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Abstract

Multiword expressions (MWEs) or idiomatic-
ity are a common phenomenon in natural lan-
guages. Current pre-trained language models
cannot effectively capture the meaning of these
MWEs. The reason is that two single words,
after combined together, could have an abruptly
different meaning than the compositionality
of the meanings of each word, whereas pre-
trained language models reply on words’ com-
positionality. We propose an improved method
of adding an LSTM layer to the mBERT model
to get better results on a text classification task
(Subtask A). Our result is slightly better than
the baseline. We also tried adding TextCNN to
mBERT and adding both LSTM and TextCNN
to mBERT. We participate in SubTask A and
find that adding only LSTM gives the best per-
formance.

1 Introduction

Machine learning has made deep impacts on var-
ious areas, such as computer vision (He et al.,
2015, 2017; Lu, 2018), computational biology
(Jumper et al., 2021; Huang et al., 2019; Lu, 2010,
2009), and natural language processing (Yang et al.,
2019b; Lewis et al., 2019; Madabushi et al., 2020)
. In natural language processing, large pre-trained
models are prevailing and have achieved great suc-
cesses. Models such as BERT (Devlin et al., 2018),
RoBERTA (Liu et al., 2019), XLNet (Yang et al.,
2019a), ALBERT (Lan et al., 2020), Ernie (Sun
et al., 2019), etc. performed pretty well in tasks
such as sentiment analysis, commonsense reason-
ing (Lin et al., 2019; Lu, 2020), QA system (Chen
and Yih, 2020; Yu et al., 2015) and many other
tasks. However, these models are not good at cer-
tain tasks such as assessing humor and capturing
idiomaticity. This shortcoming is largely due to
natural languages’ flexibility.

In this paper, we focus on how to use large pre-
trained language models to determine whether a

multiword expression (MWE) has a trivial meaning
(Tayyar Madabushi et al., 2022), a.k.a, the com-
positionality of each word’s meaning, or it is an
idiomatic usage. We use the dataset provided in
(Tayyar Madabushi et al., 2021). In the training set,
the target MWE is given. The previous sentence,
the target sentence and the next sentence are also
given. We need to decide if the MWE has an id-
iomatic meaning or its meaning is trivial. This task
then can be treated as a text classification problem.

The rest part of this paper is organized as fol-
lows:

• We first introduce the dataset and the task with
details.

• Then we describe how we built up our pipeline
with BERT, LSTM and TextCNN.

• We give our results in section 4.

• Lastly, we provide our discussion in section
5.

2 Dataset and Task

As mentioned in (Tayyar Madabushi et al., 2021),
the dataset for Subtask A consists of naturally oc-
curring (target) sentences, previous sentences and
next sentences. The target sentence contains po-
tentially idiomatic MWEs annotated with a fine-
grained set of meanings: compositional meaning
and idiomatic meaning(s). Table 1 shows two sam-
ples from the training data. One has an idiomatic
expression, and the other not.

3 Methods

Our core pre-trained language model is mBERT
(Wolf et al., 2020). We chose mBERT over BERT
hoping that it could better fit the task’s multi-
language specification. In traditional methods, n-
gram was used to detect and group the MWEs. In
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Table 1: Sample data for Subtask A.

previous sentence target sentence next sentence target
MWE

label (0
means
idiomatic)

"The job has tradi-
tionally been non-
political, but Mrs.
Trump’s decision to
hire a Trump Or-
ganization employee
added partisanship to
the role, even though
Mr. Harleth tried to
frame his work there
as one stop in a long
career in the hospital-
ity industry."

"The White House
job was well compen-
sated — former chief
ushers say salaries
run in the $200,000
range — but the days
are long, particularly
if the president is an
early riser or a night
owl; Mr. Trump was
both."

Mr. Biden is not a
morning person, peo-
ple familiar with his
schedule say.)

night owl 0

Demography expert
Piotr Szukalski told
Dziennik Gazeta
Prawna he thinks
that deep concerns
about the spread of
the coronavirus are
to blame.

Minister of Family
and Social Policy
Marlena Malag as-
cribed the high death
rate to the pandemic
and said it would
take a long time
for the current gov-
ernment program of
family benefits in-
tended to boost the
birth rate to reverse
the negative trend.

"Commenting on
data the state agency
Statistics Poland
released in Decem-
ber for 11 months
of 2020, economist
Rafal Mundry said
the number of deaths
was the highest since
World War II, and
the number of births
the lowest in 15
years."

birth rate 1

our methods, we tried to use either LSTM (Hochre-
iter and Schmidhuber, 1997) or TextCNN (Kim,
2014) to capture the MWEs. We concatenate
LSTM or TextCNN to mBERT in order to increase
the performance.

3.1 LSTM

Unlike RNN (Jordan, 1997), LSTM is good at re-
membering only the important parts of a sentence.
We hope it can help us group up the MWEs and
improve the performance. We add a bidirectional
LSTM layer at the output of the sequential trans-
formers. The bidirectional LSTM layer was initial-
ized as 1-layer and bidirectional, with a dropout of
0.1.

3.2 TextCNN

Similar to traditional CNN (Schmidhuber, 2015)
in computer vision, TextCNN (Kim, 2014) extracts

features from a small area of text. We suppose this
layer can help us detect the span of the MWEs so
that performance can be improved.

4 Results

We use the mBERT with 12 hidden layers. We did
experiments on dropouts with 0.1 and 0.2. As men-
tioned in Section 3, we explored of adding either a
LSTM or a CNN to the final fully connected layer
of the transformer from mBERT. Table 2 provides
our experiments and results. We were expecting
that mBERT + TextCNN could give us the best
results. But it turned out that mBERT + LSTM
performs best for Subtask A among our experi-
ments. The author has put the code for this paper
on GitHub1.

1https://github.com/daming-lu/semeval_
2022_task2_sub_a
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Table 2: Subtask A Experiment Results

Method Zero-Shot One-Shot
mBERT 0.6448 0.6987

+LSTM, dp=0.1 0.6546 0.6998
+LSTM, dp=0.2 0.6333 0.6613

+TextCNN, dp=0.1 0.6501 0.6827
+TextCNN, dp=0.2 0.6254 0.6309
+TextCNN+LSTM 0.6502 0.6977

+LSTM, dp=0.1(test) 0.654 0.704

5 Discussion

One reason that our method does not boost the per-
formance a lot might be that we add the LSTM or
TextCNN to the end, whose effect is limited to the
whole pipeline. Another new method, according
to (Gao et al., 2021), is that we can turn this classi-
fication problem into a masked word problem. In
PROMPT, it claims the integration is more genuine,
but choosing the prompt could be technical.

Another important reason is overfitting. We tried
to increase dropout from 0.1 to 0.2 in order to get
rid of overfitting. But the effect was opposite. Ac-
cording to (Tan et al., 2015), adding LSTM could
boost question answering tasks, whereas our task
is in fact a text classification. This might be the
reason of the tiny improvement.
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