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Abstract

This work addresses the question of whether
the output of a state-of-the-art parser is accu-
rate enough to support research in theoretical
linguistics. In order to build reliable models of
syntactic change, we aim to eventually parse
the 1.5-billion-word Early English Books On-
line (EEBO) corpus. But since EEBO is not
yet parsed, we begin by constructing and test-
ing a parser on the 1.7-million-word Penn-
Helsinki Parsed Corpus of Early Modern Eng-
lish (PPCEME). In order to obtain robust re-
sults, we define an 8-fold split on PPCEME.
We then evaluate the parser with evalb and,
more relevantly for us, with a task-specific
metric - namely, its accuracy in parsing 6 sen-
tence types necessary to track the rise of aux-
iliary do (as in They did not come vs. its
historical precursor They came not). Retriev-
ing the relevant sentences from the gold and
test versions with CorpusSearch queries (Ran-
dall, 2010), we find that the parser’s accuracy
promises to be sufficient for our purposes. A
remaining concern is the variability of the out-
put, which we plan to address with three pieces
of future work sketched in the conclusion.

1 Introduction

The Penn-Helsinki Parsed Corpus of Early Mod-
ern English (PPCEME) (Kroch et al., 2004) con-
sists of over 1.7 million words of text from 1500
to 1712, manually annotated for phrase structure.
It belongs to a family of treebanks of historical
English (Taylor et al., 2003; Kroch et al., 2000b;
Taylor et al., 2006; Kroch et al., 2016) and other
languages (Wallenberg et al., 2011; Galves et al.,
2017; Martineau et al., 2021; Kroch and Santorini,
2021) with a shared annotation philosophy and sim-
ilar guidelines across languages, which form the
basis for reproducible studies of syntactic change
(Kroch et al., 2000a; Ecay, 2015; Wallenberg, 2016;
Galves, 2020; Wallenberg et al., 2021).
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While all of these corpora are relatively large
for manually annotated corpora, there are impor-
tant limits on their usefulness - notably, the fact
that even relatively common phenomena still occur
too rarely to support reliable statistical models of
how they change over time. We therefore wish to
parse and search the much larger corpora that are
becoming publicly available. For instance, with
its 1.5 billion words of text from 1475 to 1700,
the Early English Books Online (EEBO) corpus
(Text Creation Partnership, 2019) dwarfs PPCEME.
However, its potential as a resource for linguistic
research remains unrealized because it is not lin-
guistically annotated and its size renders manual
annotation infeasible. Our eventual goal is there-
fore to parse EEBO automatically.

This paper reports on a first step in that direc-
tion - namely, building a parser whose accuracy
we can evaluate on the gold standard provided by
PPCEME. For our purposes, the standard evalua-
tion metric, evalb (Sekine and Collins, 2008), is
not specific enough. Evaluation measures based
on joint effects of parser output with other factors
are also inappropriate, since retrieving the sentence
types of interest to us is a direct function of the
parse, without any intervening processing. It is
clear that the most useful evaluation metric for our
purposes involves scoring the retrieval of the diag-
nostic sentence types. Here, we report on negative
declarative sentences, on negative imperatives, and
on direct questions, each in two variants. The first
variants are the ones that were dominant in 1500
(They drank not the ale, Drink not the ale, Drank
they the ale?), and the second ones are their mod-
ern counterparts, which had become dominant by
1700 (They did not drink the ale, Do not drink the
ale, Did they drink the ale?). We choose these sen-
tence types because we hope that large datasets like
EEBO will eventually allow us to decide between
different conceptual models of the change - specif-
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ically, competition (Kroch, 1989; Zimmermann,
2017) versus drift (Karjus, 2020).

The remainder of the paper is structured as
follows. Section 2 discusses some features of
PPCEME’s source material and annotation that
present challenges for state-of-the-art parsers, es-
pecially as compared to more widely used tree-
banks such as the Penn Treebank (PTB) (Mar-
cus et al., 1993). Sections 3 and 4 describe our
cross-validation split of PPCEME for evaluating
the parser and our use of EEBO to create contextu-
alized word embeddings for the parser. Section 5
presents the parser model, along with results based
on evalb, which we include for general compara-
bility beyond our task-specific evaluation metric.
Section 6 illustrates the diagnostic sentence types
and the queries that we use for retrieving them,
which are formulated in the CorpusSearch query
language (Randall, 2010). Section 7 presents the re-
sults from the task-specific evaluation, and Section
8 summarizes with an eye towards future work.

2 PPCEME Issues

PPCEME differs from PTB in several important
ways, making it an excellent test case for domain
adaptation of modern parsing technology. However,
there has been relatively little work in the NLP
community using PPCEME and its sister corpora,
the Penn Parsed Corpus of Middle English, 2nd
edition (PPCME?2) and the Penn Parsed Corpus of
Modern British English (PPCMBE).! Kulick et al.
(2014) describe parsing PPCMBE, while Moon and
Baldridge (2007) and Yang and Eisenstein (2016)
focus on POS-tagging (the former on PPCME2,
and the latter on PPCEME and PPCMBE).

In addition to the nonstandard orthography and
the different and variable syntax of the source mate-
rial, PPCEME is annotated according to guidelines
arising in part from its purpose for linguistic re-
search that require explicit consideration.

2.1 PPCEME Part-of-Speech Tags

2.1.1 Complex Tags

Although we generally attempt to avoid modify-
ing the existing annotation, PPCEME’s very large
set of POS tags (N = 353) requires trimming to a
computationally more tractable size.

Of the 353 tags just mentioned, 213 are complex
tags intended to facilitate tracking changes in or-

IThese two corpora and PPCEME are collected in Kroch
(2020).
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thographic conventions over time - for instance, the
development of (ADJ gentle) (NS men) to
(ADJ+NS gentlemen). Since these changes
are irrelevant for present purposes, we prune such
tags in accordance with the Righthand Head Rule,
yielding (NS gentlemen) .2 Certain rare cases,
such as (WPRO+ADV+ADV whatsoever) or
(Q+BEP+PRO albeit), are exceptions to the
Righthand Head Rule. In such cases, the best sim-
ple tag is sometimes the leftmost tag and sometimes
another tag entirely ((WPRO whatsoever),
(P albeit)). We simply ignore this compli-
cation on the grounds that these cases are a small
subset of the complex tags, which themselves are
used for only about 1% of the words in the cor-
pus. After pruning and some other minor changes
discussed in Appendix A, 85 POS tags remain.

2.1.2 Distinctions among Verb Classes

PTB makes no distinction between main verbs and
the auxiliary verbs be, do and have, but this dis-
tinction is vital for us, since it is exactly the syntax
of main (but not auxiliary) verbs that changes over
the course of Early Modern English. In fact, even
among the verbs with auxiliary uses, we need to
distinguish do from the other auxiliaries in order
to track the rise of auxiliary do. For this reason,
we do not follow Yang and Eisenstein (2016) in
mapping the PPCEME tags for verbs to the smaller
set used in PTB.

2.2 PPCEME Phrase Structure
2.2.1 Function Tags

In phrase-structure treebanks, function tags can be
appended to syntactic category labels in order to
provide information about a constituent’s grammat-
ical or semantic role. The PTB uses 20 function
tags in this way, while exploiting structural differ-
ences to distinguish other constituent roles. By con-
trast, PPCEME relies on function tags uniformly,
largely because it has neither base NPs or VPs. As
a result, PPCEME’s set of function tags is larger
than PTB’s. Omitting a few rare types, we use 31
in the work reported below.?> The following tree
illustrates PPCEME’s use of function tags to en-
code central grammatical roles. The subject and
indirect object are sisters, but distinguished by the

*Yang and Eisenstein (2016) simplify the complex tags for
the same reason as we do, but keep the leftmost tag, which for
English is incorrect in the general case.

3See Appendix B for the details, along with some informa-
tion on function tag frequency.



function tags SBJ and OB2, respectively. MAT and
SUB on the two IPs identify the higher one as a
matrix clause and the lower one as a subordinate
clause. Finally, THT indicates that the CP is a that
complement clause (rather than, say, a relative or
adverbial clause).

(IP-MAT (CONJ and)
(NP-SBJ (D the) (N schereffe))
(VBD shewed)
(NP-OB2 (PROS my) (N servant))
(CP-THT (C that)
(IP-SUB ...)))

There has been some work on recovering func-
tion tags in PTB (Blaheta and Charniak, 2000;
Blaheta, 2003; Gabbard et al., 2006; Merlo and
Musillo, 2005), but overall they have received only
limited attention. We are not aware of any work
to recover the function tags in the historical cor-
pora. Given the centrality of certain function tags
(notably, SBJ) for retrieving the sentence types of
interest to us, we are constrained to include them
in the parsing model.

2.2.2 Empty Categories

PPCEME indicates discontinuous dependencies by
means of empty categories that are coindexed with
a displaced constituent. Following common NLP
practice, we remove both the empty categories and
the co-indexing from the parser training material,
and thus from the parser output. This simplifies
the parsing model, and for present purposes, the
absence of empty categories is irrelevant. However,
if we wish to include linguistic queries in future
work that make reference to empty categories, as
is necessary in the general case, the parsing model
will need to be augmented appropriately.

3 Cross-validation Splits

Parsing work relies on train/dev/test splits of the
source material used for training and evaluation.
Recently, concerns have been raised over the va-
lidity of inferences drawn from static train/dev/test
splits; for instance, see Gorman and Bedrick
(2019), who evaluate the consistency of rankings
of POS taggers across 20 random splits of the
WSIJ section of PTB. For us, this issue is partic-
ularly pressing because PPCEME contains rela-
tively few individual source texts, thus increasing
the chance that a single particularly difficult or non-
representative source text will greatly skew perfor-
mance on the dev/test partitions. Even more seri-
ously, certain constructions might be completely
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absent from one particular split. This is of particu-
lar concern to us because direct questions, though
common in ordinary conversation, are rare or com-
pletely absent in many written genres. We return
to this point in Section 7.2.2.

We therefore define an 8-fold cross-validation
split, with each component split roughly matching
the 90%-5%-5% distribution in the standard single
PTB split. Within each partition (train, dev, test) of
a split, we attempted to equally represent (in terms
of equal word counts) each of PPCEME’s three
time periods, as indicated by “el”, “e2”, and “e3”
in the filenames. Given our eventual goal of parsing
all of EEBO, which encompasses all of these time
periods, this step is necessary in order to adequately
predict performance on that corpus.* Finally, in
cases where PPCEME distributes a single source
text over several annotated files, we were careful
to assign all such files to the same partition. As
PPCEME contains 448 annotated files, but only
232 distinct source texts, this greatly constrained
how we could define the partitions. Nevertheless,
we succeeded in including 209 (90%) of the 232
source texts in either a dev or test partition of one of
the 8 splits. For more details on the split definitions,
see Appendix C.

4 ELMo Embeddings Trained on EEBO

In recent years, contextualized word embeddings
such as ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2019) have driven significant improve-
ments on downstream NLP tasks, including POS
tagging and parsing. Due to the significant over-
head involved in training these representations, re-
searchers often use pretrained models distributed
by large companies, sometimes fine-tuned to the
domain of interest. Although this often produces
perfectly satisfactory results, in cases of significant
mismatch between a test domain and standard train-
ing domains - usually sources such as text scraped
from Wikipedia, BooksCorpus (Zhu et al., 2015),
and news text from Common Crawl (Nagel, 2016)
- pretraining on the novel domain yields signifi-
cant improvements (Lee et al., 2019; Beltagy et al.,
2019; Jin et al., 2019).

Because of the orthographic and syntactic differ-
ences between Early Modern English and contem-
porary English mentioned in Section 2, our current

“By contrast, Yang and Eisenstein (2016), split PPCEME
into thirds by time period (rather than across time periods) for
the different purpose of studying domain adaptation.



work involves exactly such a mismatch, and so we
pretrained ELMo embeddings on EEBO.’

We used the same model configuration as Peters
et al. (2018) for 11 epochs® using all of EEBO. We
then integrated the resulting embeddings, which
have 1,024 dimensions, into the parser model, as
discussed in Section 5. Here, we describe some
main aspects of creating the embeddings, which
we will make public. See Appendix D for further
details.

4.1 Text Extraction, Normalization, and
Tokenization

EEBO’s XML files contain a great deal of metadata
and markup in addition to the text. For each file, we
extracted the core source information (title, author,
date) and kept the text within <P> tags, which gives
at least a rough sense of the document divisions.
Following Ecay (2015, pp. 105-6), we excluded
some metadata and other material embedded in
the text. We also adopted his handling of GAP
tags for OCR errors, which consists of mapping
these tags to word-internal bullet characters - e.g.,
Ecclessiasticall.

After normalizing the extracted text with Uni-
code NFC form in order to eliminate spurious sur-
face differences between tokens, we tokenized the
EEBO text in accordance with PPCEME’s tokeniza-
tion guidelines as best we could:

1. Possessive morphemes are not separated from
their host (e.g., Queen's) (unlike in PTB).

2. Punctuation is separated except in the case of
abbreviations (e.g., Mr .), token-internal hy-
phens (e.g., Fitz-Morris), or certain spe-
cial cases (e.g., &c).

3. Roman numerals can include leading, internal,
or trailing periods (e.g., .xi1ii.C.).

PPCEME tokenization is straightforward in prin-
ciple, but the non-standardized nature of the his-
torical material raises various difficulties. For
instance, it is easy to tell that the elided article

SSpace constraints prevent us from presenting full details
here, but we find that using ELMo embeddings trained on
EEBO improves evalb scores by about 2 points over the stan-
dard ELMo embeddings trained on modern English and still
by about 0.5 points over BERT embeddings trained on modern
English. At present, we lack the computational resources for
the obvious next step of pretraining BERT embeddings on
EEBO, but we are pursuing access to them.

®This corresponds to 2 weeks of training using 4 GTX
1080 GPUs.
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th' should be split off (e.g., th'exchaung is
tokenized as th' exchaung). But when the
apostrophe is missing, the status of th is un-
clear (e.g., thafternoone is tokenized as th
afternoone, but thynkyth remains a single
token). Another example of pervasive ambiguity
is its and it 's; in PPCEME, these forms were
tokenized manually as one token or two, depending
on whether the spelling represents the possessive
form of the pronoun it or the contracted form of it
is. Since EEBO’s size rules out manual processing,
we resolved such ambiguities by defaulting to the
more common case. In the above examples, this
resulted in splitting the variants with apostrophes
and not splitting the ones without.”

5 Model and Evaluation

5.1 Parser Architecture

We use the parser model of Kitaev et al. (2019),
which represents a constituency tree 7" as a set of
labeled spans (4, 7, 1), where 7 and j are a span’s be-
ginning and ending positions and [ is its label. Each
tree is assigned a score s(7"), which is decomposed
as a sum of per-span scores:

> s(iyd0) (1)

(i,5,1)eT

s(T) =

The per-span scores s(i,j,1) themselves are as-
signed using a neural network that takes a sequence
of per-word embeddings as input, processes these
embeddings using a transformer-based encoder
(Vaswani et al., 2017), and produces a span score
from an MLP classifier (Stern et al., 2017). The
highest-scoring valid tree is then found using a vari-
ant of the CKY algorithm. POS tags are recovered
using a separate classifier operating on top of the
encoder output, which is jointly optimized with the
span classifier. For more details, see Kitaev and
Klein (2018). As already mentioned in Section 4,
we use ELMo embeddings pre-trained on EEBO.
Our implementation is based on version 0.2.0
of the Berkeley Neural Parser® modified to accept
ELMo.? We train each of the 8 models (one for
each cross-validation split) for 50 epochs, using the
evalb score on the dev section as our criterion for

"Future work could consider a joint tokenization-POS-
tagging model.

Shttps://github.com/nikitakit/
self-attentive-parser

These modifications and other relevant software are avail-
able at https://github.com/skulick/emeparse.



Parser
dev | 90.89 (1.8)
test | 90.53 (0.7)

Part-of-Speech
98.14 (0.7)
98.30 (0.4)

Table 1: Cross-validation Parser and Part-of-Speech
Results. Each result is the mean for the relevant par-
tition (dev or test) over the 8 splits, with the standard
deviation in parentheses.

saving as the best model. For more details regard-
ing training and hyperparameters, see Appendix E.

5.2 Function Tags

Following the approach of Gabbard et al. (2006)
to function tag recovery, we do not delete func-
tion tags in preprocessing, and so nonterminals like
NP-SBJ are treated as atomic units. Since the de-
cision whether to delete is part of the preprocessing,
this approach does not require modification to the
parser.

5.3 Evalb Results

Table 1 gives our parsing and part-of-speech results
by the standard NLP measures, combined over the
8 cross-validation splits, as scored by evalb (match-
ing brackets for the parsing score and POS accuracy
for the tagging score).'’

The evalb parsing score falls within the general
range of parsing scores for PTB, though a few
points lower. As Kulick et al. (2014) point out, all
of the English historical corpora lack certain brack-
ets present in PTB (base NPs and VPs) that are
relatively “easy to get”, and this tends to adversely
affect their parsing scores. Specifically, Kulick et al.
(2014) find the f1 score for PPCMBE to be lower
than for PTB by about 2 points, and we would
expect that effect to carry over to PPCEME.!!

6 Diagnostic Sentence Types and
Query-based Retrieval

Having obtained a rough idea of the parser’s per-
formance from the evalb scores, we now turn to
the question of greater interest to us - the evalu-
ation of the parser in task-specific terms. Recall

Evalb removes tokens (punctuation) from consideration
based on their POS tags, and since our model predicts POS
tags, this can result in inconsistent sentence lengths for the
gold and parsed trees if there are POS tag errors, resulting
in “Error” sentences in the evalb output. We therefore use
the modified evalb supplied with the Berkeley parser, due to
Seddah et al. (2014), which does not delete any words, so that
any POS tag differences have no effect on sentence length.

"For some discussion of function tag accuracy from an
NLP perspective, see Appendix F.
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that we wish to identify certain sentence types that
allow us to track the rise of auxiliary do over the
course of Early Modern English. For expository
reasons, we present these sentence types in reverse
chronological order.!?

6.1 Sentence Types with Auxiliary Do

Modern English is unusual in requiring the auxil-
iary verb do in certain sentence types, notably in
negative declarative sentences, in negative impera-
tives, and in all direct questions (whether positive
or negative).

Do-not-decl. In negative declarative sen-
tences, the main verb appears in uninflected form.
Such sentences also contain auxiliary do in either
the present or past tense, and the negative marker
not appears between the auxiliary and the main
verb.

(IP-SUB (NP-SBJ (PRO they))
(DOP do)
(NEG not)
(NP-MSR (Q much))
(VB minde)
(NP-OB1 (PRO them))

As the above example shows, the IP in this sen-
tence type (and also its historical counterpart) can
be either an independent matrix (MAT) clause or,
as here, a subordinate (SUB) clause.

Do-not-imp. Negative imperatives are anal-
ogous, except for the IMP function tag on IP, and
the imperative POS tag (DOI) on the auxiliary.

(IP-IMP (PP (P For)
(NP (NPR$ God’s)
(N sake)))
(DOI do)
(NEG not)
(VB overlay)
(NP-0OB1 (PRO me))
(

PP (P with)
(NP (ADJ superfluous)
(N Matter)))
(. .))

Do-sbj. Finally, in direct questions, auxiliary
do precedes the subject instead of following it, as in
declaratives. This inversion occurs in both positive
and negative questions, and so retrieving this sen-
tence type relies crucially on the parser correctly
identifying the subject via the SBJ function tag.
In the following example, note that the annotation
guidelines for PPCEME require direct questions to

12We are concerned only with sentences without modal
verbs (can, will, etc.), aspectual auxiliaries have and be, or
main verb be; sentences containing these elements were not
affected by the change.



be annotated as CP-QUE-MAT immediately domi-
nating IP-SUB. In this context, the IP-SUB is un-
derstood as part of the direct question rather than
an ordinary subordinate clause.

(CP—-QUE-MAT (WADVP (WADV How))
(IP-SUB (DOP do’s)
(NP-SBJ (D this) (N Sute))
(VB fit)
(NP-OB1 (PRO me)))
(NP-VOC (NPR Dauy))

(. 2))

6.2 Sentence Types Without Auxiliary Do

We now illustrate the historical precursors of the
modern sentence types just discussed. In all 3
old forms, it is the main verb (rather than aux-
iliary do) that appears in a past or present tense
form, and it occupies the same position as auxiliary
do. Thus, we have negative declarative sentences
(verb-decl-not) like:

(IP-SUB (NP-SBJ (PRO I))
(VBD sent)
(NEG not)
(PP (P to)

(NP (PRO you))))

negative imperatives (verb-not—imp) like:

(IP-IMP (VBI let)
(NEG not)
(IP-INF (NP-SBJ (D that))
(VB hurt)
(NP-OB1 (PRO me)))

(. .))
and questions (verb-sb j) like:

(CP-QUE-MAT

(WADVP (WADV When))
(IP-SUB (VBP comes)
(NP-SBJ (PROS$ your)
(N Taylor))
(ADVP-DIR (ADV hither)))

(. ?))

6.3 Sample CorpusSearch Query

In order to retrieve the 6 diagnostic sentence types,
we formulate queries in CorpusSearch (Randall,
2010), a query language for querying, editing, and
coding tree structures. Each query is a sequence
of boolean conditions on the parser output. For
instance, the following query retrieves direct ques-
tions with auxiliary do (do—sbJ).
CP-QUE-MAT»* iDoms IP-SUB%*)

(
AND (IP-SUB* iDoms DOD |DOP)
AND (IP-SUB* iDoms NP-SBJx)

(

(

(

AND (IP-SUB* iDoms DO|VB)
AND (DOD|DOP precedes NP-SBJx)
AND (NP-SBJx precedes DO|VB)
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The asterisks on the labels allow the query to
match tokens with further trailing function tags
(say, -SPE to indicate direct speech or -RSP for
resumptive subjects). In concluding this section,
we draw the reader’s attention to the fact that our
queries are all formulated assuming that the parser
has constructed the relevant clause boundaries cor-
rectly. In Section 7.2.1, we discuss an attempt
to improve parser performance by allowing struc-
tures without IP-SUB or with a recursive IP-SUB
to count as matches.

7 Query-Based Results and Analysis
7.1 Results

We evaluated the parser in task-specific terms as
follows. For each split, we (1) trained the parser
on that split’s training section and (2) parsed the
split’s dev and test sections. We then (3) ran 6
CorpusSearch queries, one for each of the diagnos-
tic sentence types just presented, over the parsed
sections. Cases where the queries retrieved “hits”
in both the gold and the parsed tree were matches.
Hits in the gold, but not the parsed tree, were clas-
sified as misses. The converse case of hits in the
parsed tree, but not in the gold, were false alarms.
From the results for these categories, we calculated
the recall, precision, and f-measure for each split.
We calculated the mean and standard deviation
of the recall, precision and f-measure over each
split’s dev section and over each split’s test section.
These results are shown in Table 2, with the associ-
ated standard deviations in parentheses. For each
query, we also include the number (#) of hits in the
gold version of the trees. These results are anal-
ogous to the cross-validation results using evalb
in Table 1, but with the individual cross-validated
query-based scores instead of the evalb metric.

7.2 Analysis

The overall f1 scores based on the queries are for
the most part high enough for the overall project
to remain promising. We neither expect complete
parser accuracy, nor do we require it, since we can
include an estimated error rate in any statistical
models that we build.

However, the results exhibit a degree of variabil-
ity that calls for investigation. The standard devi-
ations are all higher than for the evalb results in
Table 1, even for negative declarative sentences (the
best case). This follows from the relative sparse-
ness of the diagnostic structures in the corpus, as



dev test
query #]  recall ] prec [ f1 # ]  recall ] prec [ f1
Negative declarative sentences
do-not-decl 338 | 94.97 (3.7) 98.92 (1.7) 96.86 (1.9) || 405 | 93.39(4.3) 98.40 (2.3) 95.74 (1.9)
verb-not-decl | 717 | 93.79 (4.9) 93.71 (3.3) 93.72 (3.8) || 653 | 92.94 (4.0) 93.42 (3.4) 93.10 (2.5)
Negative imperative sentences
do-not-imp 41 | 72.37(45.3) | 71.72 (44.8) | 71.83 (44.7) 23 | 77.71 (34.1) | 87.50 (35.4) | 81.83(34.0)
verb-not-imp | 120 | 86.03 (10.4) | 91.91 (7.4) 88.22 (4.2) 142 | 75.61 (20.0) | 92.10(6.8) | 82.24 (14.9)
Questions
do-sbj 564 | 89.29(6.3) 98.32 (2.3) 93.47 (3.8) 329 | 84.48 (16.5) | 93.75(17.7) | 86.57 (13.0)
verb-sbj 387 | 81.01 (13.2) | 95.39(3.8) 87.10 (8.1) 190 | 69.68 (19.7) | 87.29(10.9) | 75.67 (14.4)
Augmented questions
do-sbj+ 564 | 92.23(5.8) 98.36 (2.3) 95.10 (3.4) || 329 | 85.92(16.2) | 93.75(17.7) | 87.44 (13.3)
verb-sbj+ 387 | 84.16 (11.9) | 94.00 (5.1) 88.35(7.0) 190 | 74.39 (19.6) | 83.10 (11.2) | 76.26 (13.0)

Table 2: Query-based Results for the Dev and Test Sections. The first 6 sentence types are illustrated in Section 6.

Augmented questions are discussed in Section 7.2.1.

compared to the much higher number of brackets
evaluated by evalb. We turn now to two dimensions
of this variability.

7.2.1 Recall vs. Precision and Parser Errors

In general, the recall results are lower than the
precision results across all sentence types. By ex-
amining recall errors in the dev section, we have
identified two of the more frequent error types.'>

The first is an unfortunate tendency for the parser
to produce nonsensical structures rather than to
build parenthetical clauses. For example, for this
gold question:

(CP-QUE-MAT

(IP-SUB (IP-MAT-PRN (NP-SBJ (PRO I))
(VBP pray)
(NP-OB2 (PRO you)))
(VBP speketh)
(NP-SBJ (PRO he))
(PP (P wvnto)
(NP (PRO wvs)))))

the parser generates a flat structure with two sub-
jects and two finite verbs, which is neither reason-
able nor found in the training data (nor, for that
matter, in the entire corpus). 14

(CP-QUE-MAT
(IP-SUB (NP-SBJ (PRO I))

(VBP pray)

(NP-OB2 (PRO you))
(VBP speketh)
(NP-SBJ (PRO he))
(PP (P vnto)

(NP (PRO wvs)))))

BFuture work could benefit from adapting the parser error
analysis technique in Kummerfeld et al. (2012).

It may be worth noting that parentheticals are encoded
by a PRN function tag in PPCEME, whereas PTB encodes
them by a separate PRN node. It may be worth investigating
whether the PTB convention would improve accuracy in the
cases at hand.
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A second problem that became apparent in con-
nection with questions, both with and without aux-
iliary do, is that the parser sometimes violates the
PPCEME’s annotation guidelines by either omit-
ting IP-SUB under CP-QUE-MAT or adding a re-
dundant one. For example, instead of the gold

(CP-QUE-MAT (WNP (WPRO What)
(IP-SUB (ADVP (ADV then))
(VBP think)
(NP-SBJ (PRO you))))

the parser omits the IP-SUB node:

(CP-QUE-MAT (WNP (WPRO What))
ADVP (ADV then))
VBP think)

NP-SBJ (PRO you)))

In this case, the parser’s miss actually contains
enough information for us to identify the output
as an instance of verb—sbj. We therefore wrote
4 queries to retrieve systematic errors of this sort
(missing vs. superfluous IP crossed with presence
vs. absence of auxiliary do). Combining the re-
sults obtained in this way with the original results
for questions tends to yield modest score improve-
ments, as shown in the last two rows of Table 2
labeled do-sbj+ and verb—-sb j+.

7.2.2 Differences in Dev and Test Results

The results for the questions are significantly higher
for the dev than for the test section. Since the dev
section was used in training to determine the best
model, as mentioned in Section 5.1, it might be
thought that the results are naturally biased in favor
of that section. But this idea is not consistent with
the results in Table 1, where the evalb scores for
the dev and test sections are quite similar.

A closer look at Table 2 suggests that the dis-
crepancy between the dev and the test scores is an
artifact of how the sentences types are distributed



split [ # [recall [ prec | fl
dev
0 43 | 67.44 | 90.62 | 77.33
1 36 | 9444 | 9444 | 94.44
2 51 | 7451 | 97.44 | 84.44
3 49 | 67.35 | 91.67 | 77.65
4 22 1 9545 | 91.30 | 93.33
5 3 | 66.67 | 100.00 | 80.00
6 84 | 89.29 | 98.68 | 93.75
7 99 | 9293 | 98.92 | 95.83
test
0 29 | 79.31 | 79.31 | 79.31
1 36 | 75.00 | 93.10 | 83.08
2 38 | 63.16 | 75.00 | 68.57
3 15 | 5333 | 7273 | 61.54
4 3 ] 33.33 | 100.00 | 50.00
5 17 | 94.12 | 84.21 | 88.89
6 17 | 70.59 | 100.00 | 82.76
7 35 | 88.57 | 93.94 | 91.18

Table 3: Breakdown of the verb-sbj Scores for the
Dev and Test Sections. The # of occurrences adds up
to 387 for the dev section and 190 for the test section.

in the dev/test sections of each split. In contrast to
the questions, the dev and test scores for negative
declaratives are roughly equal. The numbers of
tokens in each split are well-balanced across the
two sections, and the standard deviations are low
by comparison to the other sentence types. For the
other queries, though, the number of gold struc-
tures is either very low (negative imperatives) or
badly distributed across the dev/test sections (ques-
tions). In both cases, a better result correlates with
a lower standard deviation rather than with a con-
sistently better result on either the dev or the test
section. For do—not—-1imp, the test section has a
higher score (81.83) than the dev section (71.83),
and its standard deviation, though still high (34.0),
is lower than that for the dev (44.7). By contrast, for
verb-not—-imp, it is the dev section that has a
higher score (88.22 vs. 82.24) with a lower standard
deviation (4.2 vs. 14.9). This pattern is repeated for
the questions (both do-subj and verb-sbj),
where the dev sections have higher scores and lower
standard deviations than do the test sections.

A more detailed look at the verb—sbj scores
in the dev section sheds even further light on the
matter. Table 3 breaks down the scores for the dev
and test sections by split. The dev results benefit
from the scores for splits 6 and 7, which are both
relatively numerous and high-scoring. In particular,
in split 7, the dev section contains excerpts from
the New Testament (authnew-e2) and a transcript
of a trial (oates-e3). In both of these source texts,
questions occur at a higher rate than they do in
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other sources, and they tend to be simple questions
without parentheticals (unlike those sort discussed
in Section 7.2.1). In other words, split 7 contains
many easy questions.

8 Conclusion

We have presented the first results on parsing
PPCEME, defined an 8-fold cross-validation split,
and evaluated the parser using a query-based mea-
sure connected to an overarching project in theoret-
ical linguistics. The precision scores are generally
very good, but we identified some of the problem-
atic structures for recall and noted that even with
the use of cross-validation for evaluation, the re-
sults are highly variable. In future work, we plan
to use BERT embeddings and experiment with dif-
ferent parser models to improve parser accuracy,
even though, as noted in Section 7.2, we are able to
accept limits on parser accuracy for our purposes,
as long as the parser’s erorrs are unbiased. It is
possible that parsers based on well-defined gram-
matical structures, such as Flickinger (2011) or
(Kasai et al., 2018) will eliminate the nonsensical
structures discussed in Section 7.2.1. Another al-
ternative, in a different direction, is to use sentence
embeddings derived from word embeddings, as in
Aroraet al. (2017), to identify the desired sentences
directly, without using a parser at all.

At the same time, we recognize that the high vari-
ability revealed by our cross-validation procedure
calls for evaluation on an extended set of diagnostic
sentences - a task that we plan to tackle in three
ways:

(1) We will extend query-based precision testing
to Santorini (2021), a corpus of roughly 325,000
words of Early Modern English consisting entirely
of diagnostic sentence types.

(2) We will further extend query-based testing to a
representative sample of EEBO. Though we have
no gold trees for EEBO, we can evaluate precision
by manually checking the query hits found in the
sample. This will also allow us to compare parser
performance across EEBO and PPCEME. While
we would expect roughly similar scores, it would
not be surprising to find a decline in accuracy due
in part to the tokenization approximations and OCR
errors in EEBO mentioned in Section 4.

(3) In the latter case, we find ourselves in a position
to give a quite rigorous quantitative estimate of the
size of such a decline. As it turns out, about 40%
of PPCEME overlaps roughly in underlying source



text with EEBO, and we have carried out a word
alignment between the parallel texts. Thus, after
training the parser on the non-overlapping 60% of
PPCEME and running our queries on the parser
output for both parallel texts, comparing the query-
based results should give us the desired estimate
for any performance dropoff to be expected when
parsing the rest of EEBO.
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A PPCEME Part-of-Speech
Modifications

In addition to the changes described in the main
text, we changed the tag MDO to MD. MDO is an
untensed modal, asinhe will canorto can
do something. There are only 4 cases, as this
is an option that had mostly died out by the time of
Early Modern English.

There are also cases where words that are ordi-
narily spelled as a single orthographic token are
sometimes split into several tokens. PPCEME rep-
resents the former case with a single POS tag and
the latter as a constituent whose non-terminal is
the POS tag, with the words given numbered seg-
mented POS tags - for example, (ADJ alone)
vs. (ADJ (ADJ21 a) (ADJ22 lone)).We
modified all such tags by removing the numbers,
and appending NT to the nonterminals, in order to
more clearly distinguish between POS tags and non-
terminals. In this example, the resulting structure
would be (ADJ.NT (ADJ a) (ADJ lone)).

B PPCEME Issues

B.1 Metadata

In addition to the changes described in Section
2.2.1, we removed the metadata under CODE,
META, and REF nodes. In cases where CODE dom-
inated a leaf, removing the leaf resulted in an ill-
formed tree. The 267 trees in question were re-
moved, as were 576 trees rooted in META (usually
stage directions for a play) and 9 trees containing
BREAK.

In addition, before carrying out the above
modifications, we changed all instances of
(CODE <paren>) and CODE <S$S$paren>)
to (OPAREN -LRB-) and (CPAREN —-RRB-),
respectively. We did this in order to retain the paren-
theses that otherwise, being daughters of CODE,
would have been deleted.

Our counts of number of words and sentences
differ slightly from Yang and Eisenstein (2016).
We aim to resolve these discrepancies, which are
probably related to small differences of preparation
of the type just discussed.

B.2 Function Tags

We exclude certain tags that occur very rarely in
PPCEME (ADT, CLF, COM, ELAB, EXL, RFL,
TAG, TMC, TPC, XXX, YYY). Table 4 shows
the frequency for each of the remaining 31 tags
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Tag [ Description Frequency
Syntactic 37.23

SBJ | subject 21.00
OB1 | direct object 11.96
OB2 | indirect object 1.20
SPR | secondary predicate 0.28
MSR | measure 1.17
POS | possessive 0.86
VOC | vocative 0.77
Semantic 7.93

DIR | directional 0.50
LOC | locative 0.84
TMP | temporal 3.09
ADV | adverbial 3.50
CP only 8.83

CAR | clause-adjoined 0.55
REL | relative clause 3.36
THT | THAT clause 2.52
CMP | comparative 0.53
QUE | question 1.35
FRL | free relative 0.33
EOP | empty operator 0.19
IP only 9.67

INF | infinitive 4.59
PPL | participial 2.18
IMP | imperative 1.12
SMC | small clause 0.90
PRP | purpose 0.46
ABS | absolute 0.42
CP or IP 33.10

SUB | subordinate 14.52
MAT | matrix 12.66
SPE | direct speech 5.64
DEG | degree 0.28
Miscellaneous 3.23

PRN | parenthetical 2.60
RSP | resumptive 0.33
LFD | left-dislocated 0.30

Table 4: Function Tags in PPCEME with Their Fre-
quencies. The tags are organized into 6 groups, with
combined frequency by group in boldface.

in the entire corpus, for nonterminals with a non-
empty yield. For convenience, the tags are orga-
nized into six groups. The syntactic and seman-
tic groups are roughly similar to those groups for
the PTB, as presented in Gabbard et al. (2006).
The other groups include tags that differ signif-
icantly from those in the PTB, as noted in Sec-
tion 2.2.1. For the full set of PPCEME func-
tion tags, see https://www.ling.upenn.edu/

hist-corpora/annotation/labels.htm.

C Train/Dev/Test Split

Table 5 summarizes the composition of the
train/dev/test sections across the cross-validation
8 splits; specifically, the total number of docu-
ments, the total number of tokens, and the per-
centage of total tokens in each section. Since the



section # files # tokens % of split

train 205.88 (13.34) | 1743211.25 (10441.53) | 89.65 (0.54)
dev 1250  (7.15) | 101000.12  (4081.82) | 5.19 (0.21)
test 13.62  (791) | 100268.62  (7832.66) | 5.16 (0.40)
OVERALL 232 (0.00) 1944480 (0.00) 100 (0.00)

Table 5: Mean number of files and tokens for train/dev/test sections across the 8 cross-validation splits (standard
deviations are presented in parentheses). The percentage of tokens in each section is also presented (in the % of

split column).

partitioning process is performed at the level of
PPCEME source files, and these files differ sub-
stantially in size, there is some variation in these
numbers across the splits. For this reason, we re-
port standard deviations as well as means. The final
row (“OVERALL”) gives numbers for a complete
split (i.e., the train/dev/test sections combined); as
these are constant across each split, the entries in
this row have a standard deviation of zero. As can
be seen, overall the splits attain the target 90-5-5
breakdown; e.g., the train section on average com-
prises 89.65% of the total tokens with a standard
deviation of 0.54%.

As mentioned in the main text, the corpus con-
sists of text from three main time periods (el, e2,
e3),"> and we aimed to balance the time periods
equally within each split, to the extent possible
given that we treated the files as atomic units. Ta-
ble 6 shows the breakdown by period. Similar to
Table 5, mean/standard deviation for total number
of documents/tokens are presented for each time
period in each section. Additionally, for each time
period, the table reports the mean percentage of
each split (in tokens) from each time period. The
marginals provide numbers combining across time
periods (the “ALL PERIODS” row) and sections
(the “ENTIRE SPLIT” column). For example, the
training section contains on average 1,743,211.25
tokens, with on average 32.85% coming from time
period el, 36.61% from e2, and 30.53% from e3.

D ELMo Embeddings Trained on EEBO

In addition to the normalizations discussed in Sec-
tion 4, we follow (Ecay, 2015) in removing infor-
mation under NOTE, SPEAKER, and GAP, as well
as L (“line of verse”) which was not appropriate for
our searches. In future work, we will likely revise

5For details regarding the PPCEME time periods
(el, e2 and e3) see https://www.ling.upenn.
edu/hist-corpora/PPCEME-RELEASE-3/
description.html

155

this to keep the text but with some meta-tags to
indicate its origin.

The extracted text underwent Unicode normal-
ization to NFC form in order to eliminate spurious
surface differences between tokens. The resulting
text contained 642 unique characters, 381 of which
occurred fewer than 200 times. Manual inspection
of these uncommon characters revealed that while
some of them made sense in context (e.g., within
sections of Greek or Latin text), many seemed to be
spurious characters due to OCR errors (e.g., WHITE
RECTANGLE 0X25AD). Consequently, we elected
to filter out all sentences containing characters oc-
curring fewer than 200 times. This eliminated 4139
lines, with 9,341,966 remaining for training (con-
sisting of 1,168,749,620 tokens).

The ELMo embeddings were trained using Ten-
sorFlow maintained and distributed by AllenNLP
at https://github.com/allenai/bilm-tf US-
ing the default model configuration.

E Model and Evaluation

Table 7 shows the hyperparameter settings used
in the Berkeley Neural Parser. These are all the
default settings for these parameters. We added a
parameter max_epochs, used to set the maximum
number of epochs. For the cross-validation training
reported, we set max_epochs=50.

F Function Tag Evaluation

Function tags are typically removed by evalb before
it compares bracket labels, and we have not mod-
ified this. To evaluate function tag recovery, we
follow the approach of Gabbard et al. (2006). who
in turn follow Blaheta (2003). Under this approach,
function tags are evaluated only for nonterminals
that evalb counts as matches. For example, an NP-
SBJ in the parsed tree corresponding to an NP-SBJ
in the gold tree counts as a match for SBJ. But an
NP-OBI1 in the parsed tree corresponding to an NP-
SBJ node in the gold tree (which is possible since



train section dev section test section ENTIRE SPLIT
period # files # tokens % train # files # tokens % dev # files # tokens % test # files # tokens % split
el 72.88 572672.62 32.85 425 33178.50 32.98 4.88 31369.88 31.50 82 637221 32.77
(6.51) (11974.31) (0.79) (3.01) (7078.50) (7.36) (4.55) (8193.65) (8.67) (0.00) (0.00) (0.00)
e2 66.00 638269.88 36.61 4.00 34844.62 34.40 4.00 35186.50 34.89 74 708301 36.43
(4.38) (13490.18) (0.60) (2.51) (6382.81) (5.41) (2.14) (7767.44) (6.18) (0.00) (0.00) (0.00)
e3 67.00 532268.75 30.53 4.25 32977.00 32.63 4.75 33712.25 33.60 76 598958 30.80
(5.18) (7066.41) (0.35) (3.96) (5211.71) (4.65) (3.45) (5592.81) (4.70) (0.00) (0.00) (0.00)
ALL 205.88 1743211.25 100 12.50 101000.12 100 13.62 100268.62 100 232 1944480 100
PERIODS (13.34) (10441.53) (0.00) (7.15) (4081.82) (0.00) (7.91) (7832.66) (0.00) (0.00) (0.00) (0.00)

Table 6: Mean number of files and tokens for train/dev/test sections within each of three time periods (el, 2, and
e3) across the 8 cross-validation splits. The % train/dev/test columns indicate the % of total train/dev/test tokens
for each time period. Standard deviations are presented in parentheses.

hyperparameter value
attention_dropout 0.2
batch_size 32
char_Istm_input_dropout 0.2
checks_per_epoch 4
clip_grad_norm 0.0
d_char_emb 64
d_ff 2048
d_kv 64
d_label_hidden 256
d_model 1024
d_tag_hidden 256
elmo_dropout 0.5
encoder_max_len 512
force_root_constituent “auto’
learning_rate 5e-05
learning_rate_warmup_steps 160
max_consecutive_decays 3
max_len_dev 0
max_len_train 0
morpho_emb_dropout 0.2
num_heads 8
num_layers 8
predict_tags True
relu_dropout 0.1
residual_dropout 0.2
step_decay_factor 0.5
step_decay_patience 5
tag_loss_scale 5.0
max_epochs 50

Table 7: Hyperparameters Used with the Berkeley Neu-
ral Parser.

the function tags do not count for evalb) counts as
a recall error for SBJ and as a precision error for
OBI.

Table 8 shows dev and test section scores for
the function tags using this scoring method, anal-
ogously to Table 1. To explore these numbers in
greater depth, Table 9 breaks down the function tag
results for the first cross-validation split, organized
as in Table 4. By far the most significant cause
for a decreased score is the SPE tag indicating
direct speech. Though one of the most common
tags, with a frequency of 8.21%, it attains an f1
score of only 50.75. The discrepancy reflects the
absence in PPCEME of consistent clues for direct

Function Tags
94.90 £ 1.54
95.55 £ 0.87

dev
test

Table 8: Cross-validation Function Tag Results.

speech (such as quotation marks) that are available,
say, in modern newswire text subject to strict style
guidelines. Fortunately, however, SPE is not highly
relevant for the purposes at hand.
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Tag \ Description Frequency F1
Syntactic 37.03 | 96.57

SBJ subject 21.57 | 98.06
OB1 direct object 11.63 | 95.33
MSR measure 1.18 | 92.42
OB2 indirect object 1.06 | 92.10
POS possessive 0.75 | 96.31
VOC vocative 0.52 | 92.82
SPR | secondary predicate 0.32 | 76.07
Semantic 7.81 | 95.57

ADV adverbial 4.38 | 97.03
TMP temporal 243 | 93.44
DIR directional 0.52 | 95.78
LOC locative 0.48 | 93.19
CP only 8.18 | 91.86

REL relative clause 3.04 | 92.03
THT THAT clause 1.80 | 95.07
QUE question 1.46 | 95.23
CAR clause-adjoined 0.67 | 76.78
CMP comparative 0.63 | 96.97
FRL free relative 0.48 | 81.57
EOP empty operator 0.11 | 88.61
IP only 9.98 | 95.72

INF infinitive 4.92 | 98.24
PPL participial 2.35 | 98.59
IMP imperative 1.26 | 90.83
SMC small clause 0.83 | 95.68
PRP purpose 0.46 | 75.98
ABS absolute 0.17 | 69.92
CPorIP 3438 | 88.24

SUB subordinate 14.94 | 98.72
MAT matrix 10.92 | 98.07
SPE direct speech 8.21 | 50.75
DEG degree 0.31 | 86.31
Miscellaneous 2.62 | 81.45

PRN parenthetical 1.77 | 87.99
RSP resumptive 0.47 | 58.62
LFD left-dislocated 0.37 | 73.65
Total 100.00 | 92.83

Table 9: Function Tag Results for the Dev Section.
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