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Abstract

This paper describes the BLCU-ICALL sys-
tem used in the SemEval-2022 Task 1 Com-
paring Dictionaries and Word Embeddings, the
Definition Modeling subtrack, achieving 1st
on Italian, 2nd on Spanish and Russian, and
3rd on English and French. We propose a
transformer-based multitasking framework to
explore the task. The framework integrates
multiple embedding architectures through the
cross-attention mechanism, and captures the
structure of glosses through a masking lan-
guage model objective. Additionally, we also
investigate a simple but effective model ensem-
bling strategy to further improve the robust-
ness. The evaluation results show the effec-
tiveness of our solution. We release our code
at: https://github.com/ blcuicall/SemEval2022-
Task1-DM.
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Word embeddings (Mikolov et al., 2013a; Penning-
ton et al., 2014; Yogatama et al., 2015) are dense
and low dimensional vectors used in many NLP
tasks because they are found to be useful repre-
sentations of words and often lead to better per-
formance in various tasks. In recent years, large
pretrained language models (PLMs), such as BERT
(Devlin et al., 2019) and GPT (Petroni et al., 2019)
families of models, have taken the NLP field by
storm, achieving state-of-the-art performance on
many tasks (Min et al., 2021). The contextual em-
beddings generated by PLMs are proven to capture
syntax and semantic features of words (Jawahar
et al., 2019; Turton et al., 2020). But for human
beings, word embeddings containing these infor-
mation is still a black box and unexplainable.
There have been many efforts devoted to eval-
uating the word embeddings’ lexical information,
such as the word similarity (Landauer and Dumais,
1997; Downey et al., 2007) and analogical relation
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Figure 1: Architecture of the Cross-Attention Multitask-
ing Framework.

(Mikolov et al., 2013c¢) tasks. However, these tasks
can only serve as indirect evaluation methods. In
light of this, Noraset et al. (2017) proposed the task
of definition modeling to evaluate whether a word
embedding can be employed to generate a dictio-
nary gloss. Since the gloss is a direct and explicit
statement of word meaning, this task provides a
more transparent view.

The SemEval-2022 Task 1 Comparing Dictio-
naries and Word Embeddings (Mickus et al., 2022)
aims at comparing the two types of semantic de-
scriptions: dictionary glosses and word embed-
dings. The subtrack 1 is a definition modeling task,
which requires models to generate glosses from
word embeddings. The task provides data from 5
languages (English, Spanish, French, Italian, Rus-
sian) as well as static, character, and contextual
embeddings.

Our team propose a transformer-based (Vaswani
et al., 2017) Cross-Attention Multitasking Frame-
work to explore the task and apply the framework
to all 5 languages. We integrate the multiple embed-
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Train Dev. Test SGNS Character Electra Gloss

Emb. Emb. Emb. Len.

English 43,608 6,375 6,221 v v v 11.73
Spanish 43,608 6,375 6,221 v v X 14.84
French 43,608 6,375 6,221 v v v 14.31
Italian 43,608 6,375 6,221 v v X 13.58
Russian 43,608 6,375 6,221 v v v 11.32

Table 1: Detailed statistics of the dataset. The last column lists the average length of glosses in the training set.

ding architectures through a cross-attention mech-
anism, which allows the model to query all the
embeddings at each time step during generation.
To better capture the structure of glosses, we em-
ploy an additional masking language model (MLM)
(Devlin et al., 2019) into the framework. We also
investigate the ensemble strategies to further en-
hance the robustness.

Therefore, the contributions of our system lie in:

* We propose the Cross-Attention Multitasking
Framework as a novel solution to the defini-
tion modeling task.

¢ The evaluation results show the effectiveness
of our solution. Our system achieves 1st on
Italian, 2nd on Spanish and Russian, and 3rd
on English and French.

2 Background

The definition modeling subtrack provides partic-
ipants with a multilingual dataset in the form of
{E, g}, where E is a set including SGNS (Mikolov
et al., 2013b), character (Kim et al., 2016), and
Electra (Clark et al., 2020) embeddings, and g is
a dictionary gloss. This task takes E as the input,
and requires models to generate g. Note that all the
embeddings have 256 dimensions, and the Electra
embeddings are only available for 3 of the 5 lan-
guages. More detailed statistics of the dataset are
listed in Table 1.

Many previous work used additional data to im-
prove the performance of generation, such as exam-
ple sentences (Gadetsky et al., 2018; Chang et al.,
2018; Ishiwatari et al., 2019; Kong et al., 2020) and
semantic features (Yang et al., 2020). Some studies
also investigated how to employ PLMs for this task
(Reid et al., 2020; Bevilacqua et al., 2020; Huang
et al., 2021; Kong et al., 2022).

Differently, to keep the results linguistically sig-
nificant and easily comparable, the SemEval-2022
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Task 1 prohibits the usage of external data and
PLMs. Therefore, our system focuses on effec-
tively integrating all given embeddings and model-
ing the glosses.

3 System Overview

Figure 1 illustrates the entire architecture of our
system, which is a Cross-Attention Multitasking
Framework based on transformer. The framework
consists of two objectives, namely the generation
and reconstruction objectives. This section intro-
duces the system in detail.

3.1 The Generation Objective

The generation objective serves as a standard trans-
former decoder, which generates the gloss as the
following language model:

P(g|E;0) =[] P(gilg<t. E:0), (D
t

where g; is the ¢-th token in the gloss, and 0 is the
set of parameters. The model is then optimized
using the following loss function:

Lgen(0) = =Y log P(g|E; 0),
geD

(@)

where D is the training dataset.

In the above operations, a crucial challenge is
to integrate multiple embeddings corresponding to
one word. We assume that the SGNS, character,
and Electra embeddings contain different lexical
features, and better results can be obtained by com-
prehensively considering all the information. To
achieve that, we feed the set E, including all these
embeddings, into the cross-attention mechanism:

T

vy
where H is the hidden-states obtained from by self-
attention, and dj, is the dimension of the hidden-
states. This operation ensures the given embed-
dings are adaptively integrated at each time-step.

Cross-Attn(H, E, E) = softmax( )JE (3)



3.2 The Reconstruction Objective

Our system is a language model specially designed
for dictionary glosses. We further enhance this
model by incorporating a reconstruction objective.
We corrupt each gloss g by randomly substitut-
ing or blanking some words. And then we obtain
a corrupted version g. We input g into our system
and obtain g by solving a self-supervised task of:

P(g|g;0) =[] P(gtlg<t.§:6). 4
t

Note that we share exactly the same parameters
0 as in the generation objective. The model is
optimized by the following loss function:

ﬁrec(e) = - Z logP(g|§; 0)7

geb

(&)

The goal of the reconstruction objective is to
better model the glosses. Therefore, we don’t use
the given embeddings in this operation. In prac-
tice, we feed a zero vector into the cross-attention
mechanism to mask it out as Cross-Attn(H, 0, 0).

3.3 Training and Ensembling

We train the entire multitasking framework by
jointly minimizing the weighted sum of both loss
functions:

L= Egen + )\ﬁrem (6)

where ) is a hyper-parameter.

Model ensembling is proven to be effective to
improve the robustness (Allen-Zhu and Li, 2020).
In our work, we adopt a simple but effective model
ensembling strategy. We train a series of models
initialized by different random seeds, and then vote
with the trained models during inference.

4 Experimental Setup

4.1 Implementation Details

Many neural network-based generation systems
struggle with the OOV (out-of-vocabulary) prob-
lem. To alleviate the problem, we apply the Senten-
cePiece algorithm (Kudo and Richardson, 2018) to
glosses to reduce the vocabulary size. We use the
tokenizers! toolkit for implementation and set the
size to 10k for all 5 languages.

Our system is a 3-layer, 8-head transformer-
based model implemented by the Pytorch library
(Paszke et al., 2019). We use the Adam optimizer

'tokenizers: https://github.com/huggingface/tokenizers.
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(Kingma and Ba, 2015) with 51 = 0.9, 82 = 0.98
and ¢ = 107%. We adopt the Noam Optimizer
proposed by (Vaswani et al., 2017) with an initial
learning rate of 1le—7, a maximum learning rate
of 1le—3, and a minimum learning rate of 1le—9.
We set the warmup steps to 4000 and batch size
to 128. The maximum epochs is set to 500. And
we set an early stop strategy in the patience of 5
epochs. To avoid gradient exploding, we clipped
the gradient norm within 0.1. We also employ label
smoothing technique (Pereyra et al., 2017) with a
smoothing value of 0.1 during training. For the
gloss corruption in the reconstruction objective, we
follow Devlin et al. (2019) to randomly delete and
blank words with a uniform probability of 0.2. And
the X (in Equation 6) is set to 1. For model ensem-
bling, we train 5 models with different seeds. Due
to the time constraints, our official submission has
aresult of ensembling three models on English, and
results of single models on the reset of 4 languages.
We submitted the results of ensembling 5 models
in the post-evaluation phase.

For each language, we use the development set
released by organizers for model selection. We
select the best epoch using the summary of BLEU
(Papineni et al., 2002) and MoverScore (Zhao et al.,
2019) on the development set.

4.2 Evaluation Metrics

The definition modeling subtrack uses three met-
rics, which are MoverScore (Zhao et al., 2019),
BLEU (Papineni et al., 2002) , and lemma-level
BLEU respectively. Readers can refer to the task
paper (Mickus et al., 2022) for more details.

5 Results and Analysis

In this section, we present the evaluation results and
discuss our analysis of the generated definitions.

5.1 Main Results

Table 2 presents the evaluation scores on all 5
languages. Results show that our system signif-
icantly outperforms the baseline models in terms of
the sentence BLEU and lemma-level BLEU. This
indicates the effectiveness of our proposed cross-
attention multitasking framework. However, the
SGNS and Char are strong baselines in terms of the
MoverScore, and our system only outperforms the
baselines on English. We speculate that our results
have more coincide words with references, but are
not fluent enough, which leads to a low score from



| Models S-BLEU L-BLEU MvSc.
SGNS 0.00125  0.00250  0.10339

Char 0.00011  0.00022  0.08852

EN | Electra 0.00165  0.00215  0.08798
CAMF 0.03127  0.03957 0.13475
Ensemble  0.03106  0.03906 0.13273

SGNS 0.01536  0.02667 0.20130

ES Char 0.01505  0.02471  0.19933
CAMF 0.03914  0.05606 0.12778
Ensemble  0.03925  0.05624 0.13121

SGNS 0.00351  0.00604 0.18478

Char 0.00280  0.00706  0.18579

FR | Electra 0.00219  0.00301  0.17391
CAMF 0.02679  0.03691  0.04193
Ensemble  0.02700  0.03738  0.04455

SGNS 0.02591  0.04081  0.20527

IT Char 0.00640  0.00919  0.15920
CAMF 0.06646  0.09926 0.11717
Ensemble  0.06812  0.10147 0.12233

SGNS 0.01520  0.02112  0.34716

Char 0.01313  0.01847  0.32307

RU | Electra 0.01189  0.01457 0.33577
CAMF 0.04843  0.06548  0.14820
Ensemble  0.05192  0.07074 0.15702

Table 2: Evaluation results of different models in 5
languages. The SGNS, Char, Electra are baseline mod-
els provided by the organizers. The CAMF (Cross-
Attention Multilingual Framework) is the model of offi-
cial submission. And the Ensemble is an ensemble of
5 models submitted in the post-evaluation. Bold and
underline mark the best and second scores, respectively.

the pretrained model used by MoverScore.

We also observe that model ensembling has
brought the improvement of performance. It can
be seen from the table that the Ensemble model
outperforms the CAMF on 4 of the 5 languages,
except for a slight decline on English. This may be
due to the randomness of the parameter initializa-
tion. We also argue that better performance can be
obtained by applying hyper-parameter searching
algorithms and ensembling more models.

5.2 Error Analysis

In order to qualitatively analyze the definitions gen-
erated by our system, we randomly select several
items from the English test set and manually anno-
tate the error types following Noraset et al. (2017).
In total, we extract 200 items, of which 197 contain
some degree of error. We illustrate the error types
and examples in Table 3. Note that each item may
contain multiple errors, so the sum of the percent-
ages in the table is greater than 100%.

From the table, we observe that the quality of
English definitions generated by our system still
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(1) Redundancy and overusing common phrases: 42.00%

word explosion

reference | A sudden outburst.

hypothesis | A sudden, sudden, or destruction.

(2) Self-reference: 2.00%

word discover

reference | To reveal (information); to divulge, make
known.

hypothesis | To make a conclusion of; to discover.

(3) Wrong Part-Of-Speech: 5.50%

word genius

reference | ingenious, brilliant, very clever, or original.

hypothesis | A person or thing that is extraordinary.

(4) Under-specified: 23.50%

word mayor

reference | The leader of a city.

hypothesis | A person who is a member of authority.

(5) Opposite: 2.00%

word solid

reference | Excellent , of high quality , or reliable.

hypothesis | Having no size or value.

(6) Close Semantics: 17.00%

word bed

reference | The time for going to sleep or resting in bed.

hypothesis | The state or quality of being a room.

(7) Incorrect: 52.00%

word smooth

reference | Lacking projections or indentations; not
serrated.

hypothesis | Having the shape of a tree.

Table 3: Error types and examples.

need to be improved. Error types (1) to (3) are
problems from the system, and types (4) to (6) are
shortcomings in the embeddings. As we can see,
the former accounts for a much larger proportion
than the latter. The 52% incorrectness indicated by
type (7) shows that many glosses generated by our
system are irrelevant to the word. And the dataset
released in this task will support significant future
work on the definition modeling task.

6 Conclusion

In this paper, we present the implementation of the
BLCU-ICALL system submitted to the SemEval-
2022 Task 1, Definition Modeling subtrack. We
propose a Cross-Attention Multitasking Frame-
work that leverages multiple embedding architec-
tures and jointly trains two objectives. We also
investigate a simple but effective ensembling strat-
egy to enhance the robustness. In future efforts, we
plan to further improve our system to better handle
the problems of redundancy and incorrect glosses.
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