. Clearly,
the model pays more attention to CLIP features,
and less attention to BERT text features, and the
least attention to DETR objects features. This con-
forms with results from round 3 in section 5.1.3.

6 Conclusion

In this paper, we propose a generic framework for
both multi-modal embedding and multi-label bi-
nary classification tasks. We combine and use as
backbones different architectures achieving state-
of-the-art in different or similar tasks on different
modalities to capture a wide spectrum of semantic
signals from the multi-modal input. By employing
a multi-task learning scheme, we are able to use

685



Figure 3: t-SNE projections of transformer decoder output per class (small dots) and the corresponding class query
embedding (the biggest dot).

(a) Transformer decoder average self-attention weights

(b) Transformer decoder average source × target cross-attention weights. Source weights are aggregated per input encoder.

Figure 4: Attention weights visualization per transformer decoder layer. First input layer is on the left while last
output layer is on the right.

multiple datasets from the same knowledge domain
and increase the model’s performance. In addition
to that, we use multiple objectives to regularize and
fine tune the system components. We have carried
out experiments to verify our ideas and the results
show the significance of some of the ideas. As a
future work, we need to do more experiments with
different backbone architectures and more datasets.
We can also try more objectives and regularizations;
for instance, we can use our observation from fig-
ure 3 to make the decoder output for a positive
instance closer to the corresponding class query
embedding.

References
Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. 2020. End-to-end object detection with
transformers. In European conference on computer
vision, pages 213–229. Springer.

Aaron Defazio and Samy Jelassi. 2021. Adaptivity with-
out compromise: a momentumized, adaptive, dual
averaged gradient method for stochastic optimization.
arXiv preprint arXiv:2101.11075.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Elisabetta Fersini, Francesca Gasparini, Giulia Rizzi,
Aurora Saibene, Berta Chulvi, Paolo Rosso, Alyssa
Lees, and Jeffrey Sorensen. 2022. SemEval-2022
Task 5: Multimedia automatic misogyny identifica-
tion. In Proceedings of the 16th International Work-
shop on Semantic Evaluation (SemEval-2022). Asso-
ciation for Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Douwe Kiela, Suvrat Bhooshan, Hamed Firooz, Ethan
Perez, and Davide Testuggine. 2019. Supervised
multimodal bitransformers for classifying images and
text. arXiv preprint arXiv:1909.02950.

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj
Goswami, Amanpreet Singh, Pratik Ringshia, and
Davide Testuggine. 2020. The hateful memes chal-
lenge: Detecting hate speech in multimodal memes.
Advances in Neural Information Processing Systems,
33:2611–2624.

Binny Mathew, Punyajoy Saha, Seid Muhie Yimam,
Chris Biemann, Pawan Goyal, and Animesh Mukher-
jee. 2020. Hatexplain: A benchmark dataset for

686



explainable hate speech detection. arXiv preprint
arXiv:2012.10289.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748–8763.
PMLR.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances
in neural information processing systems, 28.

Mingxing Tan and Quoc Le. 2019. Efficientnet: Re-
thinking model scaling for convolutional neural net-
works. In International conference on machine learn-
ing, pages 6105–6114. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Bertie Vidgen and Leon Derczynski. 2020. Direc-
tions in abusive language training data, a system-
atic review: Garbage in, garbage out. Plos one,
15(12):e0243300.

Xi Wei, Tianzhu Zhang, Yan Li, Yongdong Zhang, and
Feng Wu. 2020. Multi-modality cross attention net-
work for image and sentence matching. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10941–10950.

A Experiments scores distributions

687



Task_A Task_B
Tukey’s plot Box plot Tukey’s plot Box plot

R
ou

nd
1

(a) (b) (c) (d)

R
ou

nd
2

(e) (f) (g) (h)

R
ou

nd
3

(i) (j) (k) (l)

R
ou

nd
4

(m) (n) (o) (p)

Figure 5: Performance comparison on test split for Task_A and Task_B collected from evaluation phases during
model training epochs for different experiments described in 5.1. Tukey’s plots visualize a universal confidence
interval of scores mean on x-axis for each run on y-axis, any two runs can be compared for significance by looking
for overlap. Box plots summarize the distribution of scores on y-axis for each run on x-axis.

688


