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Abstract
We present a new gold-standard dataset and a
benchmark for the Research Theme Identifica-
tion task, a sub-task of the Scholarly Knowl-
edge Graph Generation shared task, at the 3rd
Workshop on Scholarly Document Processing.
The objective of the shared task was to label
given research papers with research themes
from a total of 36 themes. The benchmark
was compiled using data drawn from the largest
overall assessment of university research output
ever undertaken globally (the Research Excel-
lence Framework - 2014).

We provide a performance comparison of a
transformer-based ensemble, which obtains
multiple predictions for a research paper, given
its multiple textual fields (e.g. title, abstract,
reference), with traditional machine learning
models. The ensemble involves enriching the
initial data with additional information from
open-access digital libraries and Argumenta-
tive Zoning techniques (Teufel et al., 1999b). It
uses a weighted sum aggregation for the mul-
tiple predictions to obtain a final single predic-
tion for the given research paper.

Both data and the ensemble are publicly
available on https://www.kaggle.com/ and
https://github.com/ProjectDoSSIER/sdp2022,
respectively.

1 Introduction

With the recent demise of the widely used Mi-
crosoft Academic Graph (MAG) (Sinha et al.,
2015), the scholarly document processing commu-
nity is facing a pressing need to replace MAG with
an open-source community-supported service. In
order to create a comprehensive scholarly graph,
it is challenging to correctly represent each paper
as a node on the graph. This requires condens-
ing meta-information, such as authorship, research

organizations, research themes etc., of research pa-
pers to one node.

So far, the task of identifying research themes
for a given scholarly document has been challeng-
ing due to the lack of large high-quality labelled
data. This made it difficult both to train high-
performance classification models as well as to
compare models’ performance across studies.

This paper provides a benchmark for research
theme classification based on a large human-
annotated corpus of scholarly papers across 36
themes defined by the UK Research Excellence
Framework, the largest overall assessment of uni-
versity research outputs ever undertaken globally
(the Research Excellence Framework - 2014)1

(Cressey and Gibney, 2014). The outcome of this
paper is the product of the Scholarly Knowledge
Graph Generation shared task which was part of the
Scholarly Document Processing (SDP) workshop
at COLING2022.

We started with a labelled dataset containing pub-
lications and subjects to which they belong (Sec-
tion 3), which contains descriptions or abstracts,
the first author, DOI, year of publication, and iden-
tifier to link the publication to the CORE (Knoth
and Zdrahal, 2012) aggregator. We later enriched
this dataset with further information including the
full text, where available. This represents a new
gold-standard dataset for theme classification of
scholarly documents.

To establish a benchmark for research theme
classification, we present experiments and eval-
uation results with traditional machine learning
models and compare them to a more sophisticated
transformer-based ensemble model.

Our transformer-based ensemble model exploits

1https://ref.ac.uk/2014/

https://www.kaggle.com/competitions/sdp2022-scholarly-knowledge-graph-generation/data?select=task1_test_no_label.csv
https://github.com/ProjectDoSSIER/sdp2022
https://ref.ac.uk/2014/
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all textual fields for each scholarly document and
maps these documents to CORE and Semantic
Scholar (Fricke, 2018) to gather further external
information. Thus, the ensemble consists of a
transformer-based classifier used to produce mul-
tiple predictions for individual publications (split
into multiple textual fields) that are aggregated to
produce a single final prediction. We aggregate
predictions from titles, abstracts, references, cita-
tions, and related titles for every publication, when
available. Furthermore, we use abstracts, PDFs and
full texts available to identify argumentative zones
(Teufel et al., 1999b) to use them as additional
fields. We report on the results of using aggrega-
tion for different combinations of these predictions.

The rest of the paper is organized as follows:
Section 2 presents a discussion of the related work,
focusing mainly on scientific document classifica-
tion approaches and their evaluation. Section 3
describes details of building the new benchmark
for theme classification. Section 4 discusses the
ensemble we propose as a baseline and the sys-
tem components in more detail. In Section 5, we
describe the experimental settings. In Section 6,
we discuss the evaluation results from a diverse
set of experiments. Finally, we discuss the conclu-
sion and the potential direction of future work in
Sections 7 and 8.

2 Related Work

Classifying scholarly documents is an important
task, whether for understanding the dynamics of
scientific fields or simply for organizing scientific
literature more effectively. In previous literature,
it typically relies on textual features such as titles,
author keywords, and abstracts, as well as the inter-
relationships between the documents (i.e., citations
and co-authorship). Full texts are frequently not
available and processing a large amount of text can
be computationally expensive.

A wide variety of classification features have
been proposed at different levels of granularity, e.g.,
themes, topics, and subjects. A large proportion of
classification methods rely on semantic similarity
(Wang and Koopman, 2017; Semberecki and Ma-
ciejewski, 2017; Salatino et al., 2022; Hande et al.,
2021; Boyack and Klavans, 2018). Others include
approaches for clustering documents based on key-
word co-occurrence (Van Eck and Waltman, 2017;
Kim and Gil, 2019). Further approaches leverage
the relationship graph representation built from ci-

tations and co-authorship (Taheriyan, 2011; Shen
et al., 2018; Hoppe et al., 2021).

One promising but unexplored approach to
theme classification is using information about ar-
gumentative zoning (AZ) (Teufel et al., 1999b).
AZ refers to the examination of the argumentative
status of sentences in scientific articles and their
assignment to specific argumentative zones. Its
main goal is to collect sentences that belong to
predefined zones, such as “claim” or “method”.
Annotated AZ corpora has been created by (Teufel
et al., 1999a,b; Teufel and Moens, 2002; Teufel
et al., 2009) with approaches to AZ identification
reported in (Liu, 2017). In this work, we aim to test
to what extent can the AZ signal support classifica-
tion of scholarly documents into research themes.

Classification models previously appplied to this
task include traditional machine learning mod-
els, such as k-Nearest Neighbours (Waltman and
Van Eck, 2012; Łukasik et al., 2013), K-means
(Kim and Gil, 2019) and Naïve Bayes (Eykens
et al., 2021). It has been reported that these models
encounter performance challenges related to overly
coarse classifications and low accuracy (Darad-
keh et al., 2022). There are applications of deep
neural networks (NN) models as well, such as
convolutional NN (Rivest et al., 2021; Daradkeh
et al., 2022) and recurrent NN (Semberecki and Ma-
ciejewski, 2017; Hoppe et al., 2021). More recent
deep learning approaches take advantage of pre-
trained language models (Kandimalla et al., 2021;
Hande et al., 2021).

One of the common practices to evaluate ap-
proaches for classifying scientific text is to use
classification systems from digital libraries (Kandi-
malla et al., 2021; Gialitsis et al., 2022; Taheriyan,
2011; Gündoğan and Kaya, 2020), such as the
ACM Computing Classification System2, the Web
of Science Categories3 and Science-Metrix4. Other
practices involve generating automatic annotations
for scientific collections that can be completely syn-
thetic (Waltman and Van Eck, 2012) or curated by
experts (Salatino et al., 2022; Eykens et al., 2021;
Daradkeh et al., 2022; Hande et al., 2021; Pech
et al., 2022). However, to date, there has been no es-
tablished benchmark to evaluate these approaches.

We present a new high-quality benchmark for
evaluating research theme classification, used for

2ACM Computing Classification System
3Web of Science Categories
4Science-Metrix

https://dl.acm.org/ccs 
https://images.webofknowledge.com/images/help/WOS/hp_subject_category_terms_tasca.html
https://www.science-metrix.com/classification/
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the first time in the Scholarly Knowledge Graph
Generation Shared Task.

3 Inital Dataset Creation

As previously discussed, one of the significant chal-
lenges faced in the domain is the lack of large-
scale labelled data for research theme classifica-
tion. For the shared task, a completely new gold-
standard dataset was compiled using data drawn
from the U.K.’s Research Excellence Framework
(REF) 2014 exercise (Cressey and Gibney, 2014).
In total, 191,000 research outputs were submitted
by 154 higher education and research institutions,
and these were then peer-reviewed by experts from
each domain. The REF divided research outputs
into 36 ‘Units of Assessment’ (UoA) or domain ar-
eas. The institutions themselves selected to which
Unit of Assessment each output was submitted.
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Figure 1: Breakdown of the dataset by theme.

The data from the REF exercise, therefore, pro-
vides a near-perfect starting point for the task of
automatically identifying research themes as the
UoA labels were manually assigned to each output
by the expert academics responsible for its produc-
tion.

For each output, the following were available
from the REF data; publication title, publication
year, publication venue, name of institution, and
Unit of Assessment. These fields were fully popu-
lated for 190,628 out of 190,963 submissions to the
outputs category of the REF process. We further
enriched each record with the DOI, CORE id, and
abstract (where available). The CORE id is used
to identify the actual research article held by the
CORE service5. Not all papers in the dataset are
open access, therefore the full-text content of all
papers is not available. For non-open access pa-
pers, CORE often still has the metadata for these
articles.

For the data used in this shared task, separate
test and train datasets were generated. From the
full REF dataset, 51,560 randomly selected records
were used for the train set, and a separate 10,000
were selected for the test set. The datasets were
then verified to ensure that there was no overlap
between the two sets. Figure 1 shows the cross-
domain (theme) breakdown of all records used for
this task.

4 Classification Ensemble

This section depicts the approach we used to esti-
mate probabilities of academic publications belong-
ing to specific theme and the heuristics we follow
for classification. In general, we want to exploit
all the information available for the scholarly doc-
uments that need to be classified. Academic pub-
lications are typically well-structured documents
with multiple textual fields and metadata. We rely
on open-access platforms to enrich the data with
additional information (Section 4.2).

Currently, Transformer-based contextual lan-
guage models like ELMo (Peters et al., 2018)
or BERT (Devlin et al., 2019) outperform most
feature-based representation methods. We use a
classifier based on contextual word embeddings to
evaluate the utility of individual textual fields in
the classification of Academic publications.

4.1 Transformer-based Classifier

We rely on the pre-trained general language model
BERT (Devlin et al., 2019), which achieves out-
standing performance on different NLP tasks
through fine-tuning for the downstream tasks
(Acheampong et al., 2021), in this case, multiclass
classification.

5https://core.ac.uk

https://core.ac.uk
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We allow all layers of BERT to be updated as we
are learning the relevant context from the training
data. A custom operation is added on top of the
model, which takes the last hidden state tensor from
the encoder and then passes it to a linear layer. At
the end of the linear layer, we have a vector with
a size equal to the number of classes, and each
element corresponds to a category of the provided
labels. Specifically, we use the following setting to
build the model base:

Input layer. It builds the model’s input sequence.
The input sequence is segmented according to the
WordPiece embeddings and the token vocabulary.
The final input representations are then produced
by adding the position embeddings, word em-
beddings, and segmentation embeddings for each
token.

BERT encoder. It consists of multiple Trans-
former blocks and multiple self-attention heads
that take an input of a sequence of a limited num-
ber of tokens and output the representations of
the sequence. The representation can be a spe-
cific hidden state vector or a time-step sequence
of hidden state vectors.

Output layer. It consists of a simple linear layer
with a Softmax classifier on top of the encoder
for computing the conditional probability distri-
butions over predefined categorical labels.

The cross-entropy loss is used to optimize the
model with the Adam optimizer.

4.2 Data Enrichment
Taking advantage of the open access libraries avail-
able for scientific publications, we search for com-
plementary data for each example provided for the
task. Specifically, we use the CORE (Knoth and
Zdrahal, 2012) and the Semantic Scholar (Ammar
et al., 2018) APIs to map publication titles to the
various fields available for each publication.

The original task dataset includes mainly titles
with metadata. Our goal with the enrichment is
to collect more information related to the publica-
tion to better match the themes. After mapping the
papers to results from the search using the APIs,
we add a list of references and citations, full pa-
pers, abstracts, and PDFs, for the cases when they
are available. Moreover, we search for five recom-
mended papers using the title for every publication
using the CORE API.

We believe that regardless of the performance of
the classification model, if there is enough evidence
for a publication to belong to a specific theme, we
should be able to classify it with enough certainty.
For instance, given a publication title, which can
be ambiguous, we hypothesize that considering
the multiple references or citations leads to disam-
biguation and deciding effectively to which topic
this publication should belong. The list of refer-
ences or citations can be classified the same way
as single inputs, and the classification result can
consider the multiple corresponding outputs for the
final decision.

Since there is no guarantee that this data is avail-
able for all the original samples, we exploit all
available sections, including the full text and PDFs.
However, since processing such an amount of text
is expensive, we use AZ (Teufel et al., 1999b).
Here, we define four zones that cover the main
components of scientific articles, namely: Claim,
Method, Result and Conclusion.

In order to extract sentences that cover the four
zones from the available PDF scientific articles,
we follow an approach similar to a previously pro-
posed approach by El-Ebshihy et al. (2020), which
generates an article summary by expanding the arti-
cle abstract. To sum up, the sentence selection and
labeling with zones process goes as follows: (1)
we convert the PDF papers to an XML format us-
ing the GROBID PDF parser (Lopez, 2009), which
identifies the paragraphs of the article, (2) the para-
graphs are fed into a Solr6 index, (3) the sentences
in the article’s abstract are passed as queries to the
Solr index in order to find the top most similar para-
graphs to the abstract sentences, (4) sentences of
the retrieved paragraphs, as well as the sentences of
the abstract, are labeled to zones using a pre-trained
BERT model based on the approach proposed by
Accuosto et al. (2021), and (5) we use the labeled
sentences to extend our training data with four ex-
tra text fields that represent the Claim, the Method,
the Result and the Conclusion — we refer to these
extra fields as Argumentative Zones. In case we
cannot find the PDF source of the article, we use the
article abstract, if found, to generate these fields.

4.3 Extending Labels to Enriched Data

During training, the model takes text examples to-
gether with the labels associated with them. Since
examples for this task are academic publications,

6https://lucene.apache.org/solr/

https://lucene.apache.org/solr/
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Figure 2: Ensemble for research theme classification. CLS stands for classifier.

and we want to use different sections independently,
we rebuild the dataset considering each section as
a single sample but associated with the same publi-
cation, and we use the same label for all samples
of the same publication.

In this way, we end up with an extended version
of the initial dataset, in which new samples are
created for titles, abstracts, citations, references,
and recommendations.

4.4 Aggregating Predictions from Enriched
Data

During inference time, we compute multiple predic-
tions associated with the same publication. These
predictions can either agree or disagree, so we for-
mulate the final prediction as the aggregation of
the different predictions. Figure 2 illustrates the
prediction procedure used to obtain the final theme
prediction for a publication in which various sec-
tions are evaluated as independent samples with the
classifier. Section 5 describes how this aggregation
is parameterized for the experiments.

5 Experimental setup

5.1 Dataset
Statistics for the initial dataset are provided in Ta-
ble 1. Most of this dataset’s publications do not
contain abstracts, additional metadata, or PDFs.
Theme identification algorithms should be robust
to these missing features and work well when only
titles are available.

5.2 Training Settings
Given the labelled training samples, we train the
model using two different sets. The first training
set consists of the list of titles, while the second
takes both titles and available abstracts. We argue
that although more information can be available per

Train Test

Size 51,560 10,000

% of Publications
– available via CORE API 91.6% 92.4%
– with abstract 31.8% 31.7%
– with PDF 24.6% 25.6%
– with full text 6.3% 6.4%
– with references 8.4% 7.6%

Table 1: Dataset statistics.

publication, the labels provided match only titles
and abstracts, and further assumptions can hurt
the model’s performance. However, we define an
additional training set under our data enrichment
procedure. We refer to the first model as BERTT

and to the second one as BERTT+A.
We train the model for 10 epochs, with early

stopping based on the performance measured using
the evaluation metric (see Section 6.1) and patience
of 3 epochs. The training samples are picked ran-
domly, searching for a uniform distribution over
the classes per batch. To prevent overfitting in case
of unbalanced batches, we use the weighted cross-
entropy loss, and assign the weights dynamically,
according to the result of the random selection of
samples in the batch. We use 16384 samples from
the training set per epoch divided into batches of 64
samples, and train the models on an Nvidia Quadro
RTX 8000 GPU.

5.3 Prediction Settings

As well as the training strategy, we evaluate the util-
ity of having multiple predictions per publication in
the test set compared to a single prediction. To do
so, we prepare different evaluation sets, following
the same training set schema. Thus, we evaluate
the model using only titles, then using titles and
abstracts, and finally, using the set created under



258

our data enrichment procedure.
Since we have to produce a single prediction per

publication, and the sets are not uniform, in the
sense that certain publications may not have extra
fields (see Table 1, for instance, abstracts are avail-
able for only 32% of publications), we parameterise
the prediction aggregation based on the different
sets of fields. We consider the aggregation to be
a weighted sum. The motivation for selecting a
weighted sum, instead of just summing up the out-
puts is that we can introduce offsetting through the
weights. Thus, we give an advantage to the labelled
fields in the original dataset over the extended data.

For our experiments, in the case of the set with
titles and abstracts, we use uniform weighting. In
the case of the extended set, we assign weights
such that: 0.5 is distributed uniformly between ti-
tle and abstract, and 0.5 is uniformly distributed
between all the additional fields available per pub-
lication. This setting is compared experimentally
to a uniform weighting across all the fields.

6 Results

6.1 Evaluation metrics
The evaluation metric used for evaluating classi-
fication results is micro F1-Score. The F1 score,
commonly used in machine learning, measures ac-
curacy using the statistics precision and recall.

The F1 metric weighs recall and precision
equally, and a good classification algorithm will
maximize both precision and recall simultaneously.
Thus, moderately good performance on both will
be favored over extremely good performance on
one and poor performance on the other.

6.2 Baseline Models
We implement several baseline models for compar-
ison to the ensemble described in Section 4:

K-nearest neighbours classifier with Tf-idf repre-
sentation

Logistic Regression classifier with Tf-idf repre-
sentation

Naïve Bayes classifier with Tf-idf representation

Support Vector Machine classifier with Tf-idf
representation

fastText classifier (Joulin et al., 2016) with word
vectors pretrained on wikipedia7

7https://dl.fbaipublicfiles.com/fasttext

We also present scores using two dummy clas-
sifiers: selecting the most frequent category and
sampling from a multinomial distribution parame-
terised by prior probabilities. All classifiers except
for fastText are implemented using scikit-learn (Pe-
dregosa et al., 2011).

6.3 Validation Results

Given the provided training data, we create bal-
anced splits such that 60% is used for train, 10%
for early stopping and 30% for validation. All the
sets are enriched following the process described
earlier. Table 2 shows some preliminary results
for experiments we perform to select the model
and the training setup. We compare the two dif-
ferent BERT models with traditional models. The
performance of the model trained using titles and
abstracts is slightly better, and we use it for further
experiments.

Model name Titles Titles and
abstracts

Dummy: most frequent — 0.095 —
Dummy: stratified random — 0.048 —

K-nearest Neighbours 0.132 0.468
Logistic Regression 0.457 0.498

Naïve Bayes 0.460 0.493
Support Vector Machine 0.474 0.506

fastText 0.454 0.473

BERTT 0.498 –
BERTT+A 0.500 0.512

Table 2: Micro F1-score results comparison using dif-
ferent input features for prediction. BERTT stands for
BERT model trained on titles only, BERTT+A means
model trained on both titles and abstracts.

Furthermore, we evaluated the utility of enrich-
ing the dataset by comparing predictions from titles
only with aggregated predictions using titles and ad-
ditional available fields. Table 3 shows that adding
information improves the classification for all three
experiments. Notice that the experiments are not
comparable to each other because the dataset sam-
ples are different. Subsamples are selected such
that corresponding sections are available for all
documents.

Table 4 shows the results obtained for the vali-
dation set using different variants of ensemble. In
general, we are able to improve the performance of
the classification while adding more data, although
the difference between the experiments is small.
The best score reached is 0.526, using titles, ab-
stracts, citations, references and the argumentative

https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M-subword.vec.zip
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Sections Sample
size

F1-score
(title)

F1-score
(all sections)

Title + Abs. 31.3% 0.503 0.539
Title + Cit. + Refs 25.4% 0.492 0.541

Title + AZ 1.6% 0.548 0.552

Table 3: Three experiments testing the utility of indi-
vidual sections on BERTT+A. The augmentation is
evaluated by independent sections combined with titles.
Samples are selected such that corresponding sections
are available for all documents.

Title Abs. Cit. Refs AZ Recs. F1

× – – – – – 0.500
× × – – – – 0.512
× × × × – – 0.523
× × × × × – 0.526
× × × × × × 0.525

Table 4: Validation results using different fields for
BERTT+A. The experiments vary in the prediction and
aggregation settings. The aggregations we use are sim-
ply weighted sums with uniform weights and assigned
arbitrarily according to Section 5.3.

zones.
For the best configuration, we also show the

confusion matrix (see Figure 3). For convenience,
we show the results for only the 25 most frequent
classes and we group the rest of them in a single
class. It should be noted that for Clinical Medicine,
most of the examples where the model’s predic-
tion is incorrect are classified as Allied Health Pro-
fessions, Dentistry, Nursing and Pharmacy, and
Biological Sciences. Similar behaviour can be ob-
served with related fields of study. Further analysis
must be done to evaluate overlapping between dis-
ciplines.

6.4 Test Results
In this section, we show the results for the test set
(see Table 5). In general, we see a positive impact
with our approach considering that we could not
get additional information for all the items in the
original dataset.

In this set of experiments, we evaluate a different
aggregation setting, uniform weighting through all
the fields (run 4), and the result is the best score for
the set of runs. Furthermore, we also evaluate an
additional model trained with all the fields available
(run 5), and we see no improvements.

7 Discussion

In this work, we first released a new gold-standard
human-annotated dataset of over 60k papers com-

Run Title Abs. Cit. Refs AZ Recs. Agg. F1

1 T+P T+P – – – – U 0.569
2 T+P T+P P P P – C 0.575
3 T+P T+P P P P P C 0.571
4 T+P T+P P P P P U 0.577
5 T+P T+P T+P T+P – T+P C 0.556

Table 5: Test results with different experimental (Run)
settings. The experiments vary in the training (T), pre-
diction (P) and aggregation (Agg.) settings. The aggre-
gations we use are simply weighted sum with uniform
weights (U) and compensation weights (C) assigned ac-
cording to section 5.3.

plete with paper metadata, research themes and
additional textual information including the papers’
abstract and full-text where available. In future, it
would be possible to further extend the size of the
presented dataset to include all REF2014 and now
the recently finalised REF2021 papers, which both
used the same research themes classifications. This
would result in an annotated dataset of over quarter
of a million papers. To our knowledge, our work
was the first to utilise REF research evaluation for
the purposes of building machine learning mod-
els for themes classification and highlighted the
significant potential of this dataset for developing
state-of-the-art models.

Second, we use this dataset to establish a new
benchmark for research theme classification, test-
ing a range of classic machine learning models
under the same laboratory conditions. Unsurpris-
ingly, our results confirm that models trained with
both titles and abstracts as input features consis-
tently achieve higher results than when using titles
alone. These results hold both for baseline models
and our newly introduced ensemble BERT model.
While the results confirm that the BERT-based en-
semble model outperforms traditional models, the
performance of SVMs is only marginally worse.

It is interesting to note that using all available
features for training (run 5) decreases the score
compared to the model trained on titles and ab-
stracts only. We hypothesise that a large proportion
of false negatives can be attributed to noise intro-
duced by reference sections within the full texts,
especially for closely aligned domains. The con-
fusion matrix (Figure 3) shows that many of the
incorrect classifications happened in closely related
domains (Clinical Medicine / Biological Science
for example).

This is indicative of the difficulty of this task,
particularly when presented with closely matched
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Figure 3: Confusion Matrix for validation results for 25 most frequent classes. The remaining 11 classes are grouped
in the ‘others’ category.

or overlapping domains. Indeed, one limitation
of our approach may be the classification of each
paper into a single research field. In real-world
examples, a paper could often be classified into
multiple domains. Another limitation is that our
ensemble model requires the availability of both
title and abstract, which are necessary for the AZ
approach, which we have seen contributes to the
performance.

Assigning research themes to scholarly docu-
ments has wide-ranging applications. These in-
clude enhanced domain-specific search, for in-

stance search in Chemistry is a complex task due to
the need to index chemical compounds, and identi-
fying emerging research trends. Further, a signifi-
cant problem with current bibliometric methodolo-
gies is accounting for cross-disciplinary differences
in both publishing and citation practices. Identi-
fying the research theme enables accounting for
disciplinary differences by, for instance, calculat-
ing normalised citation counts.

In future work, we would like to measure the
importance of weight assignments for augmented
predictions and consider the overlap between disci-
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plines to evaluate ways of disambiguating predic-
tions falling into related themes.

8 Conclusion

We have introduced a new large human annotated
gold-standard dataset and a benchmark for research
theme classification of scholarly documents. The
work was conducted in the context of the Extracting
Research Themes task from the 2022 edition of
the Scholarly Knowledge Graph Generation shared
task. The task was to identify the main research
theme from a taxonomy of 36 classes, introduced
by the UK Research Excellence Framework.

Our experiments addressed the effect of using
a variety of textual fields on the prediction perfor-
mance. Enriching the supplied training and testing
data with external textual information (e.g., PDF
source, full-text article, references) using open-
access sources improved the results of our models.
However, we have demonstrated that this enrich-
ment might also introduce additional noise.

We presented a new transformer-based classifier
model based on BERT and used it to obtain multi-
ple predictions for a given research article for each
textual field. We experimented with a variety of
aggregation functions to produce the final predic-
tion. Despite incomplete and noisy data, the results
show that our ensemble model has a small positive
impact on the classification performance.
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