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1 Introduction

It’s hotly contested how children learn constraints
on the allowed forms in their language, such as
constraints on wh-dependencies (these constraints
are sometimes called syntactic islands: Chomsky
1973; Pearl and Sprouse 2013). When learning this
knowledge, a prerequisite is knowing how to repre-
sent wh-dependencies — constraints can then be hy-
pothesized over these dependency representations.
Previous work (Pearl and Sprouse, 2013; Liu et al.,
2019) explained disparate sets of syntactic island
constraints by assuming different wh-dependency
representations, without a unified dependency rep-
resentation capturing all these constraints. Here,
we implement a modeled learner attempting to
learn a Fragment Grammar (FG) representation
(O’Donnell et al., 2011; O’Donnell, 2015) of wh-
dependencies—a representation comprised of po-
tentially different-sized fragments that combine to
form full dependencies—that best accounts for the
input while being as compact as possible. In par-
ticular, FG implements a theory of efficiency that
balances the size of the fragments in the resulting
grammar while also maximizing the probability
of the dependency structures comprised of these
fragments. So, when deciding on the fragments
to represent from linguistic input, a learner can
choose between smaller fragments of the input that
may be reused often in different contexts and larger
fragments that can be accessed without building
up the structure from smaller pieces. The result-
ing fragment-based wh-dependency representation
can then be used to generate any wh-dependency’s
probability on the basis of its fragments, and so
predict acceptability patterns for stimuli sets that
reveal syntactic island knowledge. We find that the
identified FG, learned from a realistic sample of
wh-dependencies from English-learning children’s
input, can generate the attested acceptability judg-
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ment patterns for all syntactic islands previously in-
vestigated, highlighting how implicit knowledge of
wh-dependency constraints can emerge from trying
to learn to efficiently represent wh-dependencies
more generally. We additionally compare the FG
representation’s performance against baselines in-
spired by previous proposals, finding that one base-
line also yields equivalent performance. We discuss
how this baseline is similar to and different from
the FG representation.

2  Wh-dependency representation

We assume wh-dependencies are represented as
sequences of phrase structure nodes that indicate
the path from the gap to the wh-word (Pearl and
Sprouse, 2013) (1a)-(1b). However, it’s unknown
whether the phrasal categories (e.g., CP, VP) in this
representation need to be lexically subcategorized.
For instance, does the dependency path for a wh-
dependency with claim need to include that the
verb is claim (1d) or not (1e)?

(D What did Lily claim that Jack forgot?

a. Whatdid [;p Lily [y p claim [¢p that [;p
Jack [y p forgot __ynat]11117

b.  phrase-structure nodes in syntactic path:
IP-VP-CP-IP-VP

c. lexical information for those nodes:
IP=past, VP=claim, CP=that, IP=past,
VP=forget

d. possible representations with lexically-
subcategorized VP claim:
IP-VP14im-CP-IP-VP,  IPps-VPoigim-
CP-IP,qst-VP,  IP-VP, i1 -CPyq4-1P-
VPjorgets -

e. possible representations without lexically-
subcategorized VP claim:
IP-VP-CP-IP-VP, IP-VP-CPy,,;-IP-VP,
IPpast‘VP‘CPthat‘IPpast‘VPforget’
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Figure 1 illustrates the consequences of lexical
subcategorization and the related balance of frag-
ment size mentioned earlier, showing two extremes
of how to represent the example dependency path
from (1). The leftmost representation uses minimal-
sized fragments (phrasal-only like IP-VP, and lex-
icalized like IPp,s:) that may be reused often be-
cause they can appear in many different dependen-
cies. This representation has no lexical subcatego-
rization because the lexical information is separate
from the phrasal structure. The rightmost represen-
tation uses a maximal-sized fragment (representing
the entire dependency with both its phrasal struc-
ture and lexical pieces) that will only be reused if
this exact dependency occurs. This representation
has complete lexical subcategorization because all
the lexical information is included in this phrase
structure fragment. In terms of maximizing the
probability of the dependency, each extreme has its
drawbacks: the representation relying on minimal-
sized fragments requires combining many individ-
ual fragments, which can lead to a lower probability
even if the individual fragments have higher proba-
bilities; the representation relying on the maximal-
sized fragment likely has a fairly low probability
unless this particular dependency happens to oc-
cur very frequently (and even if it does, this won’t
be true for all dependencies). To maximize the
probability of a dependency in general, a better
approach is to find some intermediate representa-
tion, such as the middle one in Figure 1, that in-
volves some larger phrasal fragments incorporating
lexical subcategorization (e.g., IPp,s-VP), as well
as some lexical-only fragments (e.g., VP orget)-
In this example intermediate representation, there
is thus a tradeoff between larger fragments that
don’t have to be built every time from smaller frag-
ments (€.g., IPpqs¢- VP from IP,,s; and IP-VP) and
smaller, more frequently-reused fragments (e.g.,
VP orget). Of course, there are many possible inter-
mediate representations, and the goal for a learner
is to identify the best one that maximizes this trade-
off and so yields high probabilities collectively for
the dependencies in the input.

3 Previous representation proposals

Previous developmental modeling work by Pearl
and Sprouse (2013) predicted attested adult judg-
ment patterns for 4 islands (Complex NP, Subject,
Adjunct, Whether)—see Figure 2a—by assuming
only CPs were lexically subcategorized (i.e., only
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Figure 1: Example wh-dependency path as a syntactic tree
and possible ways to build it from fragments.

the lexical information of CPs was included with
the phrasal structure). Previous empirical work by
Liu et al. (2019) predicted attested judgment pat-
terns for 14 bridge (e.g, say), factive (e.g., know),
and manner-of-speaking (e.g., whisper) verbs—see
Figure 2c—in terms of the lexical frequency of the
main-clause VP. While Liu et al. didn’t explicitly
propose a theory of representation, their results are
compatible with a representation that lexically sub-
categorizes main-clause VPs (i.e., only the lexical
information of the main verb is included with the
phrasal structure). Yet, these are only two of many
possible types of hypotheses for how the phrasal
structure of wh-dependencies could be represented
(i.e., different intermediate representations). Using
an FG, we can explore the entire hypothesis space
that investigates not only which lexical information
should be included (e.g., CPs or main VPs), but
also what size fragments are the most efficient for
the phrasal structure of the dependency to be built
from. Importantly, instead of telling the learner
beforehand what phrase structure nodes are lexi-
calized and what size fragments to use, the learner
using FGs infers both on the basis of its input.

4 Learning efficient representations that
underlie wh-dependency constraints

We implement a computational-level modeled
learner that attempts to identify an FG encoding the
most efficient dependency path representation. The
model uses Bayesian inference to identify the best
representation. In particular, the modeled learner
uses a Metropolis-Hastings-based inference algo-
rithm to find the set of fragments that best explains
the input, by yielding a high probability for the de-
pendencies in the input. To identify this FG repre-
sentation, the modeled learner uses the Metropolis-
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Figure 2: The top row shows (a) the modeled judgment patterns, matching empirical judgment patterns, from Pearl
& Sprouse (2013), and (b) the judgment patterns (log probabilities) generated by the Fragment Grammar (FG)
identified by the modeled learner, given realistic samples of child-directed speech. The bottom row shows (c) left:
the empirical judgment patterns from Liu et al. (2019), and right: the judgment patterns generated by the FG.

Hastings algorithm to iteratively resample a poten-
tial FG representation for each item in the input
and then accepts or rejects the representation to
increase the probability of the input data.

To approximate the wh-dependency input that
children learn from, we collected 12,704 wh-
dependencies from the CHILDES Treebank (Pearl
and Sprouse, 2013) and extracted the dependency
path from each.! We then estimated the counts of
the dependencies that children would encounter
by four years old, when some syntactic island
knowledge seems to be present (De Villiers et al.,
2008).2 From this input, the modeled learner infers

'See Supplemental Section A.1 for more details.
*We drew on estimations by Bates and Pearl (2021)
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the best fragments for the wh-dependencies in its
input, which may or may not include lexically-
subcategorized phrasal structures for any given
fragment. This model allows us to explore all the
possibilities of lexically subcategorizing different
phrasal categories as opposed to implementing a
particular hypothesis (i.e. main verbs are always
lexicalized or CPs are always lexicalized).

We find that the learned FG dependency rep-
resentation can be used to correctly generate all
previously-attested acceptability judgment patterns

that consider waking hours, utterances per hour, and wh-
dependency frequency in children’s input between 20 months
(when wh-dependencies are reliably processed) and 4 years.



(Figure 2b and d).> Notably, the FG representa-
tion’s fragments lexically subcategorize phrasal
structures only for some more-frequent items (e.g.,
VPinink> CPinat, VPsay-CP). This means the mod-
eled learner automatically determined the best fre-
quency threshold for lexically subcategorizing each
individual phrase structure type, due to the goal of
efficient representation.

5 Comparison representations

We compared the FG representation’s performance
against several trigram-based baseline representa-
tions (2), all of which used the same input as the
FG model.* We chose trigram-based representa-
tions, as n-grams are common representations in
language modeling (see Manning and Schutze 1999
for a review), and trigram-based representations
have been used in prior successful models that pre-
dict adult judgement patterns of wh-dependencies
(Pearl and Sprouse, 2013). A trigram-based repre-
sentation also can (i) be paired with a straightfor-
ward learning algorithm (e.g., tracking frequencies
of the trigrams in the input), and (ii) can transpar-
ently reflect different proposals for lexical subcate-
gorization, as in (2).

(2) Baseline trigam representations

a. no-lexicalization: phrase labels only, e.g.,
“IP-VP-CP”

b. fully-lexicalized: subcategorized phrase
labels, e.g., “IPpast-VPeigim- CPihat”

c. CP-lexicalized (from Pearl and Sprouse
2013): only CP is subcategorized, e.g.,
“IP-VP-CPypqt”

d. main-V-lexicalized (in line with Liu et al.
2019): only main V is subcategorized,
e.g., “IP-VPqim-CP”

We selected the no-lexicalization and the fully-
lexicalized representations as the two extremes of
our hypothesis space; we can include no lexical in-
formation or all the lexical information for phrase
structure nodes in a trigram-based dependency rep-
resentation. The remaining two representations
each implement a hypothesis about what lexical
information should be included in the phrasal struc-
ture, inspired by previous work: the CP-lexicalized

3See Supplemental Section A.4 for details.

“These baselines additionally had a “Start” and “End” sym-
bol in their dependency paths to ensure each dependency cre-
ated at least one trigram. For instance, a main clause subject
dependency like “What happened?” would be represented with
the trigram “Start-IP-End”.

223

representation from Pearl and Sprouse (2013), and
the main-V-lexicalized representation from Liu
et al. (2019).

Most baselines failed to capture the full range of
acceptability judgment patterns: the no-lexicalized
failed to capture Adjunct and Whether islands,
as well as the verb frequency effect; the fully-
lexicalized failed to capture Adjunct islands; and
the CP-lexicalized failed to capture the verb fre-
quency effect. However, the main-V-lexicalized did
capture all the acceptability patterns. We note that
the FG representation also lexicalized main verbs
(though only those that were more frequent), and
so has this in common with the main-V-lexicalized
baseline (which lexicalized all main verbs, irrespec-
tive of frequency). We note that one advantage of
the inferred FG representation over the main-V-
lexicalized representation is that the FG representa-
tion was automatically learned — including which
parts are lexicalized and how large the pieces are
that comprise a dependency path — rather than need-
ing to be specified beforehand, as the trigram-based
main-V-lexicalized baseline was.

6 Conclusion

Here we have explored how children could learn
constraints on English whi-dependencies by focus-
ing their learning efforts on how to efficiently rep-
resent wh-dependencies, rather than trying to ex-
plicitly learn the constraints. The specific approach
we explored involved a modeled learner attempt-
ing to identify the best Fragment Grammar (FG)
for efficiently representing the wh-dependencies
encountered in English child-directed speech. The
FG representation allowed the modeled learner to
generate all the acceptability judgement patterns
previously attested to reflect knowledge of different
constraints on wh-dependencies, known as syntac-
tic islands. Because the modeled learner learned
from input that four-year-olds would encounter,
one testable prediction that future behavioral work
can investigate is that four-year-olds should in fact
have acquired all the syntactic knowledge assessed
via the acceptability judgment patterns used here
if four-year-olds are in fact using an FG represen-
tation. Additionally, future work can investigate
predictions for other wh-dependency constraints
known to be acquired by children around age four
(De Villiers et al., 2008), comparing the FG repre-
sentation against other representational possibili-
ties, such as the main-V-lexicalized baseline.
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A Supplemental Material

A.1 Preprocessing from CHILDES

Using NLTK and Python, we extracted the wh-
dependency trees from the CHILDES Treebank.
Using the trace annotations in the corpora, we ex-
tracted the path from the gap position to the wh-
word, including the phrase label (e.g., VP) and its
lexical child (e.g., think) in the resulting sequences.
When a VP followed the IP in a dependency path,
tense was added as the lexical child of IP nodes
(e.g., thought would yield IPps¢-VPipink).

A.2  Preprocessing

Preprocessing for the FG grammar input: We
created the tree structures of the dependency paths
from these sequences in a form that the FG learner
can process (e.g. the wh-dependency “What are
you eating?” would be encoded as “((IP (LEX
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present) (VP (LEX eat))))”). We note also that
IP-only dependencies like “What happened?” did
not have the IP lexicalized with tense (e.g., the FG
input representation would be (IP null)).

Preprocessing for the trigram baseline mod-
els: The baseline trigram models took the final de-
pendency path, extracted from CHILDES and pre-
processed to include tense (e.g., IPpqst-VPipink),
and extracted appropriate trigrams, depending on
the baseline. We included a “Start” and “End” sym-
bol in our dependency paths for the baselines in
order for all paths to be one trigram at a minimum.
This allowed IP-only dependencies to be handled
by trigram-based models (i.e., the trigram would
be Start-IP-End).

A3

The inference algorithm used to identify the best
FG was implemented using code provided by Tim
O’Donnell. We used the default parameter values:
pitman-Yor (PY) a set to 0 and PY b set to 1; sticky
concentration parameter set to 1 and sticky distribu-
tion parameter set to 0.5; the Dirichlet-multinomial
pseudo-counts (pi parameter) were set to 1; the
model performed 1000 sweeps.

Inference of the best FG grammar

A.4 Generating predictions of acceptability
using the FG representation

When generating predictions for wh-dependencies,
based on the FG representation, we extracted the
same form of the wh-dependency path from the
Pearl and Sprouse (2013) and Liu et al. (2019) stim-
uli. Due to the design of the code, structures that
required rules the FG did not hypothesize would
yield no output (i.e., cause a code crash). To cir-
cumvent this and be able to generate predictions
for structures like those that cross syntactic islands,
we needed to add all possible phrase rules to the
FG representation. So, we added all possible rules
(in the form “Labell — Label2 Label3”, where a
Label was a phrase structure node like IP or PP)
that the FG representation did not create through
inference. We then gave these rules “counts” of 0.5
(as opposed to any seen structure having a count of
at least 1) and re-normalized the log probabilities
of all rules.



