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Abstract
We employ the method of fine-tuning wav2vec2.0 for recognition of phonemes in aphasic speech. Our effort focuses on
data augmentation, by supplementing data from both in-domain and out-of-domain datasets for training. We found that
although a modest amount of out-of-domain data may be helpful, the performance of the model degrades significantly when
the amount of out-of-domain data is much larger than in-domain data. Our hypothesis is that fine-tuning wav2vec2.0 with
a CTC loss not only learns bottom-up acoustic properties but also top-down constraints. Therefore, out-of-domain data
augmentation is likely to degrade performance if there is a language model mismatch between “in” and “out” domains.
For in-domain audio without ground truth labels, we found that it is beneficial to exclude samples with less confident
pseudo labels. Our final model achieves 16.7% PER (phoneme error rate) on the validation set, without using a language
model for decoding. The result represents a relative error reduction of 14% over the baseline model trained without data aug-
mentation. Finally, we found that “canonicalized” phonemes are much easier to recognize than manually transcribed phonemes.

Keywords: wav2vec2.0, aphasia, phoneme recognition, data augmentation

1. Introduction datasets for training. We found that modest amounts of
out-of-domain data can improve performance, but too
much of a good thing is not necessarily a good thing.
In particular, performance degrades significantly when
there is much more out-of-domain data than in-domain
data.

Datasets vary in many respects. Some are in-domain
and some are out-of-domain. Some come with bet-

The diagnosis of post-stroke language disorders,
namely aphasia, depends on recognizing phonemes in
speech. For example, reduced activation of lexical-
semantic representations in aphasia may result in pro-
ducing “dog” for the target word “cat”, while reduced
activation of phonological representations may result
in producing “dog” for the target word “log” (Foygel -
and Dell, 2000). The primary task of the Post-Stroke tf:r ground truth labels than' others. Different annota-
Speech Transcription (PSST) Challenge (Task A) is to tion methods are us.ed by different researchers. Some
develop an automatic phoneme recognition system that ~ datasets do not provide ground truth labels.

accurately identifies the phonemes produced by sub- When there are no ground truth labels, we use pseudo-
jects with aphasia. The phonemes they actually pro- labels. That is, use predictions from a trained model as
duce may differ in important ways from the words they if they are gold labels. Iterating the self-training pro-

intended to produce. This paper describes our effort for ~ €€ss leads to improve performance, especially when
the task. utterances with low confidence are removed from the

Recognizing phonemes in aphasic speech is a challeng-  Self-training process.

ing task for both human judges and computers. Differ- ~ Less is more. That is, we found that data augmenta-
ent types of aphasia are associated with different types ~ tion can be helpful, but not if there is too much out-
of linguistic symptoms (Wilson et al., 2010). Problems of-domain data relative to in-domain data, or if there
such as disfluencies, mispronunciations, and articula- are too many pseudo-labels of dubious quality. Our fi-
tion deficits create interesting challenges for automatic nal model achieves 16.7% PER (phoneme error rate) on
phoneme recognition. In addition, limitations in data  the validation set, without using a language model. The
availability introduce additional challenges. State-of-  Tresult represents a relative error reduction of 14% over
the-art models tend to be more effective when there is  the baseline model trained without data augmentation.
plenty of in-domain data with ground-truth labels (with

little room for inter-annotator disagreements). 2. Previous Work

This paper fine-tunes wav2vec2.0 for Task A of the . .

PSST Challenge. For recognition of speech from  2-1- Finetuning wav2vec2.0 for ASR

healthy speakers, the wav2vec2.0 model has recently Wav2vec2.0 (Baevski et al., 2020) is a Transformer-
achieved impressive results. But how well does this  based framework for self-supervised learning of speech
approach transfer to speech from the PSST challenge? representations from raw audio data. The speech sig-
Our effort focuses on data augmentation, by supple-  nal is processed by a multilayer convolutional network
menting data from both in-domain and out-of-domain ~ to obtain latent features at every 25 ms, which are
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then fed into vector quantization and Transformer net-
works. The contextualized representations from pre-
trained wav2vec2.0 capture a rich amount of infor-
mation about speech, demonstrated by probing exper-
iments showing that the representations can perform
well on a wide range of tasks (Ma et al., 2021; [Shah
et al., 2021).

Pre-trained wav2vec2.0 models can be fine-tuned for
speech recognition with labeled data and a Connection-
ist Temporal Classification (CTC) loss (Graves et al.,
2006). (Baevski et al., 2020) demonstrated that this
approach achieved 1.8% word error rate on the test-
clean set of Librispeech with a Transformer language
model, and 8.3% phone error rate on TIMIT test set
without a language model. (Yi et al., 2020) applied
wav2vec 2.0 to speech recognition in low-resource lan-
guages. The paper reported more then 20% relative
improvements in six languages compared with previ-
ous work. We have conducted experiments of fine-
tuning wav2vec 2.0 with a CTC loss for recognition of
suprasegmentals, including syllables, tones, and pitch
accents (Yuan et al., 2021). Compared to previous stud-
ies, the method achieved 70% error reduction on sylla-
ble detection, 50% error reduction on Mandarin tone
recognition, and 10% error reduction on pitch accent
identification.

2.2. Data Augmentation

Data augmentation is widely used in computer vision
(Shorten and Khoshgoftaar, 2019), NLP (Feng et al.,
2021), time series (Wen et al., 2020), as well as in
speech (Mena et al., 2021). Very briefly, data aug-
mentation methods can be categorized into four differ-
ent groups: data perturbation, transfer learning, semi-
supervised training and generative synthesis. Without
loss of generality, let (x,y) € D be the input feature
and corresponding label of a data sample from training
set D. Data perturbation does not introduce new data
sources, but rather modifies the original z. Common
perturbations include adding noise, random cut / crop /
rotation / substitution, mixing, etc. Transfer learning
based techniques try to bring new dataset D to expand
D. Although there could be a domain shift, transfer
learning methods compensate this by constructing pro-
jections from one domain to the other (e.g. adaptors).
Semi-supervised training solves the problem that part
of the y are not gold labels (e.g. closed captions) or
even unlabeled. This helps when bringing new data in
the same domain but lacking of gold labels. Genera-
tive synthesis aims to create new data samples (z’, y')
that is from the same distribution of D. It relies on a
generative model such as Generative Adversarial Net-
work (GAN) (Goodfellow et al., 2014)), trained on D
or external data sources. We review some popular ap-
proaches for speech recognition, from the above 4 dif-
ferent categories.

Data Perturbation: Vocal Tract Length Perturbation
(VTLP) (Jaitly and Hinton, 2013) changes each utter-
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ance through a warping procedure. (Thai et al., 2019)
tries to alter the pitch and speaking rate of the original
speech. In (Park et al., 2019), SpecAugment is pro-
posed to mask part of the log mel spectrogram. Mixup
technique (Zhang et al., 2018) is adopted in (Meng et
al., 2021) to weighted sum the utterances as the aug-
mented speech.

Transfer Learning (out-of-domain data adaption):
The recent popularity of pretrain - fine-tune pipelines
largely encourage domain adaption. (Hsu et al., 2021)
suggests that combining data, both in-domain and out-
of-domain, could improve generalization ability dur-
ing wav2vec2.0 pretraining. This is also verified in an
even larger setting (Chan et al., 2021), bigger model
and more data. An interesting work in (Fainberg et
al., 2016)) uses adults’ speech to enhance the children’s
speech recognition, via the out-of-domain stochastic
feature mapping (SPF) (Cui et al., 2015)) technique.
Semi-supervised Training (bootstraping): This
method relies on some seed labeled data for initial
supervised training, then generates pseudo labels for
other noisy or unlabeled data. The pseudo labels are
used to further reinforce the model. This can be done
in multiple rounds, and the model can be adjusted
using the seed data again (consistency regularization
(Xie et al., 2020)) between those rounds. This proce-
dure is termed as bootstraping or self-training in NLP
(Yarowsky, 1995), computer vision (Reed et al., 2014)
and speech (Punjabi et al., 2019; |Chen et al., 2020).
Generative Synthesis: Rather than a simple combi-
nation of existing data, generative models learn joint
distribution of p(x,y) and sample from it. Variational
Autoencoding Wasserstein GAN (VAW-GAN) is used
in (Hsu et al., 2017) to build a voice conversion sys-
tem. Thanks to recent advance of text-to-speech (TTS)
systems, a line of works including (Laptev et al., 2020j
Rossenbach et al., 2020; Rosenberg et al., 2019), lever-
age a popular TTS backbone model, Tacotron (Wang
et al., 2017), to synthesize new training data. (Tjandral
et al., 2017) named such TTS-ASR loop as “machine
speech chain mechanism”.

Note that the PSST challenge targets the recognition of
post-stroke speech. This speech introduces new chal-
lenges, as well as opportunities to apply the literature
on data augmentation (Geng et al., 2022; Jin et al.,
2021 Vachhani et al., 2018) to new scenarios.

2.3. Is More Data Always Better?

In classic machine learning, when the number of data
samples NV, is less than model capacity (often measured
by the number of parameters ||), the model tends to
overfit due to the bias-variance trade-off (Hastie et al.,
2009). However, deep learning models often have a
huge amount of parameters that is more than enough
to overfit even random labels (Zhang et al., 2021)), but
such overfitting phenomenon is not commonly seen.

(Belkin et al., 2019) noticed a “double descent” curve,
where test loss first becomes worse, then gets better and



better, as the model capacity increases. In (Nakkiran et
al., 2021), the authors analyzes double descent curve
in deep learning models such as CNNs and Transform-
ers. In particular, they found that within a critical re-
gion (the model size falls in a certain range), increas-
ing training data size does not help on testing. But be-
yond this region (either under-parameterized or over-
parameterized cases), more data yields better test per-
formance. (d’Ascoli et al., 2020) even found a “trip-
ple descent” phenomenon, and established a connec-
tion between model size |6, training data size N, and
feature dimension d. An asymptotic analysis in (Li et
al., 2020) proves that infinite amount of data with infi-
nite dimension could hurt least square estimators’ per-
formance.

Rather than simply adding more data, the model could
benefit more from improving quality of the added data.
For example, analyzing and compensating the domain
shift is shown to be very effective in (Gong et al.,
2021). In this work, we demonstrate that augment-
ing from the same domain can significantly improve
the PSST recognition results. On the contrary, if aug-
menting from a different domain, more data may hurt
the model’s performance.

3. Phone Recognition on TIMIT,
Librispeech, and PSST

3.1. Datasets and labels

3.1.1. PSST

The dataset of the PSST challenge (Gale, R., Flee-
gle, M., Bedrick, S. and Fergadiotis, G., 2022) con-
sists of audio recordings and phonemic transcriptions
of people with post-stroke aphasia. The audio data was
sourced from the AphasiaBank database (Macwhinney,
B., Fromm, D., Forbes, M. and Holland, A., 2011),
from which utterances were selected, segmented, and
transcribed by experts at Portland Allied Laborato-
ries for Aphasia Technologies (PALAT). The training
set contains 2,298 utterances, a total of 2.8 hours of
speech. The validation set contains 341 utterances. Ad-
ditional 652 audio-only utterances were provided for
testing, and the results need to be submitted to the or-
ganizers for evaluation.

The dataset has 42 labels, including 39 phonemes from
the CMU pronouncing dictionaryﬂ plus /DX/ for flaps,
<sil> for long pauses, and <spn> for vocal noises.
Excluding <sil> and <spn>, which will be filtered out
from evaluation, the size of the label inventory is 40.

3.1.2. TIMIT

TIMIT (Garofolo, J., et al., 1993) has been used as
a benchmark dataset for a number of tasks, includ-
ing phoneme recognition. The corpus contains speech
from 630 speakers from different dialect regions of
American English, each speaking 10 phonetically bal-
anced sentences. The 6,300 utterances were manually

'"https://github.com/cmusphinx/cmudict
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Table 1: Librispeech Splits

Split Source Utterances Hours
Train train-clean + 281k 960
train-other
Validation | dev-clean 2703
Test test-clean 2620

segmented and transcribed at the phone level. Follow-
ing the literature (Lee and Hon, 1989)), the 61 phone
labels in the dataset were grouped into 39 categories,
representing 38 phonemes plus pause. Compared to
PSST, the phoneme /ZH/ does not appear in TIMIT.
The corpus also contains a pronouncing dictionary, in
which every word has only one canonical pronuncia-
tion. Using this dictionary, we generated “canonical”
labels for every utterance by simply mapping words
into canonical phonemes. The inventory of canonical
labels is the same as the inventory of transcribed labels,
except for flap, /DX/. Flaps are common in transcrip-
tions (of American English), even though they do not
appear in the dictionary.

The TIMIT corpus provides a standard split for training
and testing. The training set contains 4,620 utterances
(3.9 hours of speech). The remaining 1,680 utterances
are in the test set. In our experiments below, we use the
test set for validation.

3.1.3. Librispeech

Librispeech (Panayotov, V., Chen, G., Povey, D. and
Khudanpur, S., 2015) is a benchmark dataset for En-
glish ASR. The corpus is derived from English au-
diobooks and contains 1000 hours of speech. Unlike
TIMIT, LibriSpeech is not phonemically transcribed.
It is standard practice to infer canonicalized phonemes.
We used g2p-e to convert words into phonemes. The
inventory of g2p-en phonemes is the same as those in
PSST except for flap, /DX/. Librispeech, when pro-
cessed by g2p-en, has no flaps.

Librispeech contains subsets called train-clean, train-
other, dev-clean, and test-clean. We use train-clean,
train-other for training, dev-clean for validation, and
test-clean for testing, as reported in Tablem

3.2. PER Within and Across Datasets

We started with the pre-trained model: wav2vec-vox-
new.pt, a large wav2vec2.0 model trained on the Libri-
Light corpus of more than 60k hours of unlabeled
speech. We added a linear projection layer to the top
of the base model to output phoneme label tokens. The
three datasets in Table[2] were used for fine-tuning. The
first 10k updates apply to the projection layer, but not
the base model. Updates after the first 10k are applied
to both the projection layer as well as the Transformer

https://pypi.org/project/g2p—en/
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Table 2: Phoneme error rate (PER) and trigram per-
plexity (per), computed over canonicalized (C) and
transcribed (T) phonemes in validation set.

Dataset C-PER T-PER | C-per T-per
TIMIT 1.37% 7.29% | 109  13.2
Librispeech | 1.05% NA 11.1 NA
PSST NA 19.4% | NA 10.3

in the base model. Fine-tuning uses a CTC loss. There
is a limit of 800k max tokens, which corresponds to
50 seconds of speech at 16k samples per second. The
learning rate was 10~°. The metric of unit error rate on
the validation set was used to determine the total num-
ber of updates. We used fairsezf] for our experiments.
PER is reported in Table [2| for C-phonemes (canoni-
calized) and T-phonemes (transcribed). Note that C-
PER <« T-PER. The comparison between C-PER and
T-PER is easier to make in TIMIT where the gold
standard provides both C-phonemes and T-phonemes.
These comparisons are more challenging for the other
two datasets, where we have one type of phonemes but
not the other, and consequently, four cells are NA (not
available) in Table 2]

Note that C-PER in Librispeech is relatively close to
the C-PER for TIMIT, at about 1% (We also evaluated
the Librispeech model on the test set, and the C-PER is
1.12%). The T-PER in PSST and TIMIT are well above
1%. The large differences between C-PER and T-PER
are left as an intriguing topic for future research.

Why are T-phonemes so much more difficult than C-
phonemes? It is possible that human transcriptions
introduce inconsistencies that complicate predictions.
Another hypothesis attributes the difference to fine-
tuning. It is possible that fine-tuning is learning not
only bottom-up acoustic properties of phonemes and
contexts (coarticulation), but also top-down constraints
(language model). To test this hypothesis, we trained a
phoneme trigram language model on the train set, and
computed the perplexity of the model on the validation
set. As reported in Table 2] the perplexity is larger for
transcribed phonemes (T-per > C-per), which may ex-
plain in part why recognition of transcribed phonemes
is more difficult for wav2vec2.0.

The phone error rate (T-PER) is much higher for PSST.
The perplexity of the phoneme language model is, how-
ever, similar for PSST, TIMIT and Librispeech. There-
fore, it is unlikely that the poor T-PER performance
is due to a particular distribution of phonemes in the
dataset. In our opinion, factors such as data spar-
sity, recording conditions, acoustic characteristics of
phonemes, and label quality are more likely contrib-
utors to the T-PER performance.

We also evaluated the models in a cross-dataset man-
ner. A model trained on one dataset is evaluated on

*https://github.com/pytorch/fairseq
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Table 3: Within- and across-dataset PER (within-
dataset: validation error; across-dataset: test error.)

TIMIT | Librispeech | PSST

TIMIT 1.37% 8.48% 39.3%
Librispeech | 8.20% 1.05% 34.8%
PSST 14.5% 14.0% 19.4%

Table 4: T-PER for out-of-domain data augmentation.
The last column shows performance on PSST (valida-
tion split). 3.9 hours of TIMIT (or Librispeech) is bet-
ter than too much (100+ hours) or too little (none).

Training data T-PER

In-Domain ~ TIMIT  Librispeech | PSST
PSST None None 19.4%
PSST 3.9 hours None 18.0%
PSST None 960 hours 30.0%
PSST None 100 hours 21.6%
PSST None 3.9 hours 18.7%

the other datasets (the validation set is used for evalu-
ation). For TIMIT, the model of canonical phonemes
was used. The results are listed in Table

Clearly, the models do not transfer well across datasets.
The PER of the Librispeech model, for example, is
34.8% on PSST, which is much higher than its within-
dataset PER of 1.05%.

Another interesting comparison is along the bottom
row of Table 3] Note that 14.5 < 19.4% and 14.0 <
19.4%. In other words, the PSST model performed bet-
ter on TIMIT and Librispeech than on PSST itself.

4. Out-of-Domain Data Augmentation

In this experiment, we supplemented the training
data of PSST with training data from TIMIT and
Librispeech. For Librispeech, we started with the
unabridged training set of 960 hours, but after receiv-
ing disappointing results, we repeated the experiment
with two smaller samples of 100 hours and 3.9 hours,
as shown in Table @l The choice of 3.9 hours in the
last experiment (bottom row of Table[d) was chosen to
make the size of the TIMIT training set.

A modest amount of data augmentation is better than
too much or too little. That is, the performance of the
model was slightly improved when trained with addi-
tional data from TIMIT and 3.9 hours of Librispeech.
The error rate was decreased from 19.4% of no data
augmentation to 18.0% and 18.7%, respectively. On
the other hand, the model trained with additional data
from the entire train set of Librispeech was signifi-
cantly degraded with phoneme error rate of 30.0%.

To understand why using more data from Librispeech
degrades the model’s performance, we plot the contex-
tualized representations of the validation samples from
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Figure 1: Contextualized representations of PSST

validation samples from models trained on different
amount of out-of-domain augmentation data, compared
with no augmentation (psst).

different models in Figure [I] The contextualized rep-
resentations were extracted at all frames predicted as a
phoneme but not <blank> (i.e., a special token used in
CTC). These representations have 1024 dimensions. To
make them easier to visualize, we used PCA to project
the 1024 dimensions down to 2 dimensions in Figure[T]
Figure|[I|shows that psst (green points) and psst3.9 (red
points) occupy similar regions of the plot, in contrast
with the three other cases: 960, psst100 psst960. The
green points have no training data from Librispeech,
and the red points have 3.9 hours. The other points
have 100+ hours of Librispeech. Augmenting the train-
ing data with too much data from Librispeech shifts the
representations away from the green and red points.
As discussed above, the contextualized representations
form a finetuned wav2vec2.0 may contain language
model information besides phonetic properties. The
shift of the representations by out-of-domain data may
suggest a mismatch in language model between “in”
and “out” domains. To test this hypothesis, we trained
a phoneme trigram language model for each amount of
augmentation data, and computed the perplexity of the
model on the validation set of PSST. The results are
shown in Figure 2}

Figure [2] shows that perplexity increases from left to
right. The large differences in perplexity indicate large
differences in domains. The language model for Lib-
rispeech is very different from the language model for
PSST. Increases in perplexity tend to degrade perfor-
mance (in terms of PER). That is, adding too much data
from Librispeech tends to increase PER.

However, psst3.9 is an important exception. In this
case, adding 3.9 hours of out-of-domain data increases
perplexity by a modest amount. However, PER moves
in the opposite direction. We susspect that improve-
ments in phonetic representations are large enough to
more than compensate for the modest increase in per-
plexity. Thus, adding 3.9 hours of Librispeech is better
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Figure 2: Perplexity of phoneme trigram language
model is highly correlated with PER on the validation
set of PSST, although language model is not used for
decoding.

(in terms of PER) than too much (100+ hours) and too
little (none).

5. In-Domain Data Augmentation

5.1. Extracting Utterances from

AphasiaBank

The PSST dataset was derived from AphasiaBank. In
this experiment we extracted 48,937 utterances (47
hours) from aphasia subjects in AphasiaBank, exclud-
ing recording sessions that include samples in the test
set. Because only word transcription is available, we
tried two methods to use these utterances for phoneme
recognition. The first method is to use audio only for
semi-supervised training. The second method is to ob-
tain phoneme labels from word transcription through
forced alignment.

In the first method we used the model trained on the
train set of PSST to predict phonemes (i.e., pseudo la-
bels). For each utterance, we also computed a confi-
dence/probability score by averaging the probabilities
of 1-best hypothesis at frames where the prediction is
a phoneme but not <blank>. The distribution of the
probability scores are shown in Figure 8] The proba-
bility score will be used to either select utterances or
weight a CTC loss, as described below.

In the second method, we employed the Penn Phonet-
ics Lab Forced Aligner (P2FA) to do forced alignment
(Yuan and Liberman, 2008). More than half of the ex-
tracted utterances cannot be easily aligned because the
transcription contains OOVs (out-of-vocabulary), e.g.,
”xxx”. Only utterances with “clean” word transcription,
22,836 out of 48.937, were aligned to get phoneme la-
bels for training.
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ability scores from a model trained on PSST.

5.2. Filtering on Confidence and
Weighted/Unweighted CTC Loss

To use predicted phonemes or pseudo labels, we define
a threshold to select utterances for which the model has
more confidence in its prediction. We experimented
with five thresholds: 0, 0.7, 0.8, 0.9, and 0.95. When
the threshold is O, all utterances are selected. Higher
thresholds filter out more utterances with less confi-
dence. The selected utterances were added to the PSST
training set in one of two conditions: (1) weighted or
(2) unweighted. The unweighted condition uses stan-
dard CTC loss. This condition treats AphasiaBank ut-
terances equally with utterances in the PSST training
set. In contrast, the weighted condition uses Eq. (I)) to
compute CTC loss in the fine-tuning process.

1
Lere = B

Z —slog P(y|z)

(z,y,5)€B

ey

Eq. (1) computes CTC loss, Lcrc, for a batch of 3 sam-
ples. Each sample consists of input frames, x, and a
label, y, with a probability score, s. When training on
pseudo-labels, y is a pseudo-label and s is a score from
the system, where 0 < s < 1. When training on ground
truth labels from PSST, y is a label from the gold stan-
dard, and s = 1.

5.3. Results

Table 3] reports results on the validation set of PSST
for a number of thresholds, with and without weight-
ing. The last row reports results for forced alignment
(FA). Data augmentation improves over the baseline in
all conditions, with an absolute error reduction between
1.3% and 2.1%. Weighting is helpful when the thresh-
old is small, but the differences between weighted CTC
and unweighted CTC diminish for larger thresholds.
PER performance improves if we exclude “bad” utter-
ances (or downweight them). PER is 18.1% for all ut-
terances, and reduces to 17.3% with a threshold of 0.9.
This threshold selects 18k (of 48k) utterances.
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Table 5: PER of in-domain data augmentation using
different thresholds and CTC weighting. Baseline PER
is 19.4%, and FA (forced alignment) PER is 17.9%.

Threshold | Utterances | Unweighted | Weighted

CTC CTC

0 48,497 18.1% 18.0%

0.7 42,816 17.9% 17.4%
0.8 35,096 17.4% -

0.9 18,296 17.3% 17.4%
0.95 6488 17.9% -
FA 22,836 17.9% -

Table 6: PER at each iteration of data augmentation,
with the number of selected utterances in parentheses.

Tteration | Unweighted CTC | Weighted CTC

1 17.3% 17.4%
(18,296) (42,816)

2 16.9% 16.9%
(28,188) (43,793)

3 16.7% 16.8%
(33,554) (46,223)

5.3.1. Results with Iteration

After a new model was trained with data augmentation,
we used it to predict phonemes for utterances extracted
from AphasiaBank. The predictions and probability
scores are different from predictions without data aug-
mentation. We use the new predictions and scores to
select a new set of utterances. We iterated this proce-
dure until no further improvement could be made. Ta-
ble [6] reports results for a number of thresholds, with
and without CTC weighting. The Table shows that our
best model achieved 16.7% phone error rate on the val-
idation set of PSST, representing a relative error reduc-
tion of 14% over the baseline model trained without
data augmentation.

Figure [4] shows contextualized representations (2-D
PCA projections) of the best model red and the base-
line model green. Note that the red and green points
occupy similar regions of the plot, unlike models of
out-of-domain augmentation shown in Figure I}

6. Conclusions

Fine-tuning wav2vec2.0 with a CTC loss not only
learns bottom-up acoustic properties but also top-down
constraints. In the task of phoneme recognition, a
phoneme language model is implicitly learned from
fine-tuning and represented in a fine-tuned model.
Therefore, for the method of fine-tuning wav2vec2.0,
out-of-domain data augmentation is likely to degrade
performance if there is a language-model mismatch be-
tween “'in” and “out” domains. Our study confirms this
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Figure 4: Contextualized representations of PSST vali-
dation samples from models trained with (psstAphasia)
and without (psst) in-domain data augmentation.

hypothesis. We found that although a modest amount
of out-of-domain data helps phoneme recognition from
speakers with aphasia, too much out-of-domain data
will degrade performance. Visualizations showed that
out-of-domain data augmentation shifts the space of
representations learned from fine-tuning away from the
corresponding space for a baseline model. Visualiza-
tions also showed that in-domain data augmentation
does not shift the space as much as out-of-domain data
augmentation.

It is difficult to obtain large quantities of speech with
phonemic transcriptions from subjects with aphasia.
We extracted audio utterances from AphasiaBank and
generated predictions (pseudo labels) from a baseline
model, and used this resource for in-domain data aug-
mentation. We found that excluding utterances with
less confident predictions can lead to a better perfor-
mance of the model. Therefore, for both out-of-domain
and in-domain data augmentation, we found scenarios
where “less is more”.

We iterated the procedure of in-domain data augmenta-
tion by training a new model and updating predictions
and confidence scores with the new model, until con-
vergence. Our final model achieved 16.7% phone error
rate on the PSST validation set, without using a lan-
guage model for decoding. This result represents a rel-
ative error reduction of 14% over the baseline model
trained without data augmentation. The results on the
test set were submitted to the challenge for evaluation.

Finally, we found that with the method of fine-tuning
wav2vec2.0 “canonicalized” phonemes are much eas-
ier to recognize than manually transcribed phonemes.
On TIMIT, the phoneme error rate was 1.37% and
7.29% respectively for the two types of labels. On
Librispeech, the phoneme error rate of “canonicalized”
phonemes reached as low as 1.05%. This is an intrigu-
ing result. More research is needed, from both linguis-
tics and machine learning, to fully understand it.
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