MaxEnt Learners are Biased Against Giving Probability to Harmonically
Bounded Candidates

Charlie O’Hara
Department of Linguistics
Univerisity of Michigan
cohara@umich.edu

1 Overview

One of the major differences between MaxEnt Har-
monic Grammar (Goldwater and Johnson, 2003)
and Noisy Harmonic Grammar (Boersma and Pater,
2016) is that in MaxEnt harmonically bounded can-
didates are able to get some probability, whereas
in most other constraint-based grammars they can
never be output (Jesney, 2007). The probability
given to harmonically bounded candidates is taken
from other candidates, in some cases allowing Max-
Ent to model grammars that subvert some of the
universal implications that are true in Noisy HG
and categorical forms of HG (Anttila and Magri,
2018). Magri (2018) argues that the types of impli-
cational universals that remain valid in MaxEnt are
phonologically implausible, suggesting that Max-
Ent overgenerates Noisy HG in a problematic way.

However, a variety of recent work has shown
that some of the possible grammars in a constraint
based grammar may be unlikely to be observed
because they are difficult to learn (Staubs, 2014;
Stanton, 2016; Pater and Moreton, 2012; Hughto,
2019; O’Hara, 2021). Here, I show that grammars
that give too much weight to harmonically bounded
candidates, and violate the implicational universals
that hold in Noisy HG are significantly harder to
learn than those grammars that are also possible in
Noisy HG. With learnability applied, I claim that
the typological predictions of MaxEnt and Noisy
HG are in fact much more similar than they would
seem based on the grammars alone. This paper fo-
cuses on the classically harmonically bounded can-
didates, because collectively bounded candidates
reflect a different type of constraint weighting, and
are more often observed typologically (see local op-
tionality Riggle and Wilson (2005); Hayes (2017)).

2 The Problem
Anttila and Magri (2018) show that MaxEnt over-
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Figure 1: In order for a particular mapping /x/—[y] to
be always assigned a lower or equal probability than
the mapping /Z/—[¢]: in Noisy HG all difference vec-
tors between /Z/—[¢] and its competitors must fall in
the dashed region, whereas in MaxEnt, they must fall
in the crosshatched region. The dots represent the dif-
ference vectors of /z/—[y] compared to its competitors.
Adapted from Anttila and Magri (2018).

predicts Noisy HG. Specifically, given a specific
set of constraints, there are probabilistic universals
in Noisy HG that are not maintained in MaxEnt; in
other words for all Noisy HG grammars the prob-
ability of one mapping (/x/—[y]) is always less
than or equal to the probability of some other map-
ping (/Z/—[9]), but in MaxEnt the former mapping
can be more probable. They characterize the differ-
ence between MaxEnt and Noisy HG geometrically,
showing that the probabilistic universals generated
by Noisy HG are a superset of those generated by
MaxEnt for any particular set of tableaux.

Figure 1 shows an example of this difference in a
system with two constraints. Each node represents
a difference vector between the antecedent map-
ping /x/—[y] and one of its competitors /z/-[z],
calculated by subtracting the violations of /x/—[z]
from /x/—[y] (assuming violations are counted
negatively). Anttila and Magri (2018) show that
in order for some consequent mapping /Z/—[7]
to never receive a lower probability than the an-
tecedent /x/—[y] mapping under all weightings of
constraints, all difference vectors between /2/—[§]
and its competitors must have fall in the region
greater than the convex hull generated by the an-
tecedent difference vectors in MaxEnt (correspond-
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Table 1: Universal-Subverting Pattern in MaxEnt

/CV/ ONSET | DEP

Weights || w=2 | w=25 || HARM | PROB
a.CVv 0 0.88
b. V -1 -2 0.12
N/ ONSET | DEP

Weights || w=2 | w=25 || HARM | PROB
a. CV -1 -5 0.05
b.V -1 -2 0.95

ing to the crosshatched region).! In Noisy HG, the
consequent’s difference vectors can fall anywhere
in the region greater than the convex cone gen-
erated by the antecedent difference vectors (also
including the dashed regions). Here, I will argue
that many of these cases are caused by the fact
that MaxEnt assigns probability to harmonically
bounded candidates but Noisy HG does not.

A simple concrete example emerges in sylla-
ble structure—using the constraints and candidates
in Table 1, it is quite obvious in noisy HG that
onsetful syllables map faithfully (/CV/-[CV]) at
least as often as onsetless syllables do (/V/-[V]),
since /CV/-[CV] harmonically bounds its competi-
tor. However, in MaxEnt it is possible for the
onsetless faithful mapping to receive more prob-
ability than the onsetful mapping, see Table 1.2
This difference between MaxEnt and Noisy HG
is directly caused by the harmonically bounded
candidate /CV/-[V] being able to take probabil-
ity from the /CV/-[CV] mapping only in MaxEnt.
This type of classically harmonically bounded can-
didate can only receive any probability when the
bounding constraints (here MAX and ONSET) are
sufficiently low-weighted. This difference is geo-
metrically represented in Figure 2. The filled dot
represents the difference vector between /V/—[V]
and /V/—[CV], whereas the unfilled dot represents
the difference vector between /CV/—[CV] and
/CV/—[V]. Crucially, the unfilled dot falls only in
the dashed region, but not the crosshatched region.

Harmonically bounded candidates show particu-
lar geometric properties. A harmonically bounded

! As long as the number of competitors for the antecedent
and consequent are the same.

280 that this system can be represented two-dimensionally,
here I am excluding MAX, as well any constraints or candi-
dates with codas. These will be introduced later in the paper
for the simulations. This situation is the same as if MAX was
weighted zero, and NOCODA was weighted very high.
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Figure 2: Geometric representation of the onset typol-
ogy with DEP and ONSET.
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candidate violates a superset of the violations of
some other candidate. If the candidate is bounded
by the target mapping, the difference vector be-
tween the target vector and the candidate will be
non-negative for all constraints, placing it in the
first quadrant (top right) of the graph. If a candidate
is harmonically bounded by some other candidate,
it will be at least as large (component by compo-
nent) than the candidate that harmonically bounds
it. The second case is less problematic in MaxEnt
because if /x/-[y]-[2] harmonically bounds /z/-[y]-
[Z], and the difference vector for [Z] falls outside
of the cross hatched region for some antecedent
vector, so must the difference vector for [z]. On
the other hand, as seen in the example above, when
the target mapping harmonically bounds a candi-
date, that candidate can fall in the first quadrant,
but below the convex hull generated by the set of
antecedent difference vectors. We can see that a
large portion of the difference vectors that behave
differently in MaxEnt and Noisy HG are of this
subtype—they fall in the region in the first quad-
rant under the convex hull.> Harmonically bounded
candidates only receive probability under certain
restricted weighting conditions—as the weight of
the harmonically bounded constraints increases,
the probability assigned to candidates bounded by
those constraints becomes vanishingly small. If not
all weighting conditions are equally easy to learn,
is it possible that it is particularly hard to learn con-
straint weightings that would assign a significant
probability to harmonically bounded candidates?

3There are two other regions that differentiated MaxEnt
and Noisy HG—in this two-dimensional representation, the
triangle generated by the origin, the y-axis and the left edge
of the convex cone, and the triangle generated by the leftmost
difference vector, the left edge of the cone, and the left edge of
the region larger than the convex hull. I save characterization
of these regions for future work.



2a. Categorical Pattern

Output
Input | [CV] [V] [CVC] [V(C]
/CV/ 1 0 0 0
N/ 0 1 0 0
/ICVC/ 0 0 1 0
INC/ 0 0 0 1
2b. Universal Respecting Pattern
Output
Input | [CV] [V] [CVC] [V(C]
/CV/ 1 0 0 0
N/ 5 5 0 0
/ICVC/ | .5 0 .5 0
INC/ 25 25 .25 .25
2c. Universal Subverting Pattern
Output
Input | [CV] [V] [CVC] [V(C]
/ICV/ 5 5 0 0
N/ 0 1 0 0
/ICVC/ | 25 .25 .25 .25
INC/ 0 .5 0 .5

Table 2: Patterns under consideration

3 Learnability

To evaluate the learnability of different classes
of grammars, I make us of agent-based gener-
ational learning simulations (Kirby and Huford,
2002; Kirby, 2017). These simulations make use
of a series of learning agents using the Percep-
tron learning algorithm (Rosenblatt, 1958; Jéger,
2003; Boersma and Pater, 2016); each initialized
following conventional assumptions in the phono-
logical learning literature (i.e. markedness con-
straints weighted high faithfulness low (Gnanade-
sikan, 2004; Tesar and Smolensky, 2000; Jesney
and Tessier, 2011)). Learners are exposed to a lim-
ited number of input-output mappings randomly
chosen from their target grammar (each underlying
syllable type is sampled equally frequently, surface
forms sampled according to the target grammar).
After the learner is exposed to the number of forms
(here 7000 forms per generation), the learner ma-
tures and whatever grammar it learned is used as
the target grammar for the next learner. Each run
of the simulation consists of 15 generations, with
the first generation exposed to whatever grammar
is being tested.

Three types of patterns were tested: one fully cat-
egorical pattern available in MaxEnt and Noisy HG
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Figure 3: Resulting patterns after 15 generations.
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(2a), one variable grammar that is consistent with
the implicational universals (2b), and one variable
grammar that subverts the implicational universals
(2c). Notably, only the last pattern gives any proba-
bility to harmonically bounded candidates.

4 Simulation Results

The simulations show that the categorical pat-
terns are learned most consistently, followed by
the universal-respecting variation patterns. The
universal-subverting patterns available only in Max-
Ent are learned consistently worse than the other
types of patterns on multiple metrics. First, the uni-
versal subverting patterns require much more data
to be learned accurately, as shown by the number
of iterations it took to learn the pattern on average
in the first generation (Table 3). Further we can
look the end result of the 20 runs performed for
each simulation to see how stably the pattern is
learned across generations, which allows us to see
how likely a pattern is to change, and how likely
a pattern is to be innovated. Figure 3 presents the
results after fifteen generations, classified accord-
ing to what the initial target pattern was, and what
the pattern the final generation learned would be
classified as. It can be seen that the categorical
pattern is learned fully stably under these param-
eters; whereas the universal respecting variation
changes in 12 of the 20 runs, often reducing the
variability of the pattern. Finally, the universal sub-
verting patterns are learned very unstably, changing
into a type of pattern that can be modeled in Noisy
Harmonic Grammar in all 20 runs.

Table 3: # of iterations needed to learn each pattern.

Grammar Type

Iterations Needed

Categorical
Respecting
Subverting

2000
2200
5000




Figure 4: 100 learners trained on normal variation with
60% coda deletion.
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5 Discussion

The universal-subverting patterns are harder to
learn because it is necessary for the weights of
some constraints to approach zero, rather than sim-
ply becoming lower or higher than some conflict-
ing constraint. In this case, the only evidence that
would force a constraint close to zero is from ob-
serving harmonically bounded candidates in the
target grammar. The difficulty learners have learn-
ing typology subverting patterns is due to the con-
vergence properties of online MaxEnt learner that
restrict constraint weights to non-negative numbers.
While this learning algorithm is weakly convergent
(Fischer, 2005), I show that the expected weighting
of a learner upon convergence differs from the tar-
get weighting substantially more when that target
weighting has constraint weights close to zero—a
necessary property of typology subverting variation
patterns, but not typology respecting variation.

When learning a variable pattern, individual
learners do not ever stop updating, because even
if the learner and teacher have the same grammar,
errors still occur. Each individual learner ends up
oscillating around the target pattern. When this
variation is symmetrical, the average across many
learners converges to the target pattern. However,
when the target pattern requires a constraint be-
ing weighted particularly close to zero, learners
oscillate asymmetrically—some learners

This learning bias is of a stronger sort than many
considered in the learning literature, rather than
simply requiring more time to converge, learners
trained on typology subverting patterns converge
on a grammar different from the target grammar.
To demonstrate a basic example of how the learn-
ing algorithm converges more accurately to normal
variation than harmonically bounded variation, I
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Figure 5: 100 learners trained on harmonically
bounded variation with 40% onset deletion
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ran 100 learners on two variable patterns. In the
normal variation pattern, onset consonants neither
epenthesized or deleted (100% faithful) and coda
consonants deleted 60% of the time. In the harmon-
ically bounded variation pattern, coda consonants
deleted categorically, but onsets deleted 40% of
the time. Each simulation ran according to the
parameters of the above simulations. Figures 4
and 5 show the results of these simulations. The
dark black line represents the average probability
of the target variable mapping across all 100 learn-
ers, whereas the lighter green lines represent each
individual run. The dashed gray line shows the
target probability of the mapping. In normal varia-
tion (Figure 5), the learners oscillate symmetrically
around the target pattern, with the average staying
very close to the target probability. In harmonically
bounded variation (Figure 6), the average remains
notably above the target probability. Harmonically
bounded variation acts differently because learners
cannot oscillate symmetrically around the target
pattern—Ilearners assigning less probability to the
target mapping end up “bouncing” off of a wall,
because the harmonically bounded CV—V map-
ping can never receive more than 50% because
constraint weights must remain nonnegative.

If phonological learners are biased against as-
signing probability to harmonically bounded candi-
dates even when weightings exist in MaxEnt that
assign probability to them, a major source of ty-
pological difference between MaxEnt and Noisy
HG appears to be less significant. Future work
will investigate the other geometrical regions of
difference between MaxEnt and Noisy HG, and ex-
plore whether they also require very low constraint
weights that are difficult to learn.
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