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Abstract

This paper describes our system for the Se-
mEval2022 task of matching dictionary glosses
to word embeddings. We focus on the Reverse
Dictionary Track of the competition, which
maps multilingual glosses to reconstructed vec-
tor representations. More specifically, models
convert the input of sentences to three types of
embeddings: SGNS, Char, and Electra. We pro-
pose several experiments for applying neural
network cells, general multilingual and multi-
task structures, and language-agnostic tricks to
the task. We also provide comparisons over
different types of word embeddings and abla-
tion studies to suggest helpful strategies. Our
initial transformer-based model achieves rel-
atively low performance. However, trials on
different retokenization methodologies indicate
improved performance. Our proposed Elmo-
based monolingual model achieves the highest
outcome, and its multitask, and multilingual
varieties show competitive results as well.

1 Introduction

Reverse dictionary Task is defined as word genera-
tion based on user descriptions (Hill et al., 2016).
Following competition rules, pre-trained models
and external information should be avoided, and
large-scale language models are unsuitable for the
task. Our paper is devoted to the performance com-
parison of different neural network structures, mul-
tilingual and multitask tricks, and elaborating on
language-agnostic or bidirectional structure help-
fulness. The competition (Mickus et al., 2022)
has significant potential in contributing pretraining
process acceleration, low-resource language model
development, and commonsense using. Further-
more, the task is of high importance for explain-
able Al and natural language processing since it
models direct mapping from human-readable data
to machine-readable data.

* The two authors contributed equally to this work.
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Known word representation methods using dic-
tionaries, knowledge databases, or glosses have
been a common approach for years. Related mod-
els can be divided into two major groups. In the
former, category methods highly rely on large-scale
model construction. Levine et al. (2019) develop
SenseBert, introducing super-senses from Word-
net (Miller, 1995) into general Bert model. Ernie
(Sun et al., 2019) combines node embeddings from
knowledge graph and matched entities to enhance
word representations. KnowBert (Peters et al.,
2019) subsumes the entity connection and Bert
models, which are trained together. There are simi-
lar research works relevant to the topic (Wang et al.,
2021, 2020; Yin et al., 2020). Still, their mod-
els’ performances are dependent on the basic large-
scale language model trained by sentence samples.
In the latter group, traditional dependency-based
language models learn directly from word depen-
dency and glosses. They have two major disadvan-
tages: incompatibility with modern language mod-
els and relatively low performance (Tissier et al.,
2017; Levy and Goldberg, 2014; Wieting et al.,
2015). There is ambiguity about whether recent
embeddings and dictionary glosses are mappable
from each other.

The paper specifically focuses on progressing
utilization of the glosses, different word represen-
tations, and languages. First, we discuss ablation
studies for language-agnostic trick, bidirectional,
multilingual, and multitask models and explain the
experimental results. Second, we apply and ana-
lyze different re-tokenization methods. Finally, we
give instructive conclusions about encoder struc-
tures, distinctive word representation relations, and
cross-lingual dictionary performance based on our
experiment results. We find that (1) transformer-
based model performance is inferior to other mod-
els for its high complexity, (2) bidirectional models
with similar parameter size outperform the unidirec-
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tional model because of their better understanding
of context-environments even in the low-resource
condition, and (3) different word embeddings have
a potential relations and can be collaboratively
learnt from glosses using a multitask learning struc-
ture. We make our codes and results publicly avail-
able!.

2 Task Description

The competition, comparing dictionaries and word
embeddings, proposes definition modeling (No-
raset et al., 2017) and reverse dictionary sub-tracks
(Hill et al., 2016). These sub-tracks are designed
to test the equivalency of dictionary glosses and
word embedding representations. This paper fo-
cuses on the reverse dictionary direction. The task
refers to word recalling using gloss input and pro-
vides word representations that are separately gen-
erated by word2vec (SGNS) (Mikolov et al., 2013),
character (Wieting et al., 2016), and Electra (Clark
et al., 2020) embeddings as training data. External
data and large-scale language models are strictly
restricted from this competition since the models
might learn the word embeddings majorly from the
sentence samples instead of the dictionary glosses.
The words matched with the dictionary glosses are
hidden in the datasets, implying that dependency-
based word representation algorithms cannot be
applied directly.

3 Methodology

To clarify, we affirm that we only refer to the model
structures instead of the trained models when we
mention Elmo and MBert in the section and use no
external data.

3.1 Language Model Structure

Baseline monolingual models with five distinctive
structures were trained: RNN, LSTM, Bi-RNN,
Elmo, and Transformer.

We experiment how bidirectional and different
feature generator cell structures help.

RNN is the classical deep learning model deal-
ing with ordinal or sequential data (Zaremba et al.,
2014). Its major disadvantage is the vanishing and
exploding gradient issue. Nevertheless, the model
is fast to converge and works well on smaller sen-
tences. Our experiments show that RNN, having
similar results to the LSTM-based model, performs
slightly better than the transformer-based one.

Uhttps://github.com/ravenouse/Revdict_1Cademy
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LSTM is another classical and widely-used fea-
ture generator structure in natural language process-
ing. The comparison of LSTM-based and RNN-
based models can suggest whether vector represen-
tation of glosses suffers from the long-term depen-
dencies problem. Earlier works (Jozefowicz et al.,
2015) demonstrate that variants of LSTM achieve
similar performances in the majority of natural lan-
guage processing tasks. We select the classical
LSTM structure for the experiments.

Transformer (Vaswani et al., 2017) is a mile-
stone feature extractor allowing deeper neural net-
work design for natural language processing tasks.
However, given the much smaller size of the com-
petition data, it performs relatively worse compared
to the expectation.

3.2 Multitask Structure

Although character embedding generation has a
similar algorithm to general word embedding meth-
ods, it focuses on character representation and
is mightier to better tackle the Out Of Vocabu-
lary (OOV) problem. We applied Mean Squared
Loss (MSE Loss) and Dynamic Weight Averag-
ing (DWA) (Liu et al., 2019) as a basic multitask
structure for predicting word2vec, Char, and Elec-
tra embedding together. It achieves competitive
performance in both tasks.

DWA (Liu et al., 2019) is designed for keeping
different tasks converging at the same pace. N
denotes the number of tasks, 7" adjusts the weight-
changing sensitivity according to loss difference of
the tasks, L, (¢ — 1) and r,, (¢ — 1) represent the loss
and the training speed of task » at (¢ — 1)th step.
w;(t) is the loss weight of task i at 7th step. The
key update equations can be expressed as follows:

Nexp(ri(t —1)/T)

MO St nm Y
_Lu(t-1)
ra(t—=1) = m (2)

3.3 Retokenize Algorithm

We tried 3 widely-used retokenization algorithms
for vocabulary generation including Byte Pair En-
coding (BPE) (Sennrich et al., 2015), WordPiece
Model (Schuster and Nakajima, 2012), and Uni-
gram Language Model (ULM) (Kudo, 2018). BPE
is a greedy algorithm that can not model word rela-
tion probability successfully. WordPiece considers
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Figure 1: Sketch Map of the multilingual and multitask Elmo-based model structure.

word co-occurrence probability and is influenced
by the source data. ULM assumes that all subwords
are independent and the probability of a subword
sequence is the multiple of its element subwords’
probability.

3.4 Multilingual Structure

We applied two basic multilingual structures for
the task: mBert (Pires et al., 2019) and adding
the language tag. MBert has a shared vocabu-
lary for all source languages. The results show
that mBert can successfully model similar gram-
mar structure, and sentences with similar meanings
have akin representations using mBert. By apply-
ing mBert structure, we can estimate how these
important conclusions would work for the reverse
vocabularies task. We add the language tag as the
first token to improve models’ ability to separate
different languages’ representations.

We speculate that language-agnostic representa-
tions might aid multilingual models in achieving
better performance. Residual connection cutting
trick proposed by (Liu et al., 2020) was tried, to
test how the research findings would work for our
specific task.

3.5 Selected Model Design

Following experiment results and ablation studies,
our best model is the monolingual Elmo with Word-
Piece tokenizer. The Multitask and multilingual
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tricks have proved to achieve competitive results
with the Elmo language model. Adding language
tokens achieves a better performance than the plain
mBert structure while the Residual Cutting trick
does not. It implies that the language-specific infor-
mation is beneficial for the multilingual word repre-
sentations of the reverse dictionaries task. Adding
language tokens has demonstrated to help the Elmo-
based multilingual model as well. The most promis-
ing multilingual and multitask Elmo-based model
structure is shown in Figure 1.

4 Results and Discussion

4.1 Implementation Details

We apply Bidirectional RNN and Elmo (Peters
et al., 2018) models with the same parameter size
to find whether bidirectional structure helps. We
selected AdamW (Loshchilov and Hutter, 2017)
as optimizer. All monolingual models share the
same hyper-parameters: the number of layers - 4,
the hidden/input size - 256, and the dropout rate -
0.3. WordPiece tokenization was used as the best
model design. We follow Devlin et al. (2019) to set
the [CLS] token as the first token for monolingual
models. We keep the [CLS] token when adding
language tokens but set the language token as the
first token instead.



Word Representations SGNS Char Electra
Monolingual Models MSE COS RANK | MSE COS RANK | MSE COS RANK
RNN+WordPiece 1.000 0.249 0.310 | 0.158 0.778 0.442 | 1.454 0.832 0.433
LSTM+WordPiece 0.990 0.228 0375 | 0.148 0.791 0.458 | 1.491 0.831 0.449
Transformer+WordPiece  1.042 0.214 0.367 | 0.194 0.780 0.453 | 1.796 0.827 0.486
BiRNN-+WordPiece 0.989 0.221 0395 | 0.150 0.791 0.454 | 1.483 0.832 0.449
Elmo+WordPiece 1.041 0.252 0.282 | 0.161 0.772 0430 | 1.512 0.829 0.434
Elmo+BPE 1.037 0250 0.250 | 0.162 0.774 0.443 | 1.537 0.822 0.436
Elmo+ULM 1.022 0.265 0.259 | 0.157 0.781 0.430 | 1.525 0.829 0.432
Elmo+WordPiece+DWA 0.985 0.246 0.298 | 0.142 0.799 0.447 | 1.514 0.827 0.428

Table 1: Experiment results on English resource test data using the monolingual models. Check section 2 for word
algorithm representations’ abbreviation. Check section 3 for details of monolingual models.

4.2 Main Results

Reverse dictionary results are evaluated using three
metrics: mean squared error (MSE) between the
reconstructed and reference embeddings, cosine
similarity (COS) between the reconstructed embed-
ding and the reference embedding, and the cosine-
based ranking (RANK) between the reconstructed
and reference embeddings, measuring the number
of other test items having higher cosine with the
reconstructed embedding than with the reference
embedding(Mickus et al., 2022).

4.2.1

We show monolingual models’ results in Table 1.
As depicted, our proposed model demonstrates
competitive if not the best results across the metrics.
English, for having the most detailed dictionary
data, is selected to present monolingual models’

performance?.

Monolingual Model Performance

We notice that the transformer-based model has
inferior performance on the task. The competition
provides a low-resource data set that can explain
poorer outcomes for models with high complex-
ity. We tried unidirectional and bidirectional mod-
els with similar feature extractors and parameter
sizes. The results confirm that bidirectional mod-
els perform better and benefit from grasping the
context-environment more accurately.

4.2.2 Multilingual Model Performance

We show two ablation experiment results to ex-
plain the influence of adding language tags and
residual connection removal. First, experiment re-
sults of the Transformer-based multilingual model
on SGNS embedding can suggest the benefits of

2¢heck Table 5

18

language tags and curbing residual connection sep-
arately or jointly. Second, we propose experimen-
tal results of the original and adjusted Elmo-based
multilingual models. The latter subsumes added
language tokens. Such a comparison would clarify
whether adding language tokens lead to a general
improvement across different languages and word
representations.

Electra word representations of Spanish and Ital-
ian are not available, implying no related exper-
imental results. The outcomes demonstrate that
multilingual models benefit from language-specific
information but not from language-agnostic struc-
ture. Adding language tags has proved a positive
influence on various language models.

4.3 Ablation Study
4.3.1 Tokenizer

We tried three widely-used tokenizers for our pro-
posed model: BPE, ULM, and WordPiece. Both
ULM and WordPiece show competitive perfor-
mance in transformer- and Elmo-based structures.
BPE has relatively low performance since the data
resource is insufficient and has higher resource re-
quests.

4.3.2 Multitask Model

According to the performance comparison in Ta-
ble 1, DWA helps the Elmo model achieve better
performance and reconstructs three-word represen-
tations simultaneously. It demonstrates that differ-
ently learned word representations have an internal
relation and can be learned together using a shared
bottom structure.



Languages EN Es PR ™ w0
Multilingual Models MSE COS RANK ‘ MSE COS RANK ‘ MSE COS RANK ‘ MSE COS RANK ‘ MSE COS RANK
Transformer 1.023 0.201 0.400 | 0.977 0.300 0.310 | 1.051 0.278 0.338 | 1.143 0.280 0.340 | 0.564 0.318 0.363
Transformer+RC 1.029 0.199 0417 | 1.005 0.298 0.329 | 1.069 0.253 0.374 | 1.189 0.267 0.364 | 0.601 0.279 0.409
Transformer+ALT 1.043 0.215 0.397 | 1.014 0.308 0.310 | 1.103 0.280 0.350 | 1.158 0.276 0.341 | 0.603 0.326 0.337
Transformer+RC+ALT 1.011 0.159 0.500 | 0.955 0.266 0.422 | 1.044 0.271 0360 | 1.129 0264 0376 | 0.561 0.308 0.371

Table 2: Experiment results on SGNS word representation using the multilingual Transformer-based models. Check
section 3 for details of multilingual models. RC represents the Residual Cutting trick. ALT represents the Adding

Language Token trick.

Word Representations SGNS Char Electra
Multilingual Models MSE COS RANK ‘ MSE COS RANK | MSE COS RANK
Elmo_EN 1.023 0.238 0.317 | 0.177 0.759 0.447 | 1.555 0.818 0.440
Elmo+ALT_EN 1.014 0.246 0.300 | 0.164 0.762 0.449 | 1.540 0.825 0.441
Elmo_ES 0953 0342 0.234 | 0.532 0.810 0.405 NA NA NA
Elmo+ALT_ES 0.960 0.351 0.235 | 0.511 0.822 0.393 NA NA NA
Elmo_IT 1.094 0.343 0.218 | 0.355 0.720 0.403 NA NA NA
Elmo+ALT_IT 1.106 0.343 0.214 | 0.354 0.735 0.387 NA NA NA
Elmo_FR 1.001 0.313 0.255 | 0388 0.752 0411 | 1.298 0.845 0.445
Elmo+ALT_FR 1.004 0.321 0.246 | 0.387 0.757 0.411 | 1.228 0.859 0.439
Elmo_RU 0.547 0357 0247 | 0.145 0.816 0.398 | 0.891 0.729 0.386
ELmo+ALT_RU 0.563 0.368 0.232 | 0.137 0.828 0.400 | 0.887 0.728  0.384

Table 3: Experiment results of the multilingual ELmo-based models. ALT represents the Adding Language Token

trick.

4.3.3 Difficulty of Reconstructing Different
Word Representations

Compared with the Char and Electra, we find that
the SGNS is harder to learn from the gloss corpus,
suggesting that the contextualized information of
words in sentences might be missing from the pure
dictionary glosses. Additionally, the result along
with (Kaneko and Bollegala, 2021) indicates dictio-
nary corpus can be a promising way to remove the
unfair biases rooted in large corpus learned word
embeddings.

4.3.4 Difficulty of Learning Different
Languages

Languages Gloss Num Dict.Size Avg.Gloss Len Elmo SGNS COS

English 43608 29042 11.7 0.252
French 43608 40028 14.3 0.333
Italian 43608 40126 13.6 0.352
Spanish 43608 46761 14.8 0.362
Russia 43608 57137 11.3 0.387

Table 4: Language Vocabulary Size Ablation Study.
Dict. Size means the number of non-repeating tokens
shown in the glosses. Avg. Gloss Len means the aver-
age token numbers contained in a gloss.

Our results of experiments show a strong posi-
tive correlation between language’s tokens dictio-
nary size and the models’ achievable performance
Table 4.

There are several possible reasons for the ob-
servation. First, as the language model dictionary
size decreases, the models’ and glosses’ ability to
explain the slight differences between words, es-
pecially the polysemies and synonyms, decreases.
Second, a smaller dictionary size indicates that the
covered tokens in the language model are a rela-
tively incomplete part of words of the language.

Noted that the second explanation above does
not consider the intrinsic differences between lan-
guages. The morphologically rich languages, like
Russian, tend to have larger vocabulary sizes and
bring many unknown words that influence perfor-
mance negatively (Jurafsky and Martin, 2020).

5 Conclusion

The paper proposes a model showing competitive
results in most cases of the reverse dictionaries task.
Several conclusions are provided about the reverse
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dictionaries task by the paper based on the abla-
tion studies. First, the transformer-based model,
for its high complexity, performs worse compared
to RNN- or LSTM-based models. Multilingual
transformer-based model benefits from specifying
languages and including language-related gram-
mar positional information. Second, bidirectional
models with similar parameter sizes outperform the
unidirectional one since they better grasp the con-
text in low-resource conditions. Third, different
word representations are potential connections and
can be collaboratively learned from glosses using
a multitask learning structure. SGNS embedding
is much harder to model compared to Character
embedding and Electra embedding.

6 Acknowledgements

We express our gratitude to Prof. Shi Wang and
Prof. Alexis Palmer for providing computing re-
sources and guidance. We are grateful to the or-
ganizers for providing such a fascinating and in-
spiring competition and promptly resolving all our
questions. Special thanks to Rebecca Lee, Xingran
Chen, and Natalia Wojarnik for idea sharing and a
deep discussion in the initial stage.

References

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions
of the Association for Computational Linguistics,
4:17-30.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In International confer-
ence on machine learning, pages 2342-2350. PMLR.

Dan Jurafsky and James H Martin. 2020. Speech and
language processing, 3rd edition draft edition.

20

Masahiro Kaneko and Danushka Bollegala. 2021.
Dictionary-based debiasing of pre-trained word em-
beddings. arXiv preprint arXiv:2101.09525.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. arXiv preprint arXiv:1804.10959.

Yoav Levine, Barak Lenz, Or Dagan, Ori Ram, Dan
Padnos, Or Sharir, Shai Shalev-Shwartz, Amnon
Shashua, and Yoav Shoham. 2019. Sensebert:
Driving some sense into bert. arXiv preprint
arXiv:1908.05646.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 302—
308.

Danni Liu, Jan Niehues, James Cross, Francisco
Guzmén, and Xian Li. 2020. Improving zero-shot
translation by disentangling positional information.
arXiv preprint arXiv:2012.15127.

Shikun Liu, Edward Johns, and Andrew J Davison. 2019.
End-to-end multi-task learning with attention. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 1871-1880.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Timothee Mickus, Denis Paperno, Mathieu Constant,
and Kees van Deemter. 2022. SemEval-2022 Task
1: Codwoe — comparing dictionaries and word em-
beddings. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022).
Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39-41.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and
Doug Downey. 2017. Definition modeling: Learn-
ing to define word embeddings in natural language.
In Thirty-First AAAI Conference on Artificial Intelli-
gence.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 43-54, Hong Kong, China. Association for
Computational Linguistics.


https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00080
https://doi.org/10.1162/tacl_a_00080
https://web.stanford.edu/~jurafsky/slp3/
https://web.stanford.edu/~jurafsky/slp3/
https://doi.org/10.18653/v1/D19-1005
https://doi.org/10.18653/v1/D19-1005

ME Peters, M Neumann, M lyyer, M Gardner, C Clark,
K Lee, and L Zettlemoyer. 2018. Deep contextual-
ized word representations. arxiv 2018. arXiv preprint
arXiv:1802.05365, 12.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? arXiv
preprint arXiv:1906.01502.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE international
conference on acoustics, speech and signal process-
ing (ICASSP), pages 5149-5152. IEEE.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced represen-

tation through knowledge integration. arXiv preprint
arXiv:1904.09223.

Julien Tissier, Christophe Gravier, and Amaury Habrard.
2017. Dict2vec: Learning word embeddings using
lexical dictionaries. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 254-263.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, FLukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Guihong Cao, Daxin Jiang, Ming
Zhou, et al. 2020. K-adapter: Infusing knowledge
into pre-trained models with adapters. arXiv preprint
arXiv:2002.01808.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics, 9:176-194.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to compo-
sitional paraphrase model and back. Transactions of
the Association for Computational Linguistics, 3:345—
358.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Charagram: Embedding words and
sentences via character n-grams. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1504—1515, Austin,
Texas. Association for Computational Linguistics.

Da Yin, Tao Meng, and Kai-Wei Chang. 2020. SentiB-
ERT: A transferable transformer-based architecture
for compositional sentiment semantics. In Proceed-
ings of the 58th Annual Meeting of the Association

21

Jfor Computational Linguistics, pages 3695-3706, On-
line. Association for Computational Linguistics.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

A Appendix: A

Check Table 5 for experiment results of the mono-
lingual models.

B Appendix: B

Check Table 6 for selected multilingual models’
performance.


https://doi.org/10.18653/v1/D16-1157
https://doi.org/10.18653/v1/D16-1157
https://doi.org/10.18653/v1/2020.acl-main.341
https://doi.org/10.18653/v1/2020.acl-main.341
https://doi.org/10.18653/v1/2020.acl-main.341

Word Representations SGNS Char Electra
Monolingual Models MSE COS RANK | MSE COS RANK | MSE COS RANK

Language English
RNN+WordPiece 1.000 0.249 0.310 | 0.158 0.778 0.442 | 1.454 0.832 0.433
LSTM+WordPiece 0.990 0.228 0.375 | 0.148 0.791 0458 | 1.491 0.831 0.449
Transformer+WordPiece 1.042 0.214 0.367 | 0.194 0.780 0.453 | 1.796 0.827 0.486
BiRNN+WordPiece 0.989 0.221 0.395 | 0.150 0.791 0.454 | 1.483 0.832 0.449
Elmo+WordPiece 1.041 0.252 0.282 | 0.161 0.772 0.430 | 1.512 0.829 0.434
Language Spanish
RNN-+WordPiece 0.936 0.358 0.225 | 0.512 0.822 0.402 NA NA NA
LSTM+WordPiece 0.928 0.334 0.287 | 0.497 0.829 0418 NA NA NA
Transformer+WordPiece 1.011 0.307 0.313 | 0.577 0.828 0.432 NA NA NA
BiRNN+WordPiece 0.939 0.315 0.329 | 0511 0.826 0.423 NA NA NA
Elmo+WordPiece 0.968 0.362 0.207 | 0.520 0.820 0.396 NA NA NA
Language French
RNN+WordPiece 0.975 0.329 0.254 | 0.379 0.761 0408 | 1.272 0.856 0.444
LSTM+WordPiece 0.971 0.303 0.329 | 0.361 0.772 0420 | 0.191 0.862 0.457
Transformer+WordPiece 1.057 0.273 0.366 | 0.461 0.771 0.430 | 1.523 0.856 0.488
BiRNN+WordPiece 0.984 0.290 0.361 | 0.366 0.770 0.424 | 1.202 0.863 0.454
Elmo+WordPiece 1.007 0.333 0.239 | 0.373 0.763 0.402 | 1.341 0.850 0.437

Language Italian

RNN+WordPiece 1.078 0.353 0.218 | 0.345 0.741 0.391 NA NA NA
LSTM+WordPiece 1.077 0324 0.276 | 0.340 0.744 0413 NA NA NA
Transformer+WordPiece 1.160 0.256 0.373 | 0.377 0.731 0.419 NA NA NA
BiRNN+WordPiece 1.086 0.309 0.303 | 0.338 0.747 0415 NA NA NA
Elmo+WordPiece 1.106 0.352  0.200 | 0.354 0.736 0.384 NA NA NA
Language Russian
RNN+WordPiece 0.537 0.388 0.226 | 0.132 0.832 0.391 | 0.899 0.727 0.372
LSTM+WordPiece 0.547 0.338 0.346 | 0.131 0.834 0401 | 0.885 0.728 0.400
Transformer+WordPiece 0.565 0.315 0.377 | 0.156 0.827 0411 | 1.071 0.707 0473
BiRNN+WordPiece 0.551 0.321 0.397 | 0.135 0.831 0403 | 0919 0.727 0410
Elmo+WordPiece 0.557 0.387 0.217 | 0.134 0.831 0.390 | 0.904 0.723 0.362

Table 5: Appendix A. Experiment results of the monolingual models. Check section 2 for word algorithm
representations’ abbreviation. Check section 3 for details of monolingual models.

Word Representations SGNS Char Electra

Monolingual Models MSE COS RANK | MSE COS RANK | MSE COS RANK
Language English

Elmo+WordPiece 1.041 0.252 0.282 | 0.161 0.772 0.430 | 1.512 0.829 0434

Elmo + WordPiece + DWA 0985 0.246 0.298 | 0.142 0.799 0.447 | 1.514 0.827 0.428

Language French

Elmo+WordPiece 1.007 0.333 0.239 | 0373 0.763 0.402 | 1.341 0.850  0.437
Elmo + WordPiece + DWA 0937 0.327 0.243 | 0.364 0.770 0.406 | 1.315 0.854 0.428

Language Russian

Elmo+WordPiece 0.557 0.387 0217 | 0.134 0.831 0.390 | 0.904 0.7226  0.362
Elmo + WordPiece + DWA  0.534 0.388 0.189 | 0.127 0.838 0.376 | 0.908 0.7235 0.364

Table 6: Appendix B. The table shows the selected multilingual models’ performance. Check section 2 for word
algorithm representations’ abbreviation. Check section 3 for details of monolingual models.
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