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Abstract

We present the first application of modern neu-
ral networks to the well studied task of learn-
ing word stress systems. We tested our adap-
tation of a sequence-to-sequence network on
the Tesar and Smolensky test set of 124 “lan-
guages”, showing that it acquires generaliz-
able representations of stress patterns in a very
high proportion of runs. We also show that
it learns restricted lexically conditioned pat-
terns, known as stress windows. The ability
of this model to acquire lexical idiosyncracies,
which are very common in natural language
systems, sets it apart from past, non-neural
models tested on the Tesar and Smolensky data
set.

1 Introduction

Some of the earliest work in computational phonol-
ogy investigated the acquisition and representation
of word stress patterns (Dresher and Kaye, 1990;
Gupta and Touretzky, 1994). Stress is of interest
because the extent of typological variation is rel-
atively well understood, and because learning the
patterns is non-trivial in various ways. A consider-
able amount of more recent work has focused on
a data set created by Tesar and Smolensky (2000,
henceforth TS); see further Jarosz (2013), Jarosz
(2015) and Boersma and Pater (2016). The data
set includes 124 languages that can be represented
using 12 relatively standard Optimality Theoretic
(Prince and Smolensky, 2004) constraints. Past
work has tested various algorithms for weighting
and ranking constraints to see which performed
the best on this dataset (where performance was
measured by how many of the 124 languages the
models could learn with 100% accuracy).

In this paper, we explore how well a model with-
out constraints, namely a sequence-to-sequence
neural network, performs on the 124 languages.

Two factors motivate this departure from constraint-
based models: (i) a question of whether pre-
specified structures like constraints1 are necessary
to represent and learn the stress patterns in the TS
data set, and (ii) whether neural networks, which
have the expressive power to capture both general
and lexically specific patterns will be able to gener-
alize stress patterns to novel data. We find that the
sequence-to-sequence net does succeed in learn-
ing most of the languages, and that it generalizes
to novel data, both when trained on the 124 TS
languages and when trained on 6 novel patterns
involving lexically conditioned stress. No previous
research on the Dresher and Kaye parametric sys-
tems, or on the TS violable constraint systems, has
provided a mechanism for the learning of lexically
conditioned patterns – they can only acquire fully
general ones. These results thus provide new chal-
lenges for future research using non-neural frame-
works in this domain.

2 Background

The TS dataset was created to test an approach for
handling hidden structure in phonology: how does
a learner parse a form that it’s being trained on
when it hasn’t learned all of the grammatical infor-
mation needed for parsing in the first place? In the
TS languages, this takes the form of stress patterns
that are assumed to rely on foot-based structure to
place the primary and secondary stress in a word.
While the training data for a language includes map-
pings between underlying forms (strings of light
and heavy syllables) to correctly stressed surface
forms, that data does not include information about
where the feet occur in the correct surface forms.
An example of a piece of learning data in one of the
TS languages is shown in (1), with L representing

1For an approach to stress learning that involves constraints
that are not pre-specified, see Hayes and Wilson (2008).
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light syllables and L1 representing a syllable with
primary stress.

(1) /L L L/→ [L L1 L]

This datum illustrates the ambiguity present when
learning stress patterns like these in a foot-based
theory—this word could contain a left-aligned foot
with iambic stress like [(L L1) L] or a right-aligned
foot with trochaic stress like [L (L1 L)]. Each of
the 124 languages consists of 62 mappings like this.
The 62 input strings are all possible combinations
of Ls and Hs for strings of 2 to 5 syllables in length,
plus strings of 6 and 7 Ls. For each input string,
the candidate set of output strings consists of all
possible parsings of the syllables into unary and
binary feet, including ones where syllables are left
unparsed. There is a minimum of one foot for each
word. One of the stresses is designated as primary,
and the candidate set has all possible primary stress
placements.

Each output string has a corresponding vector of
constraint violations, for the 12 constraints shown
in (2). Each of the 124 languages in the test set
can be generated by some OT ranking of these
constraints. That is, some ranking can make a
parsed structure optimal that is consistent with the
stress pattern in the output of the learning datum,
for all 62 target mappings.

(2) Constraints from the TS Data Set (con-
straint definitions from Jarosz, 2013)
a. FtBin: Each foot must be either bi-

moraic or disyllabic.
b. Parse: Each syllable must be footed.
c. Iambic: The final syllable of a foot

must be the head.
d. FootNon-fin: A head syllable must not

be final in its foot.
e. Non-fin: The final syllable of a word

must not be footed.
f. WSP: Each heavy syllable must be

stressed.
g. WordFoot-R: Align right edge of the

word with a foot.
h. WordFoot-L: Align left edge of the

word with a foot.
i. Main-R: Align head foot with right

edge of the word.
j. Main-L: Align head foot with left edge

of the word.
k. AllFeet-R: Align each foot with right

edge of the word.
l. AllFeet-L: Align each foot with left

edge of the word.

TS proposed that a learner uses its current grammar
to parse a form and then updates its constraint rank-
ings according to that parse. Most subsequent work
(with the exception of Jarosz, 2015) has been based
on this general premise (Jarosz, 2013; Boersma and
Pater, 2016).

TS found that when they ran their model 10 times
on each of the 124 languages in the data set, it
achieved perfect accuracy on a language 60.48%
of the time. Boersma and Pater (2016) found that
when they used a similar parsing strategy, but with
numerically weighted constraints instead of ranked
ones, and with a stochastic component in the pars-
ing process, languages were learned fully correctly
88.63% of the time. Jarosz (2013) pushed perfor-
mance on this data set even further, showing that
by revising the parsing strategy, success could be
achieved 94.19% of the time over 10 runs of the
124 TS languages.

The state-of-the-art on the TS data for constraint-
based models (95.73%) was achieved by Jarosz
(2015) whose model used a pair-wise ranking gram-
mar with a learning algorithm inspired by expec-
tation maximization (Dempster et al., 1977). This
allowed the model to avoid the problem of parsing
altogether, since it was able to sample the map-
pings that various constraint rankings create over
the course of acquisition to see which were most
likely to improve its performance.

3 Our Model

While various neural network architectures have
been used in phonology, such as feedforward net-
works (e.g., Gupta and Touretzky, 1994; Moreton,
2012), simple recurrent networks (e.g., Hare, 1990),
and convolutional neural networks (e.g., Beguš,
2020), here we focus on the sequence-to-sequence
architecture (Seq2Seq Sutskever et al., 2014).

This architecture was originally constructed for
machine translation, but is convenient for model-
ing phonological mappings since it can straightfor-
wardly map between strings of differing lengths,
needed for dealing with processes like epenthesis
and deletion. This is accomplished by processing
the input and output strings with separate recur-
rent neural networks. The input is fed into the first
network (called the encoder), which has no output
layer. The recurrent connections of the encoder
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then pass information about the input to the second
network (called the decoder), which has no input,
but does have an output layer.

A number of studies have shown that when ap-
plied to phonological patterns, Seq2Seq networks
display similar learning biases to humans (Prick-
ett, 2019, 2021) and also generalize in a human-
like way on phonological and morphological tasks
(Kirov and Cotterell, 2018; Prickett et al., 2018);
see Corkery et al. (2019) for some caveats.

In this paper, we test the Seq2Seq architecture
with both GRU (Cho et al., 2014) and LSTM (Ben-
gio et al., 1994) layers. While both were created to
help recurrent networks learn longer dependencies
(specifically by addressing the problem of vanish-
ing gradients; Bengio et al., 1994), past work has
found that some differences exist in the biases each
kind of layer has. For example, GRU layers have
been shown to be biased against learning counting-
based patterns that LSTMs easily acquire (Weiss
et al., 2018).

In all of the simulations presented here, the net-
work had 2 layers each in its encoder and decoder,
with 20 units in each layer, and hyperbolic tangent
activation functions throughout. The learning algo-
rithm Adam (Kingma and Ba, 2015), with a batch
size of 1, was used to minimize the mean squared
error between the model’s output and the correct
output throughout learning. We leave performing
a proper grid search to determine how well our re-
sults generalize to other hyperparameter settings to
future work.

4 Methods and results2

4.1 Original Tesar and Smolensky (2000)
Languages

We first tested our model to see how well it could
learn the 124 original languages in the TS data set.
In each input string, a timestep for the model rep-
resented a single syllable, with a [syllable weight]
feature distinguishing between light (= −1) and
heavy (= 1) syllables. In the output, timesteps
again represented individual syllables, with the fea-
tures [stress] and [primary] used to distinguish be-
tween syllables with primary stress (values of 1 and
1, respectively), secondary stress (values of 1 and
−1, respectively), and no stress (values of −1 and
−1, respectively).

2For the software used in the simulations presented here,
see https://github.com/blprickett/Neural-Network-Stress.

We ran the model with a learning rate of .0005
for 500 epochs once on each of the 124 languages
in the TS set. We tried versions of the Seq2Seq
architecture with both GRU and LSTM layers in
them and found that both layer types achieved
perfect accuracy3 in 98.39% (122/124) of the lan-
guages. This represents the highest rate of success
for any model on this test set. However, it’s unclear
whether the model was actually encoding gener-
alizable information, or just memorizing the 62
mappings present in each language, which would
be a fairly trivial task.

Previous research has used the constraints in (2),
which are all defined to hold for any string of a
particular phonological type. They provide no way
of encoding a situation in which two strings of a
given type behave differently, as occurs in many
real languages (in “exceptions”, or more generally
in lexically conditioned patterns). The acquired
constraint-based grammars are therefore guaran-
teed to generalize, though at the cost of not being
able to capture lexically conditioned patterns. In
what follows, we test whether our learner does
learn generalizable representations of the data by
including multiple tokens of each type of input
string. We then turn to the question of whether
it can learn lexically conditioned stress patterns,
including restrictions on the distribution of lexical
stress.

4.2 Generalization from Tesar and
Smolensky (2000) Languages

To test whether the Seq2Seq network was learn-
ing generalizable patterns or just memorizing the
mappings in each language, we introduced an ex-
tra set of “lexical” features to the inputs of the TS
data set. These features were implemented as a ran-
dom, base-2 label for each of the tokens in training,
representing the different tokens of each mapping
that one would expect in an actual language. For
example, the mapping from (1) would have multi-
ple copies in training, each of which had a unique,
non-zero label in their input, as illustrated in (3).
These are meant to represent multiple words in a
language with three light syllables and penultimate
stress (like English banana and cabana).

3Since the network’s output takes the form of a vector of
real-numbered feature values, each mapping was considered
correct if every feature in every timestep of its output had the
correct sign (positive or negative), given that mapping’s input.
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Table 1: Percent of languages with perfect accuracy in
training and testing.

Tokens per Type Training Testing
3 86.29 44.35
6 98.39 90.32

(3) Examples of Multiple Tokens of the Same
Mapping Type
a. /L L L/0101 → [L L1 L]
b. /L L L/1111 → [L L1 L]
c. /L L L/0001 → [L L1 L]

Crucially, each token that belonged to the same
mapping type had the same output in all of these
simulations (that is, there was no lexical condition-
ing in any of the stress patterns). We created two
sets of data using this system: one that had 3 tokens
for each of the 62 mapping types in each of the TS
languages and one that had 6 tokens for each of the
types.

We ran the GRU version of the Seq2Seq model
on these two data sets with a learning rate of .0005
for 200 epochs. At the end of training, we tested
the model on 62 novel pieces of data, each of which
represented one of the mapping types from training,
but with only 0’s for the lexical label features. If
the network learned a generalizable pattern from
training, it should correctly map all 62 of the novel
testing items. The results for training and testing
on both data sets are shown in Table 1.

These results suggest that, with enough tokens
per type, the Seq2Seq network does generalize cor-
rectly from almost all (112 out of 124) of the lan-
guages in the TS data. Additionally, the accuracy
on both training and testing increased with the num-
ber of tokens per type, suggesting that a number of
tokens higher than 6 might allow the model to do
even better on both. Natural languages of course
tend to have more than six words with a given type
of stress pattern, at least for shorter words.

4.3 Languages with Lexically Conditioned
Stress

The final test of our model did not directly use any
of the languages from the TS data set. Instead, we
used the 62 input syllable strings from the TS lan-
guages and created output stressings for them using
6 novel patterns. These patterns involved stress win-
dows (Kager, 2012), meaning they allowed stress
to appear on any of a set of contiguous syllables
at the word edge in the output, with the syllable

that’s stressed in a specific word being lexically
specified.

Our patterns involved two basic types of window:
right aligned and left aligned. Each pattern had win-
dows of size 2, meaning the right aligned languages
always had stress on their ultimate or penultimate
syllables and the left aligned languages always had
stress on the first or second syllables. The other
feature that varied across languages was how likely
stress was to occur on each of the two syllables
in a window. We created three conditions for this
variable: languages in which the first syllable of
a window was stressed 25% of the time and sec-
ond was stressed 75%, languages in which both
syllables in the window were equally likely to be
stressed, and languages in which the first syllable
of a window was stressed in 75% of words and the
second was stressed in 25% of them.

These two variables created 6 total languages to
test the model on. In every language, there were 4
tokens for each mapping type, with the proportion
of first syllable/second syllable stress in types’ win-
dows being the same as the language itself. This is
illustrated in (4) for the language with left-aligned
windows and stress on the first syllable of the win-
dow in 25% of words.

(4) Examples of Stress Window Data
a. /L L L L/0101 → [L1 L L L]
b. /L L L L/1111 → [L L1 L L]
c. /L L L L/0001 → [L L1 L L]
d. /L L L L/1001 → [L L1 L L]

We trained the model ten times on each of these 6
languages, with a learning rate of .005, until the
model reached perfect accuracy on the training data.
The LSTM model was able to reach this criterion
for all 6 languages, while the GRU was unable to
reach it for any of them in a reasonable number
of epochs (we tried a variety of values for this,
running the GRU model for up to 10,000 epochs
with no success). At the end of training, we tested
the model on novel data that had values of zero
for all of the lexical label features to see how it
generalized these lexically specified patterns. Table
2 shows the results on testing data for the LSTM
model (no GRU results are shown since that model
never succeeded in training).

With the exception of the language with left
aligned windows and stress on the second sylla-
ble 25% of the time, the model seems to generalize
to novel data in a way that reflects the statistics of

115



Table 2: Proportion of words in each language in which
the window’s second syllable is stressed.

Edge of the Prob. in Model’s Results
Word Training on Testing (SD)
Left .75 0.874 (0.15)

Right .75 0.749 (0.22)
Left .5 0.706 (0.23)

Right .5 0.554 (0.27)
Left .25 0.123 (0.19)

Right .25 0.332 (0.26)

the language it was trained on (with perhaps a bias
toward stressing the second syllable more often).
These results suggest that the LSTM model not
only successfully learns these patterns that involve
lexically conditioned stress but also can keep track
of general statistical trends in the language, as has
been experimentally documented for humans (see,
e.g., Ernestus and Baayen, 2003).

5 Discussion

5.1 Comparison with earlier research

Our results on the TS data set with a Seq2Seq
model are comparable to the best achieved with
constraint based models. It is difficult to compare
directly, since the 98.39% accuracy achieved in the
first set of simulations, as well as on the training
data in the 6 lexical item condition, could be at-
tributable to the model simply representing each of
the individual mappings, rather than learning gener-
alizable representations. Nonetheless, the fact that
it generated the correct stress pattern for 90.32% of
the unseen tokens when there were 6 tokens of each
type in the training data shows that it is capable of
learning these patterns in a generalizable way with
a high degree of accuracy.

None of the prior research on the TS data set
provided a means for representing lexical idiosyn-
crasy, cases where two words of the same syllable
shape have different stress patterns. There is a
body of prior work on constraint-based approaches
to lexical idiosyncratic phonology, however. Tesar
(2006) presents an approach to learning exceptions
in terms of contrastive specification of underlying
features, Pater et al. (2012) propose an alternative
that uses constraints on Underlying Representa-
tions within a MaxEnt learning framework, Moore-
Cantwell and Pater (2016) explore the use of lexi-
cally specific constraints in MaxEnt, Hughto et al.
(2019) study similar lexically scaled constraints,

and Nazarov (2018) presents another approach to
learning lexically specific constraints. All of this
work has been done on very small systems, and it
is not immediately clear how well the proposals
will scale up to cases with even the number of con-
straints in the TS test set, let alone constraint sets
that are large enough to deal with the complexity of
less idealized individual languages, and of a fuller
typology.

5.2 Future Work

A number of avenues exist for future work. The
results presented in §4.2 made the TS data set more
realistic by introducing multiple lexical tokens for
each type of mapping. Making the TS data even
more realistic is one potential future direction, for
example, by representing inputs and outputs as
strings of phonemes rather than just strings of light
and heavy syllables.

Another question to investigate is how well this
model and previous computational models of stress
deal with other patterns involving exceptionality.
The stress window languages introduced in 4.3 are
a step in this direction, but more complex patterns
of lexically conditioned stress could be explored.
The constraint-based models previously tested on
the TS data set had no way to represent lexical
information, so equipping these simpler models
with a way to handle such patterns (with, e.g., lexi-
cally indexed constraints; Pater, 2009) could also
be fruitful.

A limitation of the TS data set is that it is based
on a factorial typology of constraints rather than a
real-world typology of stress-based patterns. Fu-
ture work should sort through these artificially con-
structed languages to see which of them have real-
world counterparts and which are unattested. At
that point, looking closer at the learning difficulty
across languages might help to explain why some
are absent from the typology. Gupta and Touretzky
(1994) provide an analysis of their learning results
with a neural model that gives an example of how
this research could proceed.

Finally, computational phonology often involves
comparing predictions made by models to human
behavior in artificial language learning studies (e.g.,
Wilson, 2006). Such studies involving stress pat-
terns do exist (e.g., Carpenter, 2016), and future
work should compare the aquisition and general-
ization observed in them to that of computational
models of stress learning.
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5.3 Conclusions

In this paper, we presented results showing that
a Seq2Seq neural network can successfully learn
a variety of stress patterns. Using the Tesar and
Smolensky (2000) data set (a commonly cited
benchmark for models of stress), we were able
to show that the network outperformed past models
when tested on how many of the languages in the
data set it could acquire perfectly.

We then created an extension of this data set that
included multiple tokens of each relevant mapping
type in the 124 languages, and differentiated these
tokens using lexically specific labels for each word.
When the model was given data that included six
tokens for each mapping type from the original
data set, its performance on novel test items was
comparable to past, state-of-the-art approaches.

Finally, we showed that the LSTM-based model
could successfully learn lexically-conditioned pat-
terns involving stress windows (Kager, 2012),
something that past constraint-based models of hid-
den structure do not have the expressive power to
do.

Taken together, these results show that (i) pre-
specified constraints are not necessary for a model
to succesfully learn and generalize stress-based
patterns and (ii) while the neural network we used
had the ability to simply memorize the mappings
we were training it on, it instead learned a general
pattern for most languages that could be applied to
novel forms.
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