
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1679 - 1686
July 14-15, 2022 ©2022 Association for Computational Linguistics

JBNU-CCLab at SemEval-2022 Task 12: Machine Reading Comprehension
and Span Pair Classification for Linking Mathematical Symbols to Their

Descriptions

Sung-Min Lee and Seung-Hoon Na
Division of Computer Science and Engineering, Jeonbuk National University, South Korea

{cap1232,nash}@jbnu.ac.kr

Abstract

This paper describes our system in the
SemEval-2022 Task 12: ‘linking mathematical
symbols to their descriptions’, achieving first
on the leaderboard for all the subtasks compris-
ing named entity extraction (NER) and rela-
tion extraction (RE). Our system is a two-stage
pipeline model based on SciBERT that detects
symbols, descriptions, and their relationships in
scientific documents. The system consists of 1)
machine reading comprehension(MRC)-based
NER model, where each entity type is repre-
sented as a question and its entity mention span
is extracted as an answer using an MRC model,
and 2) span pair classification for RE, where
two entity mentions and their type markers are
encoded into span representations that are then
fed to a Softmax classifier. In addition, we de-
ploy a rule-based symbol tokenizer to improve
the detection of the exact boundary of symbol
entities. Regularization and ensemble methods
are further explored to improve the RE model.
1

1 Introduction

Mathematical symbols and descriptions appear in
various forms across document section boundaries
without explicit markups, and mathematical sym-
bols appear in the form of long texts. Thus, link-
ing mathematical symbols and their descriptions is
challenging.

SemEval 2022 task 12: ’linking mathematical
symbols to their descriptions (Lai et al., 2022a)’, is
a relation extraction task targeted at scientific doc-
uments divided into two sub-tasks: sub-task A is a
named entity recognition (NER) task that aims
to predict the span of symbols and descriptions,
and sub-task B is a relation extraction (RE) task
that aims to predict relations between symbols and
descriptions.

1Our code is publicly available at https://github.
com/ZIZUN/symlink.

Extracting these entities and relations is done
to discover relational facts from unstructured texts.
This problem can be decomposed into NER (Tjong
Kim Sang and De Meulder, 2003; Ratinov and
Roth, 2009) and RE (Zelenko et al., 2002; Bunescu
and Mooney, 2005). Early works employed a two-
stage relation extraction system, training one model
to extract entities (Florian et al., 2004) and another
model to classify relations between these entities
(Zhou et al., 2005; Chan and Roth, 2011). To reduce
the error propagation of NER or better capture the
interactions between NER and RE, joint models
have been proposed as a promising approach that
are based on an end-to-end method or on the setting
of multi-task learning using shared representations
(Wadden et al., 2019; Lin et al., 2020; Wang and
Lu, 2020).

Recently, it has been observed that RE based on
the shared encoder is suboptimal, but the use of
separated encoders for NER and RE has shown
improved performance compared to shared en-
coders, reexamining the effectiveness of the simple
pipelined two-stage approach (Zhong and Chen,
2021; Ye et al., 2021). From these results, we hy-
pothesize that whereas separated encoders for NER
and RE can learn customized representations use-
ful for each task, joint models may include irrele-
vant information in the learned representation for
NER or RE tasks, lowering the performance of the
model.

These results of using distinct encoders (Zhong
and Chen, 2021) encourage us to adopt the afore-
mentioned two-stage approach for NER and RE
tasks, consisting of 1) MRC-based NER and 2)
span pair classification for RE, as follows:

1. MRC-based NER using a symbol tokenizer:
Unlike the PURE system of (Zhong and Chen,
2021) that exploits the standard span-based
NER of (Lee et al., 2017; Wadden et al., 2019),
our NER model is based on an MRC-based
model (Li et al., 2020), which treats NER as
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Figure 1: Our NER model architecture based on MRC

an MRC problem by providing an entity type
as a question and using an MRC model to ex-
tract its entity mentions as answers. As in (Li
et al., 2020), an MRC model is based on two
binary classification models: first, the position
classifier predicts the start and end indexes to
create a set of valid answer spans, second, the
span classifier determines whether each of the
valid spans is an answer. As a pretrained en-
coder for the NER model, SciBERT of (Belt-
agy et al., 2019) is used. Before presenting to
SciBERT’s tokenizer, we apply a rule-based
symbol tokenizer to precisely predict the span
boundary of mathematical symbols that ap-
pear in scientific documents,

2. Span pair classification for RE with solid
markers: Similar to the PURE system of
(Zhong and Chen, 2021), a pair of spans result-
ing from the NER model is given as an input
but with solid markers, i.e., using a typed en-
tity marker, as in the works of (Wu and He,
2019; Zhou and Chen, 2021). The SciBERT
encoder then uses this marked input to gener-
ate contextualized representations, which are
then transformed to a pair of span represen-
tations and fed into a Softmax classifier. To
define a set of relation types (or classes), the
RE model explicitly adds a NIL-type class as
a relation type to refer to the case in which
a pair of spans has no relationship. It should

be noted that the NER model’s symbol tok-
enizer is not used in the RE model. Regulariza-
tion methods such as RDrop (Wu et al., 2021)
and R3F (Aghajanyan et al., 2020), as well as
traditional ensemble techniques, are used to
improve the performance of RE models2.

The remainder of this paper is organized as fol-
lows: Section 2 presents our system architecture
in detail, Sections 3-5 describe the experimental
setting, results, and ablation studies, and Section 6
contains our concluding remarks and future works.

2 System Overview

In this section, we first describe the models of the
proposed system for each sub-task.

2.1 MRC-based NER with a symbol tokenizer

Figure 1 shows our MRC-based NER model, that
extracts mathematical symbols and descriptions
from scientific documents.

2.1.1 Symbol tokenizer as a pre-tokenizer
We discovered in our preliminary experiment that
SciBERT’s tokenizer is not optimal for extracting
the boundaries of mathematical symbols, because
non-alphanumeric characters are important in the
mentions of symbol-type entities. We perform a

2Regularization and ensemble methods were not adopted
in the NER model.
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Symbol Tokenizer

Input text: Importantly , $\\mathcal{M}$ is still a Bayesian model  …

SciBERT Tokenizer

Processed tokens: ‘i’, ‘mpo’, ‘##rt’, ‘##ant’, ‘##ly’, ‘,’, ‘$’, ‘\\‘, …

‘i’, ‘mportantly’, ‘,’, ‘$’, ‘\\’, ‘mathcal’, ‘{’, ‘M‘, ‘}‘, ‘$‘ …

Figure 2: Two-step tokenization process for NER model
with a symbol tokenizer

rule-based symbol tokenizer as a pre-tokenizer be-
fore applying SciBERT’s tokenizer to precisely de-
tect the boundary of symbol-type entities. Figure 2
presents this two-step tokenization adopted for the
NER model.

The symbol tokenizer seperates mathematical
symbols based on capital letters, numbers, and
special characters (e.g., %, $, }, {). Our symbol
tokenizer’s rules are derived heuristically from a
training dataset3.

2.1.2 MRC models for nested NER
Given that the dataset addresses nested entities, we
use the MRC model of (Li et al., 2020), that takes
a question-augmented input. Specifically, suppose
that X = [x1, · · · , xn] is a sequence of tokens in
a scientific document, where n is the length of the
sequence. Given a target entity type t, its natural
language form Qt = [q1, · · · , qm] is provided as
a question based on Table 1, where qi is the i-th
token of Qt and m is the length of the question.
The question-augmented input X ′ is formulated as
follows:
X ′ =[CLS], q1, · · · , qm, [SEP], x1, · · · , xn

Type Text
SYMBOL symbol
PRIMARY description
ORDERED ordered

Table 1: Natural language forms mapped for entity
types

3This rule-based symbol tokenizer is also included in our
codes.

Then, as a pre-trained language model, we apply
SciBERT’s encoder trained from scientific domain
documents to obtain contextualized representations
T ∈ Rn×d over n tokens in a given document X ,
where d is the dimensionality of SciBERT’s hidden
representation.

The NER model predicts the probability of each
token being a start or end index as follows:

Pstart = Sigmoid(FFN (start)(T )) ∈ Rn

Pend = Sigmoid(FFN (end)(T )) ∈ Rn
(1)

where FFN (start) (FFN (end)) is a feed-forward
neural network layer for predicting the start posi-
tion and Pstart (Pend) represents the probability
of each index being the start (end) position of an
entity, given a question entity type.

Based on Eq. (9), we obtain sets of predicted
start and end indices as follows:

Istart =
{
i
∣∣∣1(P (i)

start > 0)
}

Iend =
{
i
∣∣∣1(P (i)

end > 0)
} (2)

where P
(i)
start (P (i)

end) is the i-th element of P start

(P end) and 1 is an indicator function that gives 1 if
an element is true, and 0 otherwise.

For any start index istart ∈ Istart and iend ∈
Iend, a binary classifier is applied to predict
whether the span of (istart, iend) becomes an an-
swer, as follows:

Pistart,iend
= (3)

Sigmoid
(
FFN (span)(Tistart ;Tiend

)
)

where ; is the concatenation operator and
FFN (span) is an additional feed-forward neural
network layer for the span prediction.

Training As in (Li et al., 2020), the loss function
for predicting the start and end positions is based on
the cross-entropy term, which is formulated with
probabilities of indexes being the start and end
positions, as follows:

Lstart = CE(Pstart, Ystart)

Lend = CE(Pend, Yend)
(4)

where Ystart ∈ {0, 1}n and Yend ∈ {0, 1}n repre-
sent the gold start and end positions, respectively of
input tokens. The loss function for span probability
is formulated as follows:

Lspan = CE(Pstart,end, Ystart,end) (5)
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Figure 3: Span pair classification models for RE

where Ystart,end represents the gold span of the
input tokens. The overall loss is formulated as fol-
lows:

L = λ1Lstart + λ2Lend + λ3Lspan (6)

where Lstart, Lend, and Lspan are the loss func-
tions for predicting the start, end positions, and for
the span prediction task, respectively, and λi is the
weight for each loss function.

2.2 Span pair classification for RE with solid
markers

Figure 3 represents the RE model based on the
span pair classification of (Wu and He, 2019; Zhou
and Chen, 2021), that classifies a pair of entity
spans extracted from the MRC-based NER model
in Section 2.1.2.

Like the NER model, we use SciBERT as a pre-
trained language model for the RE model, but keep
separate parameters that are not shared with the
NER’s encoder, following the work of (Zhong and
Chen, 2021).

In the RE model, a type-marked document is
provided as input. Specifically, suppose that e1 and
e2 are a pair of entity spans (i.e., sequences of
tokens), and their types are t1 and t2, respectively.
Then, a type-marked document X̂ is defined by
prepending and appending type markers before and
after each entity span, as follows:
X̂ =[CLS] · · · <t1> e1 </t1> · · · <t2> e2 </t2>

· · · where <ti> and </t1> are type markers.
Given X̂ , we apply SciBERT’s encoder to ob-

tain contextualized representations T (rel). We then
obtain span representations for e1 and e2 by mean-
pooling over their contextual representations, as

follows:

Hei =
1

(endei − startei + 1)

endei∑

j=startei

T
(rel)
j

(7)
where startei and endei represent the start and
end positions of ei in the type-marked document
X̂ , respectively. Finally, the model predicts the
Prelation ∈ Rl+1 probabilities over the relation
types of e1 and e2 as follows:

Prelation = (8)

softmax(FFN (rel)(T
(rel)
[CLS];He1 ;He2))

where l is the number of relation types, NIL-type of
relation is presented as l + 1-th type, FFN (rel) is
an additional feed-forward neural network for rela-
tion classification, and T

(rel)
[CLS] (i.e., the contextual

representation of the [CLS] token of X̂) is concate-
nated to provide a global context over the entire
document.

During training, the loss function for relation
classification uses a cross-entropy function, which
is formulated as follows:

L = CE(Prelation, Yrelation) (9)

where Yrelation ∈ {0, 1}l+1 represents a one-hot
vector for the gold-relation label of a given pair of
entities.

Tokenization Unlike the NER model in Sec-
tion 2.1.2, only SciBERT’s WordPiece tokenizer is
exploited.

2.2.1 Automatic creation of examples for
NIL-type class

Because we do not have explicit training examples
for the NIL-type class, we use a simple negative
sampling method to train the RE model. When a
pair of entities appear in the context within the
maximum length of tokens, they are considered
negative samples (i.e., examples for the NIL-type
class) when they do not have any relationship. The
number of NIL-type samples collected in this man-
ner, however, was more than 10 times that of nor-
mal samples. To correct the data imbalance, we
use oversampling of (Chawla et al., 2002) on nor-
mal positive samples. Oversampling is also used
to balance the positive, negative examples in the
development set.
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Model
NER RE

Strict Exact Partial Type Precision Recall F1 score
Our System - - 47.61 47.70 32.09 38.56 35.03
+ RDrop - - - - 33.40 38.66 35.84
+ R3F - - - - 33.77 38.56 36.00
+ R3F, Ensemble - - - - 38.20 36.23 37.19

Table 2: Performances of final submission runs of our NER and RE models on the test dataset

3 Experimental setup

3.1 Dataset

We use the SemEval-2022 Task 12 dataset(Lai et al.,
2022b) in our experiments.

The NER dataset contains three entity types:
SYMBOL, PRIMARY, ORDERED. SYMBOL
is a mathematical symbol, PRIMARY is a primary
description, and ORDERED is a description of
multiple terms.

The RE dataset contains four relation types:
DIRECT, COUNT, COREFER-DESCRIPTION, and
COREFER-SYMBOL. The dataset annotation guide-
lines4 state that the relations should be direc-
tional; however, some of the relations, such as
COREFER-SYMBOL, are unidirectional. COREFER-
SYMBOL(E1, E2) is the same as COREFER-
SYMBOL(E2, E1),

The directions of the other relations are defined
based on the entity types. Such examples include
COUNT(E1, E2) and DIRECT(E1, E2) where E1

is a symbol-type entity and E2 is a description-type
entity. In postprocessing, the directions of these
relations are automatically determined based on
entity types in a post-processing manner. In other
words, for the RE model, the order of the two en-
tity spans e1 and e2 is determined based on their
corresponding entity types.

Our system is evaluated separately for the NER
and RE tasks. For NER, we use the entity-based
strict/exact/partial/type from SemEval 2013 Task
9.1 (Segura-Bedmar et al., 2013). We use the stan-
dard precision, recall, f1-score metrics for RE.

3.2 Regularization and ensemble for RE
model5

We use two regularization methods to improve the
performance of the RE model: RDrop (Wu et al.,

4Official annotation guidelines are available at
http://nlp.uoregon.edu/download/symlink/
guideline.pdf

5These regularization and ensemble methods were not
applied to NER model.
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Figure 4: Performance comparison of ensembles of 10
RE models varying thresholds

2021) and R3F (Aghajanyan et al., 2020). Rdrop is
a regularization method that reduces the difference
between representations at inference and training
time caused by dropout, and R3F is a regularization
method that maintains more generalizable repre-
sentations of the pretrained language model during
fine-tuning.

We train 10 RE models using different random
seeds for the ensemble inference and and then per-
form maximum voting for each entity pair.

4 Experimental results

Table 2 presents the final results on the blind test
dataset6.

As shown in Table 2, using the regularization
method improves performance over the baseline
model. Among the two methods, R3F is better than
RDrop; thus, we use R3F for the submission of the
RE model.

Overall, the recall is relatively higher than the
precision for the RE model. In our preliminary
experiments, we observed a similar tendency with
high recall for the ensemble method, despite the
fact that the ensemble method was shown to be
effective in terms of F1 score.

We use a voting threshold to increase the pre-

6Due to a submission error, we do not report strict/exact
scores at the NER task.
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cision of the ensemble RE model and adjust the
ensemble inference so that a NIL-type class is as-
signed either when the size of the majority votes
from the models does not exceed the voting thresh-
old or when the class from the majority votes is
NIL-type.

Figure 4 shows the performance of the ensemble
method across different voting threshold values. In
this case, we observe that as the voting threshold
is raised, the F1 score gradually increases, while
precision increases and recall decreases. As a result,
when voting threshold is 10, the best performance
of the F1 score is obtained. This run was finally
submitted.

5 Analysis

In this section, we examine the effects of some of
the components of our system as well as additional
trials.

5.1 Effect of symbol tokenizer on NER task

Symbol Tokenizer Exact Not Exact Recall
Used 18668 85 99.54
Unused 18412 341 98.18

Table 3: Frequencies and recalls of SYMBOL-type en-
tities whose sequences of tokens are exact gold spans,
with and without symbol tokenizer.

To examine the effect of the symbol tokenizer,
Table 3 compares the frequencies and recalls of
SYMBOL-type entities whose exact gold spans
are correctly obtained when and without the sym-
bol tokenizer. In this case, recall is defined as the
ratio of the number of symbol-type entities whose
exact span boundaries are extractable using a given
tokenizer to the total number of symbol-type enti-
ties.

5.2 Effect of removing non-relational entities

Method NER
Strict Exact Partial Type

Not Excluded - - 47.61 47.70
Excluded - - 47.18 47.31

Table 4: Performances of NER models when including
or excluding non-relational entities that have no rela-
tionship with other entities.

Assuming that mathematical symbols and de-
scriptions must have one or more relations accord-
ing to the annotation guideline, our additional trial
is to exclude non-relational entities that have no

relationship with other entities. Table 4 shows the
performance of our NER models when those non-
relational entities are included or excluded. How-
ever, it is observed that removing non-relational en-
tities reduces the performance of the NER model.

5.3 Analysis of RE model
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Figure 5: Confusion matrix of RE model on develop-
ment dataset

Figure 5 shows the confusion matrix of the
RE model. It is observed that the discrimina-
tion between COUNT and DIRECT is particularly
challenging, and the effectiveness of COREFER-
DESCRIPTION is relatively low. For this reason,
there may be a low number of examples for COUNT

and COREFER-DESCRIPTION labels. Given our as-
sumption that these weak performances come from
a lack of sufficient number of examples, data aug-
mentation may need to be necessary to improve the
performances of these relation labels.

6 Conclusion

Our system shows first for all subtasks of SemEval-
2022 Task 12: ’linking mathematical symbols to
their descriptions’. MRC-based NER and span pair
classification for NER are part of our system that
uses SciBERT as a backbone encoder. To improve
the performance, the symbol tokenizer for NER
model, regularization, and ensemble methods, for
RE model are used.

To improve the performance further, future work
should look into data augmentation and mathemati-
cal symbol and description-aware pretraining.
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A Comparison of regularization methods
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Figure 6: Comparison of the number of steps required
for regularization methods in RE models.

We tried RDrop and R3F as regularization meth-
ods, and there were differences in terms of not only
performance but also the training time. To compare
training time, we measured the number of steps
required for training our RE model. The results are
shown in Figure 6.

B Hyper-parameters

NER model
Sliding window 100
Dropout rate 0.1
Learning rate 3e-5
λ1, λ2, λ3 1, 1, 0.1
Warmup steps 1000
Scheduler OneCycle
Optimizer AdamW
Max length 512
Batch size 2
Accumulation steps 5
Span classifier Inter hidden 2048

RE model
Dropout rate 0.1
Learning rate 4e-5
Warmup steps 1000
Scheduler Cosine
Optimizer AdamW
Max length 512
Batch size 32
Accumulation steps 2

Table 5: Hyper-parameter settings

Table 5 shows the setup of hyper-parameters of
our NER and RE models. We ran the experiments
using 4 TITAN RTX(24GB) GPUs.

1686

https://doi.org/10.3115/1118693.1118703
https://doi.org/10.3115/1118693.1118703
https://doi.org/10.18653/v1/2021.naacl-main.5
https://doi.org/10.18653/v1/2021.naacl-main.5
https://doi.org/10.3115/1219840.1219893
https://doi.org/10.3115/1219840.1219893

