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Message from the Organizers

Welcome to the first edition of the Workshop on Pattern-based Approaches to NLP in the Age of Deep
Learning (Pan-DL)! Our workshop is being organized online on October 17, 2022, in conjunction with
the 29th International Conference on Computational Linguistics (COLING).

We all know that deep-learning methods have dominated the field of natural language processing in
the past decade. However, these approaches usually rely on the availability of high-quality and high-
quantity data annotation. Furthermore, the learned models are difficult to interpret and incur substantial
technical debt. As a result, these approaches tend to exclude users that lack the necessary machine
learning background. In contrast, rule-based methods are easier to deploy and adapt; they support human
examination of intermediate representations and reasoning steps; they are more transparent to subject-
matter experts; they are amenable to having a human in the loop through intervention, manipulation
and incorporation of domain knowledge; and further the resulting systems tend to be lightweight
and fast. This workshop focuses on all aspects of rule-based approaches, including their application,
representation, and interpretability, as well as their strengths and weaknesses relative to state-of-the-art
machine learning approaches.

Considering the large number of potential directions in this neuro-symbolic space, we emphasized
inclusivity in our workshop. We received 13 papers and accepted 10 for oral presentation. This resulted
in an overall acceptance rate of 77%.

In addition of the oral presentations of the accepted papers, our workshop includes a keynote talk by
Ellen Riloff, who has made crucial contributions to the field of natural language processing, many of
which are at the intersection of rule- and neural-based methods. Further, the workshop contains a panel
that will discuss the merits and limitations of rules in our neural era. The panelists will be academics
with expertise in both neural- and rule-based methods, industry experts that employ these methods
for commercial products, government officials in charge of AI funding, organizers of natural language
processing evaluations, and subject matter experts that have used rule-based methods for domain-specific
applications.

We thank Ellen Riloff and the panelists for their important contribution to our workshop!

Finally, we are thankful to the members of the program committee for their insightful reviews! We are
confident that all submissions have benefited from their expert feedback. Their contribution was a key
factor for accepting a diverse and high-quality list of papers, which we hope will make the first edition
of the Pan-DL workshop a success, and will motivate many future editions.

Pan-DL 2022 Organizers
October 2022
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Abstract

In this paper we revisit the direction of using
lexico-syntactic patterns for relation extraction
instead of today’s ubiquitous neural classifiers.
We propose a semi-supervised graph-based al-
gorithm for pattern acquisition that scores pat-
terns and the relations they extract jointly, us-
ing a variant of PageRank (Page et al., 1999).
We insert light supervision in the form of seed
patterns or relations, and model it with sev-
eral custom teleportation probabilities that bias
random-walk scores of patterns/relations based
on their proximity to correct information. We
evaluate our approach on Few-Shot TACRED
(Zhang et al., 2017; Sabo et al., 2021), and show
that our method outperforms (or performs com-
petitively with) more expensive and opaque
deep neural networks. Lastly, we thoroughly
compare our proposed approach with the sem-
inal RlogF pattern acquisition algorithm of
Riloff (1996), showing that it outperforms it
for all the hyper parameters tested, in all set-
tings.1

1 Introduction

Rule-based methods hastily fell out of favor after
the “deep learning tsunami” hit natural language
processing (Manning, 2015). However, deep learn-
ing methods are not perfect: they continue to re-
main “blackboxes,” despite recent effort towards
untangling their representations (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019; Kobayashi et al.,
2020). Moreover, the presence of various linguis-
tic phenomenons in the hidden representation of
deep models does not imply that the model will use
them (McCoy et al., 2019). On the other hand,
rules are interpretable by design. Furthermore,
changing something in a deep learning model often
changes everything (Sculley et al., 2015; Arpteg

1Code available at https://github.
com/clulab/releases/tree/master/
pandl2022-patternrank

et al., 2018), while rules are disentangled, i.e., mod-
ifying a rule impacts only its own matches.

Here, we introduce a novel pattern acquisition
method for relation extraction, which uses graph-
based techniques that operate over the entire topol-
ogy of the bipartite graph that contains candidate
patterns and their extracted relations. More specif-
ically, we leverage a variant of PageRank (Page
et al., 1999) to jointly score candidate patterns and
their extractions. Such an approach has the advan-
tage of softening the sparsity problem: an unknown,
but potentially in-domain candidate relation is not
automatically considered incorrect (as most “tradi-
tional” semi-supervised algorithms would consider
it); instead it receives a non-zero score that depends
on how reachable it is in this graph.

Our main contributions are:

• We propose a graph-based algorithm, Pattern-
Rank, for jointly scoring patterns and extrac-
tions by considering the whole topology of
the graph that contains them. Our algorithm
captures light supervision (in the form of
seed relations or patterns) with several custom
teleportation probabilities that bias random-
walk scores of patterns/relations based on their
proximity to correct information.

• We evaluate our proposed approach on the
Few-Shot TACRED task (Zhang et al., 2017;
Sabo et al., 2021). Our results show that the
performance is better than (or at least equiv-
alent with) several state-of-the-art neural ap-
proaches, while also being fully interpretable.

• We perform an extensive comparison between
our proposed method and the seminal pattern
acquisition algorithm RLogF of Riloff (1996),
which is closest in spirit to our direction, ex-
plaining why it outperforms it.
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2 Terminology

Before moving on, we introduce here key terminol-
ogy used throughout the paper.

Pattern We define a pattern as a linear sequence
of surface and syntactic constraints. For ex-
ample, the pattern [lemma=born] >nmod_in
[ne=LOC] matches if the text contains the lemma
born, linked through a nmod_in dependency to a
token labeled as a location named entity.

Relation We evaluate our proposed method on
relation classification. As such, we use the term
relation to refer to the semantic relation holding
between two given entities. For example, for the
sentence John was born in Tampa, where
the two entities are John and Tampa, respectively,
the relation will be per:born_in.

3 Related Work

Rule-based systems received tremendous atten-
tion the “pre deep-learning era.” In a seminal
work, Hearst (1992) proposes a method to learn hy-
ponymy relations using hand-written patterns of the
form NP0 such as {NP1 .., (and|or)}
NPn. Riloff (1993) introduced AutoSlog, a system
for automatically learning domain-specific dictio-
naries using a few hand-written patterns. The sys-
tem is improved in (Riloff, 1996) by combining the
original AutoSlog with statistical techniques and
introduced the RlogF pattern scoring function, de-
fined as: RlogF (patterni) =

Fi
Ni

log2(Fi), where
Fi is the number of extractions for the correspond-
ing class, and Ni is the total number of extractions.

The duality between patterns and relations has
also been explored in (Brin, 1998). More con-
cretely, the authors first generate a set of patterns
from a set of relations. Then, using the previously
generated set of patterns they generate a new set
of relations. On a high level, we employ a similar
algorithm. Conceptually similar method has also
been in explored in (Riloff and Jones, 1999; Riloff
and Wiebe, 2003).

3.1 Automatic pattern learning
The typical approach to semi-supervised pattern
learning is to initialize the learning algorithm with
a small set of known seed relations (Riloff and
Jones, 1999; Riloff and Wiebe, 2003; Gupta and
Manning, 2014). Generally, the approach is to
consider the matches outside the seed relations as
incorrect matches (Riloff and Jones, 1999; Riloff

and Wiebe, 2003). Gupta and Manning (2014)
improved the approach by allowing soft matches.
Concretely, they predict the labels on unlabeled
entities using a concatenation of different features,
including word embeddings. We approach this
issue by interpreting the matches of all the patterns
as a graph and scoring everything jointly. In a
sense, our approach can be thought of as a guided
wisdom of the crowd approach.

3.2 Graph-based pattern learning

Treating pattern acquisition from a graph-based
perspective is an under-explored approach. How-
ever, we are not the first to view it from this point
of view. Kozareva et al. (2008) briefly explored
using PageRank, among other scoring techniques,
but in another setting and only for relation scoring.
They focused on learning hyponym relations start-
ing from a single doubly-anchored pattern template
and a single seed instance. They build a directed
graph G, where an edge (u, v) represents that using
the relation u in the pattern template extracted the
relation v. Then, they used graph-based scoring
techniques to select the best relations. In contrast,
our proposed method learns both patterns and rela-
tions jointly, starting from either a pattern or a seed
relation.

Perhaps the work of (Hassan et al., 2006) is clos-
est in nature with our approach. They proposed
using Hyperlink-Induced Topic Search (HITS)
(Kleinberg, 1999) to jointly learn patterns and re-
lations without any supervision. One limitation of
their method is that it is unable to accommodate ini-
tial information about which seeds relations or pat-
terns are considered correct, information which can
come from a previous component in the pipeline,
or from human supervision. In contrast, our algo-
rithm can incorporate human supervision through
seed relations or patterns, and we use a new topic-
sensitive variant of PageRank (Page et al., 1999) to
model human supervision during the random walk.

Although rule-based approaches received a lot
of attention prior to the deep-learning era, graph-
based approaches for pattern acquisition remain
under explored. In this paper we model the pattern
scoring problem as a random walk over a graph
consisting of patterns and relations, and mitigate
sparsity through custom teleportation probability.
We empirically show that this strategy leads to bet-
ter results in realistic few-shot settings for relation
extraction (Sabo et al., 2021).
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4 Method

Our approach, called PatternRank, follows an itera-
tive approach, which alternates between learning
patterns from known relations (or seeds), and ex-
tracting new relations matched by these patterns.
The key contribution of our work is the novel scor-
ing strategy, which scores patterns and extracted
relations jointly, using a graph-based algorithm.
We describe the three components of our method
in greater detail below.

4.1 Generating Candidate Patterns

We generate candidate patterns starting from a
small set of seed relations and some (unannotated)
text corpus. Our seed relations take the form
(agent, predicate, patient), and the pat-
terns are the syntactic paths connecting the three
elements. For example, from the seed relation
(drought, causes, famine), we consider all the syn-
tactic paths connecting drought with famine that
pass through the predicate causes in the corpus.2

Then, to reduce search space, we filter these candi-
date patterns as follows:

1. We remove candidate patterns observed less
than k times in the corpus.

2. We avoid mirror patterns. For example,
if in the set of candidate patterns we
have both <nsubj causes >dobj and
<dobj causes >nsubj we keep the pat-
terns that extracted more relations overall.

3. We remove patterns that contain the same type
of dependencies on both sides of the predi-
cate. For example, we filter out patterns like
<nsubj causes >nsubj >dobj.

Our method accommodates the case where the
starting point are seed patterns instead of seed re-
lations. In this case we apply the seed patterns to
generate seed relations. Then, we continue with
pattern generation as described above.

An important difference from previous work
is that our method does not use a pre-computed
index with all the patterns on the corpus (Lin
and Pantel, 2001). In realistic settings, such an
index of rules is prohibitively large due to the

2We use lemmas instead of the verbatim words for lexical
items in the paths, and universal dependencies for the syntactic
annotations. Our method accommodates seed relations pro-
vided without a predicate, in which case we generate syntactic
paths that simply connect the agent and patient.

sparsity of language. Instead, we generate them
on the fly using Odinson, a rule-based information
extraction framework that indexes atomic syntactic
dependencies (Valenzuela-Escárcega et al., 2020).
To bridge the fact that the Odinson index contains
individual syntactic dependencies, whereas our
rules are compositional (i.e. they aggregate multi-
ple atomic (word- or dependency-level) constraints
such as matching lemmas or part-of-speech tags),
we create patterns by searching the Odinson
for all the syntactic paths connecting the seed
relations. For example, for the seed relation
(drought, causes, famine) we search for the paths
connecting drought to famine via causes with
the Odinson query: [lemma=drought]
(«|»)* [lemma=cause] («|»)*
[lemma=famine], where («|»)* stands
for zero or more syntactic dependencies connect-
ing the token to the left to the one on the right.
This significantly speeds up pattern generation
without relying on an explicit pattern index.

4.2 Extracting Candidate Relations
Using the previously generated patterns, we ap-
ply them over our corpora and record the relations
matched by them. We filter the extractions based
on the part-of-speech tags of the constituent words
and based on their concreteness. For example, we
remove relations where the agent or patient are pro-
nouns or symbols. Further, we use the concreteness
norm database of Brysbaert et al. (2014)3 to filter
out relations that are too generic (e.g., (someone,
causes, something)). The threshold is an ap-
plication specific hyper parameter.

4.3 Scoring Patterns and Relations
We score patterns and relations jointly using a
graph-based algorithm. Specifically, we view the
patterns and relations as a bipartite graph. Nodes
represent patterns or relations. Edges between
nodes of the same type are prohibited. Two nodes
are connected with an edge if the corresponding
pattern matched the corresponding relation. Edges
are undirected, as the pattern/relation matching can
be seen as bidirectional. Additionally, edges are
weighted, where the weight represents the number
of times the pattern extracted the relation.

Formally, we have the bipartite graph G =
(P,R,E), with two partitions: P , which contains

3This database contains psycholinguistic concreteness
norms for 40,000 generally known English lemmas on a nu-
merical scale from 1 (highly abstract) to 5 (highly concrete).
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Figure 1: Our proposed method for jointly scoring patterns and relations. We apply the personalized PageRank algorithm twice.
First, we use a teleportation vector where we teleport only to the seed relations, i.e., example relations known to be correct.
After this step, we take the top scoring patterns and consider them to be correct. We apply the personalized PageRank algorithm
a second time, but this time we teleport only to the previously selected patterns. The algorithm outputs a list of patterns and
relations, each with an associated score.

the nodes corresponding to the patterns, and R,
which has the nodes corresponding to the rela-
tions that were extracted using the patterns from P .
An undirected edge (p, r) ∈ E between a pattern
p ∈ P and an extracted relation r ∈ R is added
if the pattern p matches the relation r in the cor-
pora. We attach a weight w ∈ N to the (p, r) edge,
representing the number of time p extracted r.

Equipped with this representation, we apply
graph-based algorithms for jointly scoring the pat-
terns and the relations. We adapt Topic-Sensitive
PageRank (Haveliwala, 2002), a variant of PageR-
ank (Page et al., 1999) with custom teleportation
probabilities. We apply this algorithm twice, as
follows:

1. We first apply it to obtain the scores for each
of the generated patterns. In this setting, we
set the teleportation probability to uniformly
teleport only to seed relations, i.e., extractions
specified ahead of time by the user to be cor-
rect.

2. Using the PageRank scores generated in the
previous step, we select the desired number of
patterns by keeping the top patterns with the
highest scores.

3. We apply the topic-sensitive PageRank a sec-
ond time. For this run, we teleport only to
the patterns selected in the previous step. Fur-
ther, this time we do not teleport uniformly,
but proportional with the score of a given pat-
tern. This is done to prevent a pattern which
extracted very few relations to dominate the
random walk.

At the end of this process, the algorithm gener-
ates scores for both patterns and relations. Figure 1
summarizes this whole process.

An important thing to note is that our proposed
method considers the entire topology for comput-
ing a score, without ignoring or considering an
unknown extraction to be bad. As a consequence, a
pattern which rarely matches the seed relations can
still obtain a high score if its matches tend to over-
lap with patterns that predominantly match the seed
relations. Traditional bootstrapping approaches for
relation extraction typically mark unknown extrac-
tions as bad, ignore them, or (better) try to score
them relative to the seed relations (Gupta and Man-
ning, 2014). In a sense, we handle this problem
via a guided wisdom of the crowd approach, where
patterns which overlap in extractions with patterns
that match predominantly the seed relations can

4



Query She founded a production company called Higher Ground Productions
Entity 1 Entity 2

per:employee_of

Figure 2: Example of a sentence in the TACRED dataset
(Zhang et al., 2017). The task is to predict the relation that
holds between the two entities, which in this example is
per:employee_of.

still obtain a high score.

5 Experiments

5.1 Experimental Setting

For all experiments we used Odinson for indexing
(Valenzuela-Escárcega et al., 2020). Further, we
used the UMBC corpus (Han et al., 2013) to obtain
more robust statistics on a rule’s extractions.

5.2 Relation Extraction

We evaluate PatternRank, our proposed method,
on the Few-Shot TACRED dataset (Sabo et al.,
2021), a few-shot variant of the original TACRED
dataset (Zhang et al., 2017). TACRED is a relation
classification task, where you are asked to predict
the relation between the two (given) entities in a
sentence.4 An example of the input is presented
in Figure 2. In the few-shot variant, the test rela-
tion classes are not seen during training. Instead,
a method has to generalize to new relation types
using only a few examples of the new relations.5

More formally, at testing time, the task requires
the classification of a relation that holds between
two given entities in a query sentence, using only a
support set, which consists of examples for each of
the 5 possible relations for the query sentence. If
none of the relations hold for the query sentence,
the prediction should be no_relation.

Query David Banda ( son of Madonna and Guy Ritchie ) 8
Entity 1 Entity 2

?

Support sentence An opinion piece by Richard Lindzen of MIT
Entity 1 Entity 2

per:employee_of

Support sentence He was a son of David and Mary M Anderson
Entity 1 Entity 2

per:parents

Figure 3: A shortened test example of Few-Shot TACRED.
Here, we consider only two support sentences in total, which
makes it a 2-way 1-shot setting. If the true relation of the
query sentence is not found among the support sentences, then
the label is no_relation. In this example the gold relation
is per:parents.

4Entity types are also provided.
5Typically 1 or 5 sentences per relation.

Because our method starts from seed patterns
or relations, we convert each support sentence
into seed patterns6 by artificially constructing
patterns that extract the specified entities. We
construct two such patterns, one which contains
only surface constraints, and one that relies
on syntax. For example, for the relation type
per:city_of_birth and the support sentence
Rothman was born in San Francisco in 1932,
we automatically generate the surface pattern:
[ne=PER] [lemma=be] [lemma=born]
[lemma=in] [ne=LOC], and the syn-
tactic pattern: [ne=PER] <nsubjpass
[lemma=born] >nmod_in [ne=LOC]. We
then use UMBC (Han et al., 2013) to obtain robust
statistics on their extractions, by making use of
the seeds and the relations available so far. More
precisely, we apply the patterns on UMBC and
extract candidate relations. Then, we use this set of
candidate relations to build more patterns. Lastly,
we apply this set of patterns over UMBC to obtain
the extractions which will then ranked.

We compare our proposed approach with one
strong baseline, and several state-of-the-art neural
methods.

Our baseline is driven by the type of the two
participating entities. In particular, given a query
sentence q, which has the entity types (E1, E2)
(e.g. (PER,PER) for the example in Figure 3), the
algorithm:

1. Discards the sentences from the support set
which do not have the entity types (E1, E2).
For example, for the example in Figure 3, we
discard the first support sentence, as the entity
types in it are (PER,ORG).

2. Adds one artificial support sentence with the
relation type set to no_relation, if in
the background training set there are sen-
tences with the same entity types as the query
sentence. We do this to ensure that the
no_relation label remains a classification
option, as there may be multiple relations that
can hold between the two entities.7 For exam-
ple, we add His son Richmond Jr and grand-
son Richmond III both became football stars.
with the relation label no_relation.

6We empirically observed that seed patterns are less noisy
than seed relations.

7Examples of relations that can hold between PER and
PER: per:parents, per:spouse, per:children,
per:siblings, per:other_family.
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3. Randomly picks one of the remaining sen-
tences with matching entity types from the
support set, and labels the query sentence with
the corresponding relation type. For example,
the baseline may randomly select the sentence
He was a son of David and Mary M Anderson,
and predict per:parents.

Additionally, we compare our method with the
following state-of-the-art supervised methods:

Sentence-Pair (Gao et al., 2019): Concatenates
the query sentence with each support sentence and
runs a sequence classification variant of BERT (De-
vlin et al., 2018) over it, predicting a two-element
vector. The first element represents the probability
of the pair sharing the same relation type and the
second element represents the probability of the
pair not sharing the same relation type. It takes the
average score in case there are multiple sentences
with the same relation type. Additionally, the score
for no_relation is considered to be the small-
est value assigned by the method for the probability
that the pair does not share the same relation type.

Threshold (Sabo et al., 2021): Assigns the label
no_relation if the score of the concatenation
is smaller than a learned threshold. Otherwise, it
assigns the relation type associated with the highest
similarity score, as in Sentence-Pair.

NAV (Sabo et al., 2021): A transformer-based clas-
sifier which uses the background training set to
learn a vector for the no_relation label. At
test time, it computes the similarity score between
the query sentence and each support sentence. Ad-
ditionally, it computes the similarity score between
the query sentence and the vector associated with
no_relation. Finally, it outputs the relation
associated with the highest score.

MNAV (Sabo et al., 2021): Conceptually similar
with NAV, but instead of using a single vector for
the no_relation label, it uses multiple vectors.
The rationale behind adding multiple vectors is
that it is expected to ease the embedding space
constraints. The number of vectors is treated as a
hyperparameter.

We present our results in Table 1. Note that our
method obtains 12.72 F1 in the more challenging 5-
way 1-shot setting (where only 1 support sentence
is provided per relation label), and 22.13 F1 in the
5-way 5-shot setting (where 5 sentences are pro-
vided per type) using 100 patterns. The fact that our
method outperforms all others in the 1-shot setting,

Method 5-way 1-shot 5-way 5-shot
Baseline 10.82±0.01% 10.90±0.01%
Riloff (5) 4.55±0.61% 15.28± 1.71

Riloff (100) 11.68±0.80% 22.01± 1.76

Sentence-Pair 10.19±0.81% –
Threshold 6.87±0.48% 13.57±0.46%
NAV 8.38±0.80% 18.38±2.01%
MNAV 12.39±1.01% 30.04±1.92%
Ours (5) 6.53±0.49% 17.05± 1.87 %

Ours (100) 12.72±1.12% 22.13± 1.94 %

Ours (all rules) 14.06±0.96% 22.16± 1.67 %

Table 1: Performance comparison between our proposed
method, a baseline driven by entity types, Riloff’s RlogF ap-
proach (Riloff, 1996), and other state-of-the-art neural meth-
ods. For both Riloff and our method, we report the results
using 5 and 100 patterns learned by the two approaches. Ad-
ditionally, we add the performance when using all patterns.

indicates that our graph-based algorithm general-
izes better in the minimal supervision setting. We
discuss the results in detail below.

6 Analysis and Discussion

6.1 PatternRank vs. Neural Methods
The results in Table 1 show that our method outper-
forms (or, at least, performs equivalently with) all
neural methods in the 1-shot setting, and performs
competitively in the 5-shot one. Using all rules we
obtain a performance of 14.06 in the harder 5-way
1-shot case, outperforming the previous state-of-
the-art of 12.39 by over 1.5 F1 points. This strong
performance is preserved even if we use only 100
rules.8 This confirms our intuition that there is
value in graph-based approaches in the neural era,
especially in settings with minimal supervision,
which are closer to real-world applications of rela-
tion extraction. Our conjecture is that teleportation
reduces sparsity by allowing patterns that overlap
with patterns that predominantly match the seed
relations to obtain a high score. At a high level,
this approach acts akin to a guided wisdom of the
crowd.

Importantly, note that our method produces a rel-
atively small number of interpretable rules, which
is a radical departure from these neural methods.
We argue that this is a step forward towards reduc-
ing the high maintainability cost of neural systems.

One potential argument against our method is
that it needs an external text corpus at training time.
For example, in this work we used UMBC (Han

8Using the top 100 rules per support sentence translates to
using approximately 13% of all the patterns found.
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et al., 2013). However, so do neural methods: all
neural methods reported here rely on transformer
networks, which have been pretrained on much
larger resources than the corpus we used.

6.2 PatternRank vs. Riloff’s RlogF

We compare the scores proposed by our method
with the scores proposed by the RlogF scoring func-
tion Riloff (1996), which is closest in spirit to our
direction. We do not include in this analysis other
bootstrapping approaches, such as (Gupta and Man-
ning, 2014; Collins and Singer, 1999), which focus
on other NLP tasks, such as named entity recogni-
tion. RlogF takes into consideration the number of
times a rule matched a seed compared to the total
number of matches, as follows:

RlogF (patterni) =
Fi

Ni
· log2(Fi)

where Fi is the number of times patterni matched
a known good relation and Ni is the total number of
matches of patterni. This scoring function treats
each pattern in isolation and considers every match
outside the seed set as negative.

As Table 1 shows, our approach outperforms
RlogF when using 5 patterns and 100 patterns re-
spectively.9 When using only 5 rules, our proposed
approach gives a 40% relative improvement. When
using 100 rules, our proposed approach improves
RlogF by over 1 F1 points. Overall, we perform
much better with few rules and when data is sparse,
but our proposed approach outperforms Rlogf in
all our experiments, regardless of the setting.

To better understand the differences between
the two approaches, we perform an analysis on
the patterns resulted from the support sentences
of Few-Shot TACRED dev partition. That is, for
each support sentence we learn patterns that will
be representative for that particular relation. Each
pattern has an associated score, given by our pro-
posed method. In the process, we keep track of
the number of good and total matches respectively,
which are used in RlogF. When comparing the per-
formance, we repeat our experiments 5 times and
report the mean and standard deviation. We used
the 5-way 1-shot split, unless otherwise stated.

9We omit running RlogF with all the rules because there is
limited benefit of ranking if everything is used, regardless of
score. As such, when using all the rules both methods obtain
the same score, as they should.

6.2.1 Score agreement
First, we compare the agreement between the
scores assigned by both methods. Since we are
interested in ranking and not in the values of the
scores, we use the Kendall rank correlation coeffi-
cient. Naively calculating Kendall’s tau between
the scores given by RlogF and the scores given by
PatternRank yields τ = 0.98 ± 0.02. However,
this is misleading because both scoring methods
tend to agree for the low-scoring patterns, which
represents the majority of the cases. If, instead, we
restrict our analysis to patterns that match seed
relations, we obtain τ = −0.19 ± 0.07.10 This
indicates that the rankings are more dissimilar
than the naive ranking would suggest. Manually
inspecting the scoring, we observed that RlogF
favors high precision patterns, regardless of
the number of matches. For example, for the
relation org:country_of_headquarters, our method
scored [ne=ORG] [lemma=in] [ne=LOC]
the highest, while RlogF scored [ne=ORG]
<conj_and [lemma=president]
>nmod_of [ne=LOC] the highest.

In order to better understand why RlogF over em-
phasizes precision, we mathematically compared
what it means for patternj to be scored higher
than patterni according to this algorithm. As-
suming that the patterni is known, starting from
RlogF (patterni) − RLogF (patternj) < 0, as-
suming Fi, Fj , Ni, Nj > 0 and defining: α = Fi

Ni
,

where 0 < α ≤ 1, and β =
Fj

Nj
, where 0 < β ≤ 1,

we have: αlog2(Fi) < βlog2(Fj), and, thus,

Fi < F
β
α
j . As such, if α is close to 1 (i.e., the ex-

pected value for correct patterns), patternj needs
exponentially more correct matches the smaller β
gets. For example, if Fi = 100, α = 1, for a
β = 0.75 we would need Fj = 465.

We show the histogram of the resulting scores
from both methods in Figure 4. Because RLogF is
an unbounded score, we normalize the rule scores
between [0, 1]. Additionally, we consider only the
sentences which resulted in more than 20 patterns,
in order to have robust statistics across sentences.11

We observe that our proposed method produces
scores that are more spread in the domain.

Additionally, we note that RlogF scored a higher
number of patterns in the higher end of the spec-
trum ([0.8, 1]) than our proposed method. Manu-

10Additionally, RlogF gives a score of 0 for patterns that
did not match at least 2 times any seed relations.

11That includes over 80% of the sentences.
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Figure 4: Histogram of scores for the obtained patterns,
scored with RlogF and PatternRank. For robust statistics, we
consider only sentences which result in more than 20 patterns.
Additionally, we normalize the pattern scores per sentence
to be in [0, 1]. We show the count in log scale for increased
visibility.

ally analyzing such cases, we observe that RlogF
tends to assign a high scores to patterns with low
number of total matches Ni, if its precision Fi is
high. When the good matches are sparse in the
corpora, this can result in rules that matched only a
few times the relations of interest to obtain a high
score, when compared with the other rules.12 This
is in line with our previous observation that RLogF
over-emphasizes precision.

6.2.2 Pattern importance

Following the observation in Section 6.2.1 that
RlogF tends to score more patterns higher than our
proposed method, we investigated the performance
of the system when taking the n highest-scoring
patterns, with both our method and RlogF. We show
the results in Figure 5. We note that our method
outperforms RlogF consistently until the number
of patterns for each sentence gets saturated. We
interpret this as further evidence that RlogF assigns
overly optimistic scores to patterns with high preci-
sion, which can be detrimental when the statistics
are not robust.

6.2.3 Random Jump Probability

Our proposed method makes use of the random
jump probability, which ensures that the resulting
matrix is ergodic. We assess the influence of this
hyper-parameter by analyzing the performance of
the method when varying it. We set the number of
patterns used for each method to 10. As highlighted
in Figure 6, we found our system to be robust to
hyper-parameter changes, outperforming RlogF for

12Changing Fi
Ni

· log2(Fi) to Fi
Ni

· log2(Ni) does not change
the histogram, nor the performance.

Figure 5: Performance of our method compared with RlogF,
varying the number of patterns accepted. We note that our
proposed method consistently outperforms RLogF up until the
number of patterns are saturated.

Figure 6: Performance of our method compared with RlogF,
when varying the random jump probability. We used the
top 10 best patterns according to each method. We average
over all the dev episodes. We note that our proposed method
consistently outperforms RLogF, and that the performance is
robust to changes in the random jump probability.

all the values we tested.13

6.3 Resulting Rules

Quantitatively, our proposed method outperforms
Riloff on the relation classification task regardless
of the number of patterns considered. Qualita-
tively, analyzing the top scored patterns, we ob-
serve that our proposed method tends to prefer
patterns which offer a better balance between pre-
cision and recall due to using the whole topol-
ogy of the pattern/relation graph. We show a
few examples of the top scored patterns with both
methods in Table 2 for two relations from devel-
opment: org:country_of_headquarters
and per:age.

6.4 Limitations

Our proposed method provides some advantages,
such as simplicity and greater interpretability. Nev-
ertheless, it has some limitations. First, our pro-

13A random jump probability of 0 is not possible because
then the graph might not be connected. A random jump prob-
ability of 1 is not useful because it translates to jumping from
node to node, randomly.
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Relations: org:country_of_headquarters
PatternRank (ours):
[ne=ORG]+ [lemma=in] [ne=LOC]+
[ne=ORG]+ [lemma=","] [ne=LOC]+
Riloff:
[ne=ORG]+ <nmod:poss [lemma=campaign]
>nmod_against [ne=LOC]+
[ne=ORG]+ <appos [lemma=institute]
>nmod_in [ne=LOC]+

Relations: per:age
PatternRank (ours):
[ne=PER]+ [lemma=","] [ne=NUMBER]+
[ne=PER]+ [lemma=be] [ne=NUMBER]+
Riloff:
[ne=PER]+ >appos [lemma=kan]
>nummod [ne=NUMBER]+
[ne=PER]+ >appos [lemma=student]
>det:qmod [ne=NUMBER]+

Table 2: Comparison between the top scoring patterns ac-
cording to our method and to RlogF. We observe that our
proposed method tends to score higher patterns that generalize
better, i.e., patterns with fewer lexical or syntactic constraints.

posed method depends on an external explicit cor-
pus. Typical pre-trained LMs compress the under-
lying text used for training in its parameters, while
our proposed method needs the explicit text.

Second, our assumption that the same
relation holds between entities of type
(ENTITY1,ENTITY2) might not always be
true. Nevertheless, this assumption was empir-
ically proven using distant supervision (Mintz
et al., 2009). Our empirical results add evidence
to its efficacy. However, this assumption must
be evaluated before employing this method in
downstream applications.

Third, though rules are generally less prone to
overfitting and offer good out-of-domain general-
ization, they may have limited expressivity when
compared to neural methods. Nevertheless, the ca-
pacity needs of a model should be evaluated on
a per-application basis. For example, (Tang and
Surdeanu, 2023) found that using only rules can
achieve a performance of over 65% F1 on the super-
vised TACRED task. This is comparable to state-of-
the-art neural methods, which by now obtain 70+%
F1,14 suggesting that rule-based methods can be
competitive on information extraction tasks.

14https://paperswithcode.com/sota/
relation-extraction-on-tacred

7 Conclusion

We propose a new pattern acquisition method for
relation extraction, which uses graph-based tech-
niques that operate over the entire topology of the
bipartite graph that contains candidate patterns and
their extracted relations.

We evaluate our proposed approach on the Few-
Shot TACRED task (Sabo et al., 2021), a more
realistic and harder variant of TACRED (Zhang
et al., 2017). Our proposed approach outperforms
or performs comparably with more opaque neural
methods. Further, we empirically show that our
proposed method performs better than the seminal
pattern scoring method proposed in (Riloff, 1996),
RLogF. Lastly, we highlight some of the limitations
of our proposed approach.

All in all, we provide compelling evidence that,
for specific applications, rule-based methods con-
tinue to offer comparable or better performance
than their neural counterparts, and, thus, they
should not be overlooked by current and future
research on information extraction.
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Abstract
Deep Learning (DL) is dominating the fields of
Natural Language Processing (NLP) and Com-
puter Vision (CV) in the recent times. However,
DL commonly relies on the availability of large
data annotations, so other alternative or com-
plementary pattern-based techniques can help
to improve results. In this paper, we build upon
Key Information Extraction (KIE) in purchase
documents using both DL and rule-based cor-
rections. Our system initially trusts on Optical
Character Recognition (OCR) and text under-
standing based on entity tagging to identify
purchase facts of interest (e.g., product codes,
descriptions, quantities, or prices). These facts
are then linked to a same product group, which
is recognized by means of line detection and
some grouping heuristics. Once these DL ap-
proaches are processed, we contribute several
mechanisms consisting of rule-based correc-
tions for improving the baseline DL predictions.
We prove the enhancements provided by these
rule-based corrections over the baseline DL re-
sults in the presented experiments for purchase
documents from public and NielsenIQ datasets.

1 Introduction

The intersection between NLP and CV algorithms
is a key factor in systems that require processing
visual and textual features. There are several use
cases in the retailing industry in which this com-
bination is typically applied, such as automated
item coding (Arroyo et al., 2019), classification of
promotions in digital leaflets (Arroyo et al., 2020)
or the application of Visual Question Answering
(VQA) to store observation systems (Arroyo et al.,
2022), among others. In general terms, a great part
of these use cases rely on KIE for automatically
obtaining data of interest from varied sources re-
lated to images and documents. One of the main
approaches based on KIE for retail and consumer
measurement is focused on the automated recog-
nition of data from purchase documents, such as
receipts and invoices.

Figure 1: Example of KIE in purchase documents from
the NielsenIQ dataset. We can see entities tagged as
product codes in gray, descriptions in green, quantities
in yellow and total prices in red. Moreover, the regions
corresponding to a same product jointly with their linked
entities are marked in a blue to purple scale.

The information of interest commonly acquired
by purchase decoding systems is associated with
the purchased products printed in the documents to
be recognized at item level, as depicted in Fig. 1.
Here, there are several entities of text related to
the characteristics of a purchased product that are
generally extracted, such as the following ones:

• Description: textual specification for repre-
senting a purchased product.

• Code: unique numerical identifier of a pur-
chased product.

• Quantity: total purchased units of the same
product.

• Price: total value of all the purchased units
from the same product.
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In this paper, we propose a novel approach
for KIE in purchase documents using DL and
rule-based corrections. The presented DL archi-
tecture initially extracts the words contained in
the document using OCR facilities. The recog-
nized words jointly with the processed image are
used as input of an entity tagging model based
on Transformers and Convolutional Neural Net-
works (CNNs), which is able to predict the facts
associated with the purchased products. Then, we
compute a line detection method based on GNNs
(Graph Neural Networks) with the aim of grouping
all the text lines corresponding to a same product
for entity linking. Finally, our pipeline applies
some rule-based refinements to the previously pre-
dicted tags to correct possible inconsistencies.

We observed that standard DL proposals for en-
tity tagging decrease their performance in complex
purchase documents with low image quality, so
false positives and false negatives commonly ap-
pear within the set of predictions. However, we
know some specific business rules related to pur-
chase documents for product descriptions, codes,
quantities and prices that can be applied in post-
processing, with the aim of enhancing the global
accuracy of the system. In this way, we can take ad-
vantage of the patterns learned by DL and combine
them with the human knowledge about the rules re-
lated to the purchase document decoding use case,
so both can be applied in a complementary way to
improve the quality of our whole solution.

In this regard, the main contributions derived
from the research presented in this paper are the
following ones:

• Design of a DL approach for KIE focused on
purchase documents, which fuses NLP and
CV in an architecture composed of OCR, en-
tity tagging and product line grouping for en-
tity linking.

• Definition of rule-based corrections in order to
enhance the initial predictions given by the DL
approach, demonstrating how pattern-based
techniques can complement DL to improve
performance.

• Presentation of a set of experiments in public
and NielsenIQ datasets with the aim of vali-
dating our DL approach for KIE in purchase
documents, jointly with the enhancements pro-
vided by rule-based corrections.

The contents of the paper are organized as fol-
lows: a review of the main state-of-the-art meth-
ods for KIE in document decoding is presented
in Section 2. Our approach for KIE in purchase
documents using DL and rule-based corrections is
detailed in Section 3. The main experiments and
results related to our DL proposal and the accu-
racy improvements of rule-based corrections are
discussed in Section 4. The final conclusions asso-
ciated with our research and some insights about
future works are finally summarized in Section 5.

2 Related Work

The rise of DL has provided powerful tools to the
fields of NLP and CV, which are the base of KIE
systems focused on purchase documents decod-
ing. This research line has also grown thanks to
the proliferation of related public datasets, such as
CORD (Park et al., 2019), SROIE (Huang et al.,
2019) or FUNSD (Jaume et al., 2019). Moreover,
companies working on retail intelligence also gen-
erate large amounts of data that are typically used
for researching in real use cases, such as NielsenIQ.

In the intersection between NLP and CV, OCR
techniques commonly represent the starting point
for recognizing the text contained in a document
or image. Methods based on OCR examine im-
ages pixel by pixel, looking for shapes that match
the character traits. The state of the art in OCR
comprises solutions that are open source and pro-
prietary. Tesseract OCR is one of the most effec-
tive open-source approaches (Anwar et al., 2022).
However, proprietary solutions such as Amazon or
Google OCR are currently obtaining much better
results in text recognition (Hegghammer, 2022).

Once the text is recognized, purchase document
decoding systems typically need to understand cer-
tain parts or extract specific information. In this
regard, the recent popularization of Transform-
ers (Vaswani et al., 2017) and architectures such as
BERT (Devlin et al., 2018) in the NLP community
has provided new tools for achieving the desired
results.

Among the different possibilities of text under-
standing, document decoding systems for purchase
facts are commonly associated with entity tagging.
This approach is applied with the aim of extract-
ing specific product information in purchase docu-
ments, such as product description, code, quantity
or price. Entity tagging is another state-of-the-
art field that has been benefited by Transformers.

12



(a) Input. (b) OCR. (c) Entity tagging. (d) Prod. line grouping. (e) Output.

Figure 2: Main stages of our approach for KIE in purchase documents using DL and rule-based corrections.
a) Input: initial data acquisition and image digitalization. b) OCR: detection and recognition of the words in the
image. c) Entity tagging: identification of purchase facts of interest (e.g., product codes, descriptions, quantities, or
prices). d) Product line grouping: identification of text lines and grouping by products of interest. e) Output: final
predictions after rule-based corrections (if any). In this case, the diagram shows an example were DL was enough to
properly predict all the tags, but we will depict specific cases along the paper in which rule-based corrections are
carried out with respect to the original entity tagging predictions.

For instance, the architecture defined by PICK (Yu
et al., 2021) is typically used in entity tagging sys-
tems, because its combination of Transformers to
get text embeddings and CNNs to obtain image
embeddings (He et al., 2016) provides one of the
top performances in the recent literature. Another
popular technique for entity tagging is LayoutLM
and its different versions (Xu et al., 2020, 2021a;
Huang et al., 2022), including an approach focused
on multilingual capabilities (Xu et al., 2021b).

Apart from entity tagging, entity linking is also
typically required to match each purchase tag
with each respective product in the purchase docu-
ment. Here, state-of-the-art techniques such as
SPADE (Hwang et al., 2021) or BROS (Hong
et al., 2022) propose end-to-end entity linking
approaches. However, our proposal considers a
method based on two stages, consisting of an ini-
tial entity tagging which is then linked by using line
detection algorithms and rule-based heuristics for
product lines grouping. For line detection, we take
advantage of recent GNN proposals such as (Qasim
et al., 2019) or (Carbonell et al., 2021).

Unfortunately, the state of the art does not con-
sider a lot of solutions for correcting wrong entity
tagging predictions, which is something typical in
complex documents. For this reason, we propose
novel rule-based corrections for improving auto-
mated entity tagging in purchase documents.

3 Our Approach

In this section, our whole pipeline proposed
for KIE in purchase documents using DL and
rule-based corrections is described. The core ar-
chitecture builds upon DL in order to obtain the
initial predictions for recognizing the text in the
documents and tag words into varied categories
from the different purchased products characteris-
tics. Once these baseline predictions are provided
by the DL pipeline, the implemented rule-based
corrections are applied to refine the final output.
We explain both DL and rule-based schemas with
the aim of fully understanding the complementary
solutions designed to extract the information of
interest from purchase documents.

3.1 DL Architecture
The pipeline based on DL is composed of three
main stages presented in Fig. 2 from input to output.
These stages are basically OCR, entity tagging and
product line grouping.

We explain the most common technical chal-
lenges for each stage along this section, jointly
with their implementations mainly based on DL
approaches. The goal is to understand how the
learned textual and visual features are impacting
the performance of the final system before check-
ing how rule-based patterns can complement them
to enhance the final output.
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3.1.1 OCR
The proper selection of a robust OCR engine is
crucial for the development of any document de-
coding system, because it is the bottleneck for the
subsequent stages in the DL architecture.

OCR converts purchase images into machine-
readable text data. The human visual system reads
text by recognizing the patterns of light and dark,
translating those patterns into characters and words,
and then attaching meaning to it. Similarly, OCR
attempts to mimic our visual system by using DL.

As discussed in Section 2, papers focused on
benchmarking OCR engines such as (Hegghammer,
2022) have demonstrated that propietary solutions
are currently yielding much accurate results than
open-source proposals. Then, we decided to build
upon the OCR provided by the Google Vision API1,
which provides some of the most remarkable results
in text recognition. It must be noted that the goals
of this paper are not focused on contributing a new
OCR engine, so we decided just to apply Google
Vision API features for recognizing text as a base
tool for the rest of the stages implemented for KIE
in purchase documents using DL.

The output obtained by the OCR service is com-
posed of the recognized text over the images and
the locations of the detected characters, words and
paragraphs, as shown in the visual example pre-
sented in Fig. 3. This output is used as input of the
subsequent stage for entity tagging in order to clas-
sify the different words into their corresponding
categories related to the varied purchased products
characteristics.

Figure 3: Visual example of OCR processing using
the Google Vision API over a purchase document. Im-
age is focused on a section where purchased products
are printed. The output shows the detected characters,
words and paragraphs over the image and the recognized
text.

1https://cloud.google.com/vision

3.1.2 Entity Tagging
KIE systems typically require algorithms to under-
stand the recognized text and categorize some parts
of it. In this sense, entity tagging is used with the
aim of categorizing information of interest from
purchased products, such as descriptions, codes,
quantities or prices.

There are different proposals in the recent state
of the art for computing entity tagging based on
DL. In our pipeline, we follow an encoder-decoder
architecture similar to the presented in works such
as (Yu et al., 2021). Within this schema, text fea-
tures are acquired by a Transformer and image fea-
tures are processed by a CNN, as shown in Fig. 4.

Figure 4: Base architecture for entity tagging using DL.
Tranformers and CNNs are applied for extracting text
and image embeddings, respectively.

The combined embeddings (CE) are obtained
by fusing the image (IE) and text (TE) embed-
dings using an element-wise addition operation,
as formulated in Eq. 1. Previously, IE and TE
are outputted by the encoders into a vector derived
from the CNN (ie(x)) and Transformer (te(x)) fea-
tures respectively, as shown in Eq. 2 and Eq. 3. The
encoders (θ) in each case are defined in Eq. 4 and
Eq. 5, where is(x) represents the input image seg-
ments and ts(x) the corresponding text segments.

CE = IE ⊕ TE (1)

IE = [ie1, ie2, ..., ieN−1, ieN ] (2)

TE = [te1, te2, ..., teN−1, teN ] (3)

ie(x) = cnn(is(x), θcnn) (4)

te(x) = transformer(ts(x), θtransformer) (5)

It must be noted that we decided to use a DL
encoder-decoder architecture based on Transform-
ers and CNNs because it is one of the most suc-
cessful approaches in the state of the art, as we will
discuss in the experiments presented in Section 4.
However, our subsequent rule-based corrections
over DL predictions could be adapted to any other
entity tagging technique focused on similar DL
schemas.
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3.1.3 Product Line Grouping
Once entity tags are initially recognized for a pur-
chase document, they are grouped by product to
know their relationships and association with spe-
cific purchase characteristics. This entity linking
is performed by applying a product line grouping
step that uses DL and some grouping heuristics.

Firstly, the lines of the document must be in-
dividually detected. To do this, a GNN based on
(Qasim et al., 2019) is implemented with the aim of
connecting the different words previously extracted
as entity tags of interest in a same line. This GNN
proposes an architecture based on graph networks
that combines the benefits of CNNs for visual fea-
ture extraction and graph networks for dealing with
the problem structure.

After detecting the individual lines, some heuris-
tics are applied to group the lines corresponding to
a same product, as illustrated in Fig. 5. The steps
of this grouping process are the following ones:

1. Take the first individual line detected (from
top to bottom in Y axis) and check if there are
product description entities. If not, continue
searching until the grouping algorithm finds
the first line with a product description.

2. Once the algorithm finds the line with product
description entities, there are two options:

(a) If the line also contains a product quan-
tity and price (codes are not always avail-
able according to business rules), all the
information of interest is located in that
line and can be individually grouped.

(b) If the line only contains description tags,
go to step 3.

3. Check if the next line contains another descrip-
tion or any other tag, there are two options:

(a) If there are only description tags, it
means that the whole product description
covers more than one line. The algorithm
will search until it finds a line containing
any other entity different from descrip-
tion before closing the group of lines.

(b) If there are tags such as product quantity
or price, the group of lines can be directly
closed. Then, the algorithm takes the
previously accumulated lines for the cur-
rent product and combines their bound-
ing boxes to obtain the final product line
grouping.

(a) Line detection. (b) Product line grouping.

Figure 5: Visual example from line detection to product
line grouping. On the left image, the individual lines
detected by the GNN from entities of interest are repre-
sented in purple. On the right image, the final product
line groups are depicted in red, jointly with the entity
tagging words of interest in blue.

3.2 Rule-based Corrections

Current solutions for document decoding trust on
DL for varied algorithms related to NLP and CV,
as we previously reviewed in our architecture for
KIE in purchase documents. Unfortunately, the
high variety of formats, qualities and languages
in these documents makes difficult to train mod-
els able to generalize to every situation. Then, we
can expect some errors in the baseline entity tag-
ging predictions provided by a DL pipeline. These
errors are not always possible to correct, because
in some cases the associated text is very difficult
to recognize and understand. However, there are
some other cases in which we can apply business
rules and human knowledge to find and ameliorate
DL errors in predictions.

It is possible to correct some of the missed ele-
ments in the initial tags (false negatives) and even
the ones that are wrongly detected (false positives)
to replace them with the correct ones. Product de-
scriptions are the core of our product line grouping
heuristics because they are generally the most ac-
curate in automation and usually contain several
words. In the proposed rule-based corrections for
entities, we focus on tags that are commonly com-
posed of only one word based on numbers, which
are a typical source of issues in purchase document
decoding. These entity tags are mainly product
codes, product quantities and product prices. It
must be noted that although we focus on these com-
mon purchase tags, the rule-based corrections pre-
sented in this paper could be adapted or updated for
other purchase tags depending on the requirements
of a specific use case.

15



3.2.1 Corrections in Product Codes

Product codes do not always appear as part of the
product information in purchase documents. How-
ever, when they are included among these data,
they are typically the highest integer number in a
product line grouping, as can be seen in the exam-
ple presented in Fig. 6. Then, in case we cannot
find the product code with the initial DL-based en-
tity tagging, we can re-check if it is available by
applying the rule formulated in Eq. 6 and Eq. 7,
where TWpr is a vector composed of all the words
(tw(x)

pr ) that are not tagged inside a specific product
group. It must be noted that codepr will be only
corrected if the number resulting from applying
Eq. 7 is higher than the minimum integer value
among all the remaining words that are not tagged
from DL predictions.

TWpr = [tw(1)
pr , tw

(2)
pr , ..., tw

(N−1)
pr , tw(N)

pr ] (6)

codepr = max(integer(TWpr)) (7)

In this case, we just try to find the missing code
for a product if it has not been previously detected
in order to solve false negatives, but it could be
also applied for correcting false positives from DL
predictions if required. In that scenario, low confi-
dences associated with DL predictions in entity tag-
ging could help to find candidates to be corrected.
However, we decided to fix only false negatives and
trust on DL for the rest of predictions, with the aim
of obtaining the highest benefit from both DL pre-
dictions and rule-based corrections, without an im-
plicit dependency on confidence thresholds. In fact,
this schema obtains a remarkable enhancement in
performance according to the results presented in
Section 4.2, without adding the extra complexity
and possible issues related to also modifying ex-
plicit DL predictions. A similar way of correcting
false negatives is proposed for product quantities
and prices.

3.2.2 Corrections in Product Quantities

Product quantity is another entity tag typically
printed in purchase documents that can be fixed
in several cases during post-processing by applying
rule-based corrections. In this regard, we must con-
sider that this value usually represents an integer
number close or equal to one.

According to the previous considerations, we
can search for the lowest integer number in a prod-
uct line grouping in case we did not initially find
this tag with DL-based entity tagging, as depicted
in the visual examples that are presented in Fig. 7.

More formally, the definition of the rule associ-
ated with this correction for missed product quan-
tities is formulated in Eq. 8. It must be noted that
quantitypr will be only corrected if the number
resulting from applying Eq. 8 is lower than the
maximum integer value among all the remaining
words that are not tagged from DL predictions.

quantitypr = min(integer(TWpr)) (8)

3.2.3 Corrections in Product Prices
Product prices are commonly represented by float
numbers. In the use case exposed along this paper,
we specifically tag the total prices per product, so it
is expected to find the highest float number in these
situations. Then, if DL predictions are not able to
find a total price for a product line grouping, the
rule-based correction formulated in Eq. 9 is applied
to check if it is possible to find a word that is not
tagged fulfilling these requirements.

pricepr = max(float(TWpr)) (9)

4 Experiments

The main goal of the presented experiments is
to verify the performance of our DL pipeline for
KIE in purchase documents and demonstrate how
rule-based corrections can increase final accuracy.

Initially, some public datasets are used to obtain
performance metrics with the aim of comparing
different entity tagging architectures with respect
to our proposal based on an encoder-decoder built
upon Transformers and CNNs, which is inspired
by (Yu et al., 2021). The goal of this experiment
is to validate that even a top state-of-the-art tech-
nique for entity tagging based on DL is far from
perfection, so rule-based corrections can provide
an added value for the most common error cases.

Besides, a dataset acquired by NielsenIQ is used
to test the performance of the whole pipeline, in-
cluding quantitative comparisons related to the
improvements provided by rule-based corrections.
Some qualitative examples from the NielsenIQ
dataset can be reviewed in Figs. 6, 7 and 8.
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(a) Baseline entities. (b) Product line grouping. (c) Corrected entities for codes.

Figure 6: Visual examples of product code correction (in gray) based on rule-based heuristics.

(a) Baseline entities. (b) Product line grouping. (c) Corrected entities for quantities.

Figure 7: Visual examples of product quantity correction (in yellow) based on rule-based heuristics.

(a) Baseline entities. (b) Product line grouping. (c) Corrected entities for prices.

Figure 8: Visual examples of product price correction (in red) based on rule-based heuristics.
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Method Main reference Parameters f1-score
CORD SROIE FUNSD

BERT (Devlin et al., 2018) 110M 89.7 91.0 60.7
LayoutLMv1 (Xu et al., 2020) 113M 94.7 94.4 78.6
LayoutLMv2 (Xu et al., 2021a) 200M 94.9 96.2 82.7
LayoutLMv3 (Huang et al., 2022) 133M 96.5 96.4 90.3
LayoutXLM (Xu et al., 2021b) 345M 95.7 96.1 82.7

SPADE (Hwang et al., 2021) 110M 91.5 93.2 71.6
BROS (Hong et al., 2022) 139M 95.3 95.5 81.2
PICK (Yu et al., 2021) 68M 95.2 96.1 82.5

Table 1: Comparison of state-of-the-art methods for entity tagging in the CORD, SROIE and FUNSD datasets.

4.1 Datasets

The main characteristics of the datasets used in our
experiments are briefly reviewed here. The public
datasets evaluated are CORD, SROIE and FUNSD.
Apart from this, we also perform specific tests for
our use case related to KIE in purchase documents
by means of the NielsenIQ dataset.

4.1.1 The CORD Dataset
The COnsolidated Receipt Dataset (CORD)2 is fo-
cused on receipt understanding for entity tagging
and linking. The dataset includes 800 receipts for
the training set, 100 for the validation set and 100
for the test set. A photo and a list of OCR anno-
tations are included for each receipt. For entity
tagging, there are 30 classes related to different in-
formation from shops and restaurants in Indonesia.

4.1.2 The SROIE Dataset
The Scanned Receipts OCR and Information Ex-
traction (SROIE)3 dataset is composed of a scanned
collection from 1000 store receipts. 600 images are
used for training and 400 for testing. Each receipt
contains around about four key text fields for entity
tagging. The text annotated in the dataset mainly
consists of digits and English characters.

4.1.3 The FUNSD Dataset
The Form Understanding in Noisy Scanned Docu-
ments (FUNSD)4 dataset includes documents con-
taining forms. It is composed of 199 scanned docu-
ments, where 9707 semantic entities are annotated
from 31485 words. 149 images are used for train-
ing and 50 for testing. There are 4 semantic entities:
header, question, answer and other.

2http://github.com/clovaai/cord
3http://rrc.cvc.uab.es/?ch=13
4http://guillaumejaume.github.io/FUNSD

4.1.4 The NielsenIQ Dataset

Commonly, public datasets related to purchase doc-
ument decoding include varied tags that are not
always fitting the requirements of a particular use
case. In our system, we want to specifically de-
code descriptions, codes, quantities and total prices
per product. Then, we have used our own labeled
data from NielsenIQ5 considering the previously
specified purchase tags to train and evaluate our full
pipeline. As this dataset is composed of proprietary
images, we can not publicly share them, but you
can check their main characteristics in the example
presented in Fig. 1. The images were captured with
smartphones in different countries, with more than
10000 samples. Several challenges are considered
due to the characteristics of data acquisition, such
as different formats per retailer and country, mul-
tiple languages, or capturing quality for acquired
images (e.g., varied resolutions, shadowing effects,
blurring, oclussions, etc.).

4.2 Results

Based on the previously described datasets, we
have processed several results regarding the state of
the art in entity tagging and our whole KIE pipeline.
The final goal is to measure the improvements in
our DL system provided by the proposed rule-based
corrections.

4.2.1 Entity Tagging Results

In Table 1, the base architectures of several ap-
proaches for entity tagging introduced in Section 2
are compared. We analyze the number of pa-
rameters for each approach and f1-scores in the
public datasets introduced for document decoding
(CORD, SROIE and FUNSD).

5http://nielseniq.com
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Experiments
for entity tagging

f1-score
Descriptions Codes Quantities Prices Whole products

With only DL 83.8 77.8 75.5 73.1 65.1
With rule-based corrections 84.0 90.2 89.7 87.1 78.3

Table 2: Results in the NielsenIQ dataset for entity tagging using only DL vs adding rule-based corrections.

Experiments
for the whole pipeline

f1-score
Descriptions Codes Quantities Prices Whole products

With only DL 65.3 58.9 56.9 54.6 24.2
With rule-based corrections 65.4 69.4 69.0 66.4 35.1

Table 3: Results in the NielsenIQ dataset for the whole pipeline using only DL vs adding rule-based corrections.

As discussed in Section 3.1.2, we decided to ap-
ply an entity tagging schema based on an encoder-
decoder built upon Transformers and CNNs. This
architecture is inspired by the PICK algorithm de-
scribed in (Yu et al., 2021). We made this decision
supported by the results presented in Table 1, where
PICK obtained one of the top performances in the
three tested public datasets and using the lowest
number of parameters (68M). This trade-off allows
to have a high accuracy in DL predictions for entity
tagging tasks jointly with light and efficient mod-
els. The average f1-score of LayoutLMv3 is the
highest one and slightly better than the f1-scores
obtained by PICK, but the number of parameters
of LayoutLMv3 is almost double (133M). In any
case, there is a margin of improvement regarding
f1-scores for all the approaches that is expected to
be reduced with our rule-based corrections, as will
be experimented in the next section.

4.2.2 Whole KIE Pipeline Results
In these final experiments, we use the described
NielsenIQ dataset for evaluating the improvements
provided by our rule-based corrections with respect
to the baseline DL predictions in KIE for purchase
documents.

In Table 2, we present results for entity tagging
including product descriptions, codes, quantities
and prices. Besides, we also add a field named
whole products, where a true positive represents
a detected product with all its tags perfectly pre-
dicted. As can be seen, the rule-based corrections
increase the performance of the mainly corrected
tags, with an improvement in f1-score of about
13-14 points for codes, quantities and prices. These
results clearly demonstrate how the combination
of DL and rule-based approaches provides a higher
performance in KIE for purchase documents.

With the aim of fully validating our proposal, we
also present results for our whole pipeline in Ta-
ble 3. This experiment includes f1-scores not only
based on entity tagging, but also on OCR and prod-
uct line grouping. We can see a general decrease
in performance with respect to Table 2, especially
because of the more restrictive metrics calculated
in this case. In particular, OCR predictions must
be fully matched with the ground-truth word to
consider a true positive jointly with the rest of con-
ditions, so low quality images are greatly affected
by these errors. Then, we can appreciate other chal-
lenges in performance related to KIE apart from
entity tagging. In any case, the results for the whole
pipeline shown in Table 3 demonstrate again the
improvements provided by rule-based corrections
with respect to baseline DL predictions.

5 Conclusions and Future Work

The DL era has provided outstanding tools to solve
complex problems in fields such as NLP and CV.
Unfortunately, generalization and scalability to dif-
ferent use cases are still an open challenge.

In KIE for purchase documents, DL results
can be degraded in cases associated with complex
formats, low resolution or multilingual scenarios,
among others. However, we have demostrated how
rule-based corrections can complement DL archi-
tectures to enhance the performance of document
decoding in the most difficult scenarios.

We have presented a basic set of rules based on
business knowledge for correcting some common
purchase tags, but more general rules could be ex-
plored in the future. Besides, further works could
also include confidences application to rule-based
corrections or similar post-processing rules for im-
proving other KIE tasks such as OCR extraction.
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Abstract

We explore the task of generating long-form
technical questions from textbooks. Semi-
structured metadata of a textbook — the table
of contents and the index — provide rich cues
for technical question generation. Existing liter-
ature for long-form question generation focuses
mostly on reading comprehension assessment,
and does not use semi-structured metadata for
question generation. We design unsupervised
template based algorithms for generating ques-
tions based on structural and contextual pat-
terns in the index and ToC. We evaluate our
approach on textbooks on diverse subjects and
show that our approach generates high quality
questions of diverse types. We show that, in
comparison, zero-shot question generation us-
ing pre-trained LLMs on the same meta-data
has much poorer quality.

1 Introduction

We address automated generation of long-form
technical questions from textbooks. Such questions
can then be used for technical assessments, such as
in interviews and examinations. Existing work on
long-form question generation mostly focuses on
questions for reading comprehension assessment
(Dhole and Manning, 2020; Bang et al., 2019; Xiao
et al., 2020; Zhao et al., 2018; Back et al., 2021;
Cui et al., 2021; Huang et al., 2021).

We observe that textbook metadata — specifi-
cally, the index and the table of contents (ToC) —
provide rich cues for question generation. Fig.1
and Fig.2 show fragments from the index and the
ToC of a textbook on Python. The index structure
is hierarchical and often parsed into an subject and
a context (e.g. functions and classes, managing).
The ToC is similarly hierarchical. The main chal-
lenge in question generation from unrestricted nat-
ural language content is identifying the relevant en-
tity (or entities) and their context. The mentions of
some of the relevant entities is often far away from

the context, and the context may also use complex
linguistic constructs. In contrast, the grammar for
the metadata is significantly restricted, thereby sim-
plifying the detection of the entities and contexts.
Additionally, their hierarchical structure compactly
and completely captures relevant context. In this
paper, we focus on automatically generating tech-
nical long-form questions using the index and ToC
of textbooks. While structured or semi-structured
data has been used in NLP tasks such as knowl-
edge graph construction (Suchanek et al., 2007),
table-to-text generation (Wang et al., 2020b) and
factoid question generation has been explored from
knowledge-graphs (Wang et al., 2020a; Han et al.,
2022), to the best of our knowledge there is no
existing work that uses semi-structured content to
generate questions either for technical assessment
or for reading comprehension.

We use structural patterns in the index and ToC
to design question templates of varying types and
complexity, and then use unsupervised regular
expression-based algorithms to generate questions
by instantiating these templates using index and
ToC entries. Template based approaches have been
used in question generation from free text, typ-
ically with higher precision than deep learning
based counterparts, while generating fewer ques-
tions (Fabbri et al., 2020; Puzikov and Gurevych,
2018; Yu and Jiang, 2021). However, we are not
aware of use of templates over semi-structured con-
tent for question generation.

Figure 1: Fragment of a Python text-book Index

We apply our approach to generate questions
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Figure 2: Fragment of a Python text-book ToC

from multiple textbooks on diverse subjects such
as Machine Learning, Java and PL/SQL to demon-
strate its generality. Using automated and manual
evaluation, we show that the generated questions
are complex and diverse while having very high
quality. We compare our approach with zero-shot
question generation using LLMs, GPT-3 (Brown
et al., 2020) and BART (Lewis et al., 2020). We
show that these perform poorly in terms of both
validity and diversity of the generated questions.

2 Structural Templates for Q.Generation

In this section, we describe our approach for ques-
tion generation from text-book index and ToC using
structural templates. We focus on generating ques-
tions that are answerable from book context. These
have reference answers in the book, which can be
used reliably for assessment. Consider the index
fragment from Fig.1. WHAT ARE THE BENEFITS

OF DECORATORS? and WHAT IS THE RELATION

BETWEEN DECORATOR ARGUMENTS AND CLASS

DECORATORS? are meaningful questions, but the
index provides no evidence that the book contains
the answers. In contrast, the index suggests that
WHAT ARE CLASS DECORATORS? and WHY DO

WE NEED DECORATORS? are answerable from the
book. We want to generate the two latter questions
but not the first two.

Index Indexes are typically structured as a forest
of trees. Our example fragment shows one such
tree. It typically mentions one or more root entities
(e.g. decorators), sometimes with an additional
comma separated context (e.g. libraries, third-
party). Each child entry is about a specific context
of the root entity. These may be one or more re-
lated entities (call and instance management) or
attributes and instances (class decorators), some-
times with additional connecting context, which
maybe a prefix (e.g. versus function annotations)
or a comma separated suffix (e.g. functions and
classes, managing). The context may also be about
specific tasks involving the root entity (e.g. coding,
type testing with). This structure may repeat at the

third level. We use NLTK to detect the entities as
simple or compound noun phrases, and contexts as
involving prepositions (IN) and gerunds or present
participles (VBG), making use of separator com-
mas when present.

The templates used for generating questions
from index entries are summarized in Tab.4 in the
Appendix. First, we discuss question templates
based on a single index entry containing an entity
phrase e, a context c, or both. (a) WHAT IS/ARE

e?, if e is present; (b) WHAT IS/ARE c OF e?, if
e and c are both present, and c matches the exam-
ples regex (e.g. example(s)|instance(s) (of)∗); (c)
WHAT IS/ARE c OF e?, same as above with c match-
ing the uses regex (use(s)|usage|application(s)
(of)∗; (d) WHAT IS/ARE c OF e?, same as
above with c matching the property regex
(part(s)|component(s)|step(s)...(of|for)∗).

More interesting templates are those that con-
sider a parent index entry containing entity ep, and
a child entry containing entity ec and connecting
context c. Some are based on simple patterns: (e)
HOW DO YOU COMPARE ep AND ec?, if c matches
the comparison regex (vs|versus|compared to|...);
(f) WHAT IS THE RELATION BETWEEN ep AND

ec?, if c is ‘and’. We also generate the uses, ex-
amples and properties questions for ep when ec is
absent and c matches the corresponding regex.

Other connecting contexts c specify action some-
times involving one or two child entities ec1 and ec2
(e.g. using decorators in functions). The specific
action patterns for c are VBG, VBG IN, VBG ec1,
VBG IN ec1 and VBG ec1 IN ec2. The correspond-
ing question templates are WHAT CAN YOU SAY

ABOUT VBG followed by ep, IN ep, ec1 FOR ep,
IN ec1 FOR ep, and ec1 IN ec2 FOR ep, respectively.
Though HOW DO YOU VB is a more natural pre-
fix, lemmatization frequently fails to recover the
correct base verb from the VBG form.

A frequent pattern for the child context c is end-
ing with preposition (e.g. debugging with, coding
of, karma configuration for). The corresponding
question template is WHAT CAN YOU SAY ABOUT

c ep? when the token preceding the preposition is
VBG, and WHAT IS/ARE c ep? otherwise.

Any parent entry e that is unused in the main
question template, is used to construct a question
prefix ‘REGARDING e, ’ to completely specify the
context, (e.g. REGARDING DECORATORS, WHAT

ARE CLASS DECORATORS?).
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Table of Contents The restricted structure of the
index makes detection of entities and contexts sim-
ple. The same restriction, however, prevents the
templates from drawing upon context to add natural
variety to generated questions. In contrast, Fig.2 il-
lustrates that ToC entries are often complex phrases
and even complete sentences and questions. How-
ever, the grammar is still considerably restricted
compared to that for natural language used inside
the book. This forms a nice trade-off between ease
of detection and naturalness of the expression. The
ToC is however much smaller than the index.

ToC entries are of different types: question (Q)
(e.g. What’s a Decorator?), question phrase (QP)
(e.g. Why Decorators?), sentence (S) (contain-
ing non-gerund verb) (e.g. Decorators Manage
Functions and Classes, Too), VBG phrase (VP)
(e.g. Using and Defining Decorators), simple noun
phrase (SNP) (e.g. Class Decorators) and complex
noun phrase (CNP) (with coordinating conjunc-
tions) (e.g. Things to Remember about Decorators).
We detect these types using simple regular expres-
sions involving POS tags and small dictionaries.
The templates for the above categories are Q, CAN

YOU EXPLAIN QP?, DO YOU THINK S?, WHAT

CAN YOU SAY ABOUT VP?, WHAT IS/ARE SNP?
and WHAT CAN YOU SAY ABOUT CNP?, respec-
tively. As for the index, we recursively construct
the question prefix using remaining parents. The
parent e can again be of one of the above types.
We construct the prefix based on the parent’s type:
‘REGARDING e, ’ for CNP and QP, ‘FOR e, ’ for
VBG, ‘SINCE e, ’ for S, and ‘e ’ for Q, respec-
tively. The templates used for generating questions
from ToC entries are summarized in Tab.3 in the
Appendix.

3 Experimental Evaluation

In this section, we present experimental evaluation
of our question generation approach.
Data: We use text books on diverse subjects
— Python (Lutz, 2013), PLSQL (Feuerstein and
Pribyl, 2014), Java (Schildt, 2007), Machine Learn-
ing (Murphy, 2012) and Deep Learning (Goodfel-
low et al., 2016). The first two have the richest
metadata structure, with 3-level indexes and ToCs.
In contrast, Java has a 2-level index, while ML and
DL have 1-level indexes and DL has 2-level ToCs.
We process the textbook PDFs to extract their index
and ToC automatically. Details are in the appendix.
Deep Models: We compare with two state-of-

the-art LLMs. For GPT-3 (Brown et al., 2020),
we use its Interview Questions preset. We take
BART (Lewis et al., 2020) pre-trained for (factoid)
question generation on SQuAD (Rajpurkar et al.,
2016), and post-train it for long-form question gen-
eration on the MASH-QA dataset (Zhu et al., 2020).
This has been previously used for long-form answer
extraction. We use contexts and their correspond-
ing questions for post-training. Details of hyper-
parameter settings are in the appendix. For both
models, we split the index and ToC forests into
complete individual trees, and provide one tree as
one context. For GPT-3, we construct a prompt
by concatenating a context with a new line and
“Generate interview questions from this book index”
(alternatively “book table of contents”).

Evaluation: For each approach, we evaluate dif-
ferent aspects of their quality. A question is (a)
context-relevant if it includes (non-trivial) terms
from the context. It is (b) context-closed if its non-
trivial terms only from the context, and only from a
single hierarchy path. These checks invalidate the
two example unanswerable questions at the start
of Sec.2. A question is (c) context-complete, if
it includes non-trivial terms from each ancestor
entry in the hierarchy. In Fig.1, a question that
just mentions coding, without referring to decora-
tors and class decorators is incomplete. The (d)
level-span of a question is the number of hierar-
chy levels that contribute terms to the question. In
Fig.1, a question only about decorators has level
span 1. It increases to 2 by additionally includ-
ing class decorators, and to 3 on further including
coding. We obtain a question form / template by
masking out copied terms from the context. In ad-
dition to varying level spans, (e) the number of
unique question forms is an indicator of diver-
sity of questions. These measures are computed
automatically (details in appendix). In addition, we
manually evaluate the (f) validity of a question by
checking its semantic correctness, completeness,
and answerability from book context.

Results: The results for Index questions are shown
in Tab.1a. Note that the first evaluation is context-
relevance. All other evaluations are performed
only on context-relevant questions. The main pat-
tern is similar across subjects. GPT-3 generates
the largest number of questions, but ranks the low-
est in context-relevance. It also scores poorly in
context-closedness.Structured templates generate
fewer questions but with very high quality. BART
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Subject #Entry Model #Q. %Cx-Rel %Cx-Cmp %Cx-Cl %L-Span #Q.Form %valid1 2 3

Python 1822
BART 728 96 93 63 94 6 0 10 76
GPT-3 6251 23 72 24 84 15 1 19 48
STemp 1216 100 99 100 50 44 5 15 80

Java 2541
BART 1753 81 96 67 97 3 NA 9 86
GPT-3 15522 13 84 28 86 14 NA 26 48
STemp 2294 100 100 100 73 27 NA 11 96

DL 585
BART 589 98 100 80 100 NA NA 3 78
GPT-3 3943 44 100 18 100 NA NA 5 34
STemp 556 100 100 100 100 NA NA 2 98

(a) Results for Index Question Generation

Subject #Entry Model #Q. %Cx-Rel %Cx-Cmp %Cx-Cl %L-Span #Q.Form %valid1 2 3

Python 906
BART 42 90 24 45 66 31 3 3 42
GPT-3 313 92 10 53 76 23 1 16 60
STemp 324 100 100 100 7 33 60 27 72

Java 866
BART 33 100 39 70 82 18 0 5 57
GPT-3 486 99 12 77 82 16 2 17 62
STemp 503 100 100 100 4 45 50 21 72

DL 184
BART 21 95 60 55 50 50 NA 6 48
GPT-3 175 85 19 74 92 8 NA 10 68
STemp 122 100 100 100 11 88 NA 11 84

(b) Results for ToC Question Generation

Table 1: Question generation results for BART, GPT-3 and Structural template (STemp) for different subjects.
#Entry: no. of index/ToC entries, #Q: no. of questions, %Cx-Rel: pct. of context-related, %Cx-Cmp: pct. of
context-complete, %Cx-Cl: pct. of context-closed, %L-span: 1, 2, 3 pct. of level-span 1, 2, 3, #Q-form: no. of
unique question forms, and %valid: pct. of manually verified valid questions. All columns after %Cx-Rel are
evaluated only for context-relevant questions. %L-span is NA when data has fewer than that number of levels.

generates the fewest number of questions but with
higher quality than GPT-3. However, BART and
GPT-3 questions are largely restricted to single en-
tries and do not span 2 or 3 levels. GPT-3 however
has more variety in question forms.

The results for ToC questions are in Tab.1b.
First, we note that here GPT-3 and structured tem-
plates (STemp) generate similar number of ques-
tions, while BART generates very few. All three
approaches mostly generate context-relevant ques-
tions. Context-closedness increases for BART
and GPT-3 compared to index questions, but is
still significantly lower than templates. Context-
completeness on the other hand drops for these two
approaches compared to index. In terms of level
span, BART and GPT-3 questions are again mostly
restricted to single entries while templates make
use of multiple levels. BART has very few ques-
tion forms, while those for GPT-3 and templates is
similar and higher.

Additional results for PL/SQL and Machine
Learning are included in the appendix.

The measures discussed so far are automated.
We also performed human validation for all sub-
jects on 50 randomly sampled questions from each
of the three approaches, after filtering out context-

irrelevant questions. For index questions, struc-
tured templates have very high validity. BART
performance is acceptable, but majority of GPT-3
questions are invalid. The situation is different for
ToC questions. While template questions have the
highest validity, it is much lower than for index.
The performance of GPT-3 increases significantly
while that of BART falls close to or below 50%.
Error Analysis: In validity evaluation, the re-
duced performance of STemp for ToC is largely
due to errors in type classification of entries. Unsur-
prisingly, POS pattern based classification misfires
more often for ToC entries than index entries. For
example, the ToC entry Bayesian inference when
σ2 is unknown? is misclassified as Sentence(S), in-
stead of Complex Noun Phrase(CNP). As a result,
the question is generated using the DO YOU THINK

template for S instead of the WHAT CAN YOU SAY

ABOUT template for CNP.
GPT-3 and BART errors are largely due to in-

troduction of additional irrelevant terms. This hap-
pens more for GPT-3 for shorter index entries, as it
fails to understand the context. As examples, from
the context wake-sleep algorithm, GPT-3 generates
the question WHAT ARE COMMON SLEEP DISOR-
DERS?, and from the context elif (else if) clause,
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BART generates the question WHAT IS THE ELIF

(ELSE IF) CLAUSE IN A CONTRACT?. Surpris-
ingly, BART makes such errors more frequently for
longer ToC entries.

Also, unlike GPT-3, BART typically generates
a single question per context, which is an index
or a ToC tree, even though it is post-trained with
multiple questions per context.

4 Conclusions

We have motivated the task of automated technical
question generation from semi-structured text-book
index and ToC. We have proposed an unsupervised
approach based on structured templates that make
use of their restricted grammar and hierarchical
structure. We have shows using extensive evalua-
tion that this approach performs better according to
many different aspects of quality on multiple text-
books on a variety of subjects compared to zero-
shot approaches using large language models.
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A Appendix

A.1 Textbook PDF Processing
We process the textbook PDFs to extract their in-
dex and ToC automatically. The task is to extract
the entries along with their levels in the hierarchy
from the ToC and index of the book PDFs. ToC
entries often have different text font and size to rep-
resent chapter, sub-chapter headers and different
indentation to represent different levels as shown in
Fig.2. Index entries mostly have same text font and
size but have different indentation to represent the
level of hierarchy as shown in Fig.1. We first use
pdfminer library to extract texts with the meta-
data such as text sizes, fonts, and text coordinates
from the PDFs. Then we write a wrapper on top
of pdfminer that uses this metadata to filter out
unnecessary parts (e.g. header, footers) from the
text and annotate different aspects(e.g. entry, level,
page no) of the index and ToC. Books from differ-
ent publishers have different text size, fonts and
coordinates for different elements. So the filtering
parameters need to customized to some extent for
each book.

A.2 Additional Results
The results for PL/SQL and Machine Learning are
shown in Tab.2. The observations for the three
models are very similar to those for the 3 subjects
in Sec.3.

A.3 Automated Evaluation
Here, we describe our automated evaluation algo-
rithms.

Context-relevance: We first identify non-trivial
terms by tokenizing a question using NLTK to-
kenizer and removing stopwords, wh-words and
prepositions using NLTK POS tagger. Then we
check for presence of these terms and entries in
ToC or index by using stemming and a synonym
dictionary. If at least one question term occurs in
an entry, then we mark it as context-relevant.

Context-closedness: A question is context-
closed if there exists a hierarchy path from root
to leaf in a single tree of the index or ToC that
contains all non-trivial terms in the question. We
first create a set of composite terms from all entries,
where a composite term is the longest contiguous

sequence of non-trivial terms in an entry. We iden-
tify composite terms in a question and map these
to some entry (or none) using Rouge-F1 score. We
finally check if all composite terms in the question
have been mapped, and also mapped to entries in a
single hierarchy path.

Context-completeness: After mapping com-
posite terms in a question to a hierarchy path of
entries, we check if for each matched entry in the
matched entry list, if its parent is also presents in
the list. If so, we mark the as context-complete.

Level-span: The level span of a question is
the number of distinct entries mapped to it in a
hierarchy path.

Question form: To extract the form of a ques-
tion, we mask all mapped terms in it. The resultant
masked string is the question form. Then we count
the number of distinct forms in a set of questions.
Note that, here we report number of question form
on context-closed questions.

A.4 Hyperparameter Settings
We experiment with BART-base (Lewis et al.,
2020) model pre-trained on SQuAD (Rajpurkar
et al., 2016) and post-train on MASH-QA data
(Zhu et al., 2020). All experiments are done on
10GB A100 GPU with 8 CPU cores and 30GB
RAM. We use batch size of 8 and train the model
for 10 epochs. We optimize the model parame-
ters using Adam optimizer with a learning rate of
0.0001.

For GPT-3, we use the Interview Question preset.
We set the temperature parameter to 0 to eliminate
randomness and keep the other parameters as de-
fault.

A.5 Templates Summary
Templates used for generating questions from hier-
archical index and ToC are summarized in Tab. 4
and Tab. 3 respectively.
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Subject #Entry Model #Q. %Cx-Rel %Cx-Cmp %Cx-Cl %L-Span #Q.Form %valid1 2 3

PL/SQL 748
BART 1329 98 92 70 92 8 0 22 74
GPT-3 10659 36 68 32 81 18 1 44 46
STemp 2330 100 99 100 44 51 6 16 92

ML 2418
BART 2418 97 100 78 100 NA NA 6 80
GPT-3 17855 32 100 15 100 NA NA 17 20
STemp 2254 100 100 100 100 NA NA 2 94

(a) Additional Results for Index Question Generation

Subject #Entry Model #Q. %Cx-Rel %Cx-Cmp %Cx-Cl %L-Span #Q.Form %valid1 2 3

PL/SQL 748
BART 31 100 35 68 74 26 0 3 39
GPT-3 329 98 3 74 81 18 1 11 52
STemp 357 100 100 100 4 28 67 13 90

ML 777
BART 32 100 25 72 72 28 0 4 69
GPT-3 366 100 9 80 76 23 1 15 68
STemp 344 100 100 100 5 28 66 20 74

(b) Additional Results for ToC Question Generation

Table 2: Question generation results for BART, GPT-3 and Structural template for different subjects. #Entry: no. of
index/ToC entries, #Q: no. of questions, %Cx-Rel: pct. of context-related, %Cx-Cmp: pct. of context-complete,
%Cx-Cl: pct. of context-closed, %L-span: 1, 2, 3 pct. of level-span 1, 2, 3, #Q-form: no. of unique question
forms, and %valid: pct. of manually verified valid questions. All columns after %Cx-Rel are evaluated only for
context-relevant questions. %L-span is NA when data has fewer than that number of levels.

Entry Types Example Entry Template Example
Question (Q) What’s a Decorator? Q What’s a Decorator?

Question Phrase (QP) Why Decorators? CAN YOU EXPLAIN QP? Can you explain
why decorators?

Sentence (S)
Decorators Manage
Functions and
Classes, Too

DO YOU THINK S? Do you think decorators
manage functions and classes?

VBG Phrase (VP) Managing Functions
and Classes

WHAT CAN YOU SAY
ABOUT VP?

What can you say about
managing functions and classes?

Simple Noun Phrase (SNP) Class Decorators WHAT IS/ARE SNP? What are class decorators?

Complex Noun Phrase (CNP) Things to Remember
about Decorators

WHAT CAN YOU SAY
ABOUT CNP?

What can you say about things to
remember about decorators?

Table 3: Types of ToC entries and templates used for generating questions from these with examples.
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Entry
Pattern Condition Example

Entry Template Example

Single e decorators WHAT IS/ARE e? What are decorators?

e, c or c e
c matches
‘use’, ‘example’,
‘property’ regex

decorators,
use WHAT IS/ARE c OF e? What are uses of

decorators?

Parent
Child

Pa: ep
Ch: ec, c or c ec

c matches
‘comparison’
regex

Pa: decorators
arguments
Ch: versus
function
annotations

HOW DO YOU
COMPARE
ep and ec?

How do you compare
decorator arguments
and function annotations?

c matches ‘and’

Pa: decorators
arguments
Ch: and
function
annotations

WHAT IS THE
RELATION
BETWEEN ep AND ec?

What is the relation
between decorators
and class decorators?

Pa: ep
Ch: c

c matches
‘use’, ‘example’,
‘property’ regex

Pa: decorators
Ch: examples WHAT IS/ARE c OF e? What are examples

of decorators?

Pa: ep
Ch:
VBG ec1 c2 ec2

ec1 , c2, ec2 = Null Pa: decorators
Ch: Coding

WHAT CAN YOU
SAY ABOUT
VBG ep?

What can you say
about coding
decorators?

POS(c2) = IN
ec1 , ec2= Null

Pa: decorators
Ch: type
testing with

WHAT CAN YOU
SAY ABOUT
VBG IN ep?

What can you say
about type testing
with decorators?

c2, ec2 = Null
Pa: loops
Ch: coding
techniques

WHAT CAN YOU
SAY ABOUT
VBG ec1 FOR ep?

What can you say
about coding
techniques for loops?

ec1 = Null
Pa: decorators
Ch: using
functions

WHAT CAN YOU
SAY ABOUT
VBG ep IN ec2?

What can you say
about using decorators
in functions?

POS(c2) = IN

Pa: performing
essential tasks
Ch: hiding
source code of
stored programs

WHAT CAN YOU
SAY ABOUT
VBG ec1 IN ec2
FOR ep?

What can you say
about hiding source
code of stored programs
for performing
essential tasks?

Table 4: Patterns and templates used for generating questions from index entries with examples. Pa and Ch denote
parent and child index entries respectively.
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Abstract 

Natural language understanding (NLU) is 

integral to task-oriented dialog systems, but 

demands a considerable amount of 

annotated training data to increase the 

coverage of diverse utterances. In this study, 

we report the construction of a linguistic 

resource named FIAD (Financial 

Annotated Dataset) and its use to generate 

a Korean annotated training data for NLU 

in the banking customer service (CS) 

domain. By an empirical examination of a 

corpus of banking app reviews, we 

identified three linguistic patterns occurring 

in Korean request utterances: TOPIC 

(ENTITY, FEATURE), EVENT, and 

DISCOURSE MARKER. We represented 

them in LGGs (Local Grammar Graphs) to 

generate annotated data covering diverse 

intents and entities. To assess the 

practicality of the resource, we evaluate the 

performances of DIET-only (Intent: 0.91 

/Topic [entity+feature]: 0.83), DIET+ 

HANBERT (I:0.94/T:0.85), DIET+ 

KoBERT (I:0.94/T:0.86), and DIET+ 

KorBERT (I:0.95/T:0.84) models trained 

on FIAD-generated data to extract various 

types of semantic items. 

1 Introduction 

Task-oriented dialogue (TOD) systems are rapidly 

growing in high demand among various industries 

seeking ways of improving service quality and 

coping with customers effectively. TOD systems 

primarily focus on helping users achieve specific 

purposes such as hotel accommodation, food order, 

and product recommendation. Natural Language 

Understanding (NLU) technology plays a critical 

role in TOD systems: it helps understanding the 

information conveyed by user utterances, 

classifying the intents and filling their slots. For 

example, in the utterance 카카오 뱅크 계좌 개설해 줘 
(khakhao payngkhu kyeycwa kayselhay cwe) 

‘Create a Kakao bank account,’ an NLU model has 

to classify the user's intent as ‘request for creating 

a bank account’, but also recognize the argument 

with the named entity 카카오 뱅크 ‘Kakao bank’, fill 

it in the ‘Bank Entity’ slot, and identify ‘account’ 

as an entity in banking service. 

NLU tasks such as intent classification and slot 

filling are usually implemented by supervised 

learning, requiring a large amount of annotated 

training data. However, it is hard to find publicly 

available Korean training datasets for TOD 

oriented NLU, due to privacy issues, and 

constructing them costs considerable time and 

human labor. In addition, since users produce 

diverse utterances with different terminologies and 

linguistic forms depending on domains, annotated 

training data should reflect that diversity in each 

domain. The performance of NLU models is likely 

to be directly affected by this aspect of the training 

dataset.  

Moreover, as most of the user utterances in TOD 

are meant to request specific information or actions, 

covering the linguistic patterns that occur in 

directives and questions is essential to increase the 

NLU coverage of diverse utterances. In Korean, 

discourse markers used in requests frequently 

contain certain patterns with word endings and 

performative predicates, which can be realized in 

different moods, e.g. -해 줘/봐(hay cwe/pwa). In 

order to classify Korean request utterances, such 

discourse expressions should be included in the 

training data. 

This study proposes a linguistic resource named 

Financial Annotated Dataset (FIAD), which allows 

for generating annotated training data in the 

banking CS domain. FIAD specifies linguistic 

forms with extensive linguistic variations, and has 

been constructed on the basis of a corpus of 
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banking app reviews. It consists of three parts: 

TOPIC(ENTITY, FEATURE), EVENT, and 

DISCOURSE-MARKER. Each part allows for 

generating words and multi-word expressions 

(MWEs) reflecting the characteristics of the corpus 

in terms of syntax, semantics, and discourse, and 

contains a meticulous description of their 

grammatical constraints in Local Grammar Graphs 

(LGG) (Gross, 1997, 1999). The combinations of 

the parts allows a generation of training data 

adjustable to a required size and linguistic 

characteristics. FIAD covers various types of 

discourse markers of directives and questions that 

are challenging for NLU of Korean sentences. 

The TOPIC part is comprised of ENTITY and 

FEATURE. ENTITY covers named entities, and 

FEATURE includes common nouns related to 

services. ENTITY and FEATURE are used to fill 

slots with detailed information. 

EVENT covers utterances expressing intents. It 

invokes modules of TOPIC to generate utterances 

in compliance with the syntactic and semantic 

constraints between an intent and the entities or 

services mentioned in the same utterance. 

DISCOURSE-MARKER contains a variety of 

discourse expressions with predicate endings and 

auxiliary verbs. This part is largely domain-

agnostic. It is modularized according to the Korean 

honorific system and sentence moods, and covers 

direct and indirect speech acts.  

A main graph specifies how the expressions 

described in the three parts can be combined into 

standalone utterances. 

FIAD generates named entities and utterances 

typical of banking apps or services, along with 

semantic annotations based on the rich linguistic 

resources. By selecting some of the LGGs, it is 

possible to generate NLU data of a given size, or 

tuned to some given politeness levels. It leads to the 

advantage of obtaining a vast amount of annotated 

training data containing typical and grammatically 

fit utterances with time efficiency and less 

workforce than by collecting or creating the data 

through crowdsourcing. 

Related Work 

Building a TOD system for a domain without 

enough available data resources requires collecting 

a significant amount of training data and carrying 

out a laborious annotation process. One of the 

 
1 https://aihub.or.kr/ 

popular open training datasets for TOD is the 

Airline Travel Information Systems (ATIS) dataset 

(Hemphill et al., 1990), which consists of 

utterances about requests for flight information and 

which is used for automated airline travel inquiry 

systems. 

The Wizard of Oz (WOZ) and template-based 

methods are popular for building training data for 

TOD systems. The WOZ method sets 2 participants: 

the wizard and the user. The wizard pretends to be 

a dialogue system, and the user does not know the 

wizard conversing with them is human. 

Budzianowski et al. (2018) introduces the Multi-

Domain Wizard of OZ dataset (MultiWOZ), which 

contains 10k dialogues and covers fully annotated 

conversations spanning over 7 domains. Asri et al. 

(2017) proposes the ‘Frames’ dataset which 

contains dialogues about booking a trip based on 

user requirements. 

The template-based method sets a fixed template 

which consists of entity slots and speech acts-

related expressions, and generates data by filling 

entities in slots of the template. Borhanifard et al. 

(2020) proposes a Persian dialogue dataset for 

online shopping dialogue generated by the 

template-based method. A dialogue system trained 

by using a mixture of template-based generated 

data and manually annotated data shows a decent 

performance. Şimşek and Fensel (2018) presents a 

template-based method for generating training data. 

The template structure is based on Web API 

annotation schema collected from ‘schema.org’. 

As for Korean data, C. Hwang et al. (2021) 

proposes a linguistic resource in the financial 

technology (fintech) domain. The linguistic 

resource consists of patterns of queries, complaints 

and requests in that domain, with fine-grained 

linguistic information, and it allows for generating 

and annotating question answering data. The Korea 

Institute of Science and Technology Information 

releases a Korean conversation dataset on AiHub 

(2018) 1 . The dataset covers domains involving 

small businesses and public services, such as 

restaurant reservation, online shopping, and public 

transportation. 

However, most of the resources, in particular 

WOZ-based and template-based, are in English. 

Resources based on the crowdsourcing method 

initially contain a lot of noise, requiring several 

data refinements and complex preprocessing, and 
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they tend to have fewer linguistic variations, as 

they are created by random unprofessional 

contributors.  

Local grammar graphs (LGG) have often been 

devised to recognize semantic categories of 

expressions, e.g. time adverbs in Korean (Jung, 

2005) or proper names in Arabic (Traboulsi, 2006). 

A local grammar graph is a directed word graph, or 

finite-state automaton, with paths labeled by 

linguistic forms. LGG is a powerful method to 

describe linguistic patterns with lexical, syntactic, 

and semantic restrictions in a readable way.  A 

graph may invoke subgraphs, which specify parts 

of the phrases specified by the graph. In other 

words, a subgraph fills a slot in a graph. A ‘local 

grammar’ is usually made up by a collection of 

graphs. 

As opposed to the traditional use of LGGs, 

which is recognizing phrases in texts, we use them 

in this research in order to generate linguistic forms. 

Thus, we implemented a generator of utterances 

with annotation of slots and intents for a dialogue 

system. The generator enumerates paths of Local 

Grammar Graphs (LGGs) and generates large-

scale training data covering the Korean honorific 

system, different grammatical moods, and various 

speech acts. The generation can be parameterized 

in order to create training data according to the 

desired features. Using the training data, we 

evaluate the performances of DIET models (Bunk 

et al., 2020) with pre-trained embeddings. 

Methodology 

FIAD was constructed in three phases: data 

analysis, resource construction, and data 

generation, as illustrated in Figure 1.  

 
 

2 https://github.com/hephaex/mecab-ko 

The first phase, Data Analysis, is performed by 

analyzing domain-specific corpus and extracting 

core keywords that should be recognized. The 

second phase, Resource Construction, consists of 

building a Deco-Dom and LGGs that contain 

TOPIC(ENTITY, FEATURE) words, EVENT 

expressions and DISCOURSE-MARKERS. 

Finally, the third phase, Data Generation, is 

conducted by the combination of the three modules 

of the language resources represented in Phase 2. 

2 Data Analysis 

Since collecting users’ dialogue data raises 

privacy issues, we collected a corpus of banking 

app reviews as alternative data. 126,598 banking 

app reviews were collected from Appstore and 

Playstore. On a scale of 1 to 5, we focused on 

reviews with a score of 3 or lower because low 

score reviews tend to include more users’ requests 

or complaints on banking services than high score 

reviews. 

We used the Mecab-Ko Korean Morphological 

analyze 2  to split the collected reviews into 

morphemes. Then, we extracted key morphemes, 

nouns, predicates, and inflectional endings using 

their TF-IDF (Term Frequency-Inverse Document 

Frequency) weight.  

Based on the extracted keywords and on the 

observation of utterance patterns, we set a  

language resource in three parts: TOPIC(ENTITY, 

FEATURE), EVENT, and DISCOURSE-

MARKER. Each part has submodules which are 

separated based on their semantic content. All the 

modules and their sub-modules are organized as 

shown in Fig. 2. The module/submodule hierarchy 

means that the expressions specified by the 

submodule are a subset of those specified by the 

module. More details on this resource are provided 

in Section 5. 

 

 

Figure 1: FIAD building process 
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3 Resource Construction 

3.1 TOPIC 

We divide the TOPIC part of FIAD into ENTITY 

and FEATURE for modularity and scalability. 

ENTITY includes named entities which refer to 

product names and names of specific banks, and 

FEATURE includes common nouns frequently 

used in reviews and dialogues about banking and 

financial app services. The modules and 

submodlues of ENTITY and FEATURE are 

displayed in Tables 1 and 2. 

 

 
The main role of TOPIC is to fill slots. Modules 

and submodules of ENTITY and FEATURE are 

used to set slots in the utterances. This allows 

researchers to change or add training data of a 

specific domain by selecting ENTITY modules or 

submodules, such as banks’ product names and 

bank names. For example, Kakao bank card can be 

replaced with Toss card by replacing the 

<KakaoBank> ENTITY submodule with the 

<Toss> ENTITY submodule.  

 

3.2 EVENT 

We set EVENT submodules on the basis of key 

verbs from the review data and semantic 

restrictions on their arguments. EVENT invokes 

many TOPIC LGGs, due to semantic restrictions, 

i.e. because verbs in EVENT require a specific type 

of TOPIC words or phrases. 

 

(1a)    <계좌>를 개설하다 (kyeycwalul kayselhata)  

CREATE a <bank account> 

(1b)   *<속도>를 개설하다 *(soktolul kayselhata)  

*CREATE  a <velocity> 

 

(1a) and (1b) show an argument-predicate structure 

with a noun and a verb. (1a) sounds natural, but (1b) 

doesn’t, because the <velocity> semantic category 

in (1b) does not combine with the Korean verb used 

in CREATE a bank account. We set specific 

ENTITY submodules whenever an EVENT verb 

required it, so as to generate natural utterances.  

 
The modules and submodules in Tables 1 to 3 

were established on the basis of a semantic analysis 

of the topics, events and speech acts expressed in 

the corpus. In this way, 2,158 ENTITY noun 

phrases, 428 FEATURE noun phrases and 2,830 

EVENT predicative patterns are discerned from the 

banking App reviews introduced in Section 4. They 

are representative of the contents of the corpus. 

This work was performed by speakers of the 

language trained in semantic analysis. 

 

3.3 DISCOURSE-MARKER 

DISCOURSE-MARKER contains various types of 

multi-word expressions (MWEs) that represent 

specific speech acts. MWEs are the expressions 

 

Figure 2: Module and submodule hierarchy 

Category Entity Submodules # of patterns 

BankName 
KakaoBank, TossBank, 

etc. 
53 

AppName Kakao Pay, Toss, etc. 167 

ProductName 

KakaoBank 26Weeks 

Deposit, TossBank 

EmergencyFund, etc. 

1,938 

Total 2,158 

Table 1: {ENTITY} modules and submodules 

 
Category Feature Submodules # of patterns  

Banking 
bank account, loan, 

stock, insurance, etc. 
147 

App 
speed, volume, design, 

etc. 
281 

Total 428 

Table 2: {FEATURE} modules and submodules 

 

 

Figure 3: Substituting {ENTITY} Submodules 

 

Category EVENT Submodules # of patterns  

Account 
create, sign-in, sign-out, 

etc. 
510 

Banking 

Product 
send, take, put, etc. 924 

Financial 

Product 
buy, sell, management, etc. 454 

App install, upload, pay, etc. 942 

Total 2,830 

Table 3: {EVENT} modules & submodules 
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that consist of several words and connotate specific 

meanings that can not be derived from their 

components: ~해줄 수 있나요? (haycwul swu 

issnayo) ‘Could you ~’  is one of the MWE used 

when speaker wants to request something to hearer.   

 

Request types 

In the banking domain, the ‘Request’ speech act is 

mainly observed. ‘Request’ speech acts are further 

classified in two types: ‘Information Request’ and 

‘Action Request’. In this way, the ‘Information 

Request’ type is divided into 8 semantic categories, 

and the ‘Action request’ type is further divided into 

3 categories: ‘Dissatisfaction’ and ‘service error’, 

and ‘Demand.’ ‘Dissatisfaction’ and ‘Service Error’ 

submodules are not typical types of expressions 

related to ‘Request’ speech act, but negative 

comments to the app and error reportings imply 

request for fixing bad issues on app functions and 

services. Expressions of ‘Demand’ are directly 

collocated with event phrases, which means 

‘request for specific action’. 

 
 

Sentence types 

As an agglutinative language, Korean has a diverse 

range of inflectional endings with various 

pragmatic functions: imperative endings mainly 

express imperative ‘Request’ speech act. However, 

the ‘Request’ speech act can also be represented by 

other sentence types such as declaratives, 

interrogatives, and suggestives. Thus, we include 

four types of discourse endings that represent four 

sentence types in DISCOURSE-MARKER 

module as shown in Table 5. 

 
 

Honorific types 

Korean has various types of honorific markers. The 

honorific system reflects the hierarchical and 

relational organization of Korean society and is 

marked in verbal endings. Korean speakers form 

their utterances with the honorific levels 

appropriate to their relationship with the hearer and 

with the persons they are mentioning. There are 

three types of honorific markers in Korean: subject, 

object, and hearer honorific markers. Among these, 

the hearer honorific markers play an important role 

in conversations because they refer to the 

relationship between speaker and hearer.  

Korean hearer honorific markers consist of 6 

degrees of speech styles: 합쇼체 ‘hapsyo-style’, 

하오체 ‘hao-style’, 하게체 ‘hakey-style’, 해라체 
‘hayla-style’, 해요체 ‘hayyo-style’, and 해체 ‘hay-

style.’ The first four speech styles depend on the 

speaker and hearer’s social positions and are used 

in formal speech. The last two speech styles are 

used in informal speech when the speaker and 

hearer enjoy some degree of intimacy (National 

Institute of Korean Language, 2005) . 

In contemporary Korean, two speech levels, 

하게체 ‘hakey-style’, 하오체 ‘hao-style’ are being 

less used. Therefore, we set four categories for 

Korean hearer honorifics in the discourse marker 

module. The examples of four types of honorific 

markers are in Table 6. 

Request 

type 

Semantic 

category 
Example 

# of 

patterns 

Information 
Request 

Person 누구 (Who) 2,001,525 

Product 무엇 (What) 1,186,482 

Method 어떻게 (How) 1,401,355 

Reason 왜 (Why) 537,294 

Location 어디서 (Where) 1,872,303 

Time 언제 (When) 510,081 

Age condition 몇살 (What age) 667,860 

Cost/Quantity 얼마 (How much) 322,844 

Action 

Request 

Dissatisfaction 짜증 (Annoying) 560,287 

Service Error 에러 (Error) 451,865 

Demand 희망/요구 (Wish) 11,482 

Total 9,523,378 

Table 4: ‘Request types’ in DISCOURSE-MARKER 

module 

 

Sentence 

type 

Examples 

Declaratives 

계좌 개설 [누가 담당하는지 알고 싶어] 

([I want to know who is responsible for] 

creating an account) 

계좌 개설[할래]   

([I want to] create a bank account) 

Imperatives 

계좌 개설 [누가 담당하는지 알려줘] 

([Tell me who is responsible for] creating an 

account) 

계좌 개설[해라] 

 (Create a bank account) 

Interrogatives 

계좌 개설 [누가 담당하는지 알 수 있나]? 

([Can I ask you who is responsible for] 

creating an account) 

계좌 개설[할 수 있나]?  

([Can you] create a bank account) 

Suggestives 

계좌 개설 [누가 담당하는지 알아보자] 

([Let’s figure out who is responsible for] 

creating a bank account) 

계좌 개설[하자] ([Let’s] create a bank account) 

Table 5:  Sentence types in DISCOURSE-MARKER 

module 
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The three types represented in Table 4-5-6 are 

combined together according to lexico-semantic 

and syntactic restrictions among the elements.  

 

For instance, the combination of ‘[Information 

Request]-[Declarative]-[Basic]’ generates an 

example such as ‘(계좌 개설)하려면 어떻게 해야 

하는지 알고싶어. ‘I want to know how to do (to 

create a new account).’ and that of ‘[Action 

Request]-[Interrogative]-[Raising]’ produces an 

example such as ‘(계좌 개설)해 주시겠습니까? 

‘Would you like to (create a new account for me)?’. 

 

4 Data Generation 

4.1 FIAD generated by linking-LGGs 

We generated utterance data using linking-LGGs 

with parameter selection and conjugation 

postprocessing. 

Each module of language resources introduced 

in Section 5 consists of a set of LGGs, which is 

compiled into Finite-State Transducers (FST) 

through the open-source Unitex/GramLab platform 

(Paumier, 2003). The generator outputs linguistic 

patterns and their annotations by exploring 

transitions of the FSTs. 

The three parts of the language resources are 

connected in several ways by the linking-LGG 

displayed at the top of Figure 5. There are four 

paths in this graph, which represent such 

combinations: through this processing, about 60 

trillion utterance patterns are generated and 

registered in FIAD. The submodules of each 

module are used to annotate the ‘TOPIC’ and 

‘EVENT’ information.  

The first example in Fig. 4 is the basic type of 

combination, in which TOPIC, EVENT, and 

DICOURSE-MARKER are connected in sequence.  

The second example exhibits a discontinuous 

discourse marker.  As Korean has relatively free 

word order, parts of discourse expressions, such as 

‘Wh-words’, generated by DISCOURSE-

PARTICLE, can occur separately from the rest of 

the expression. 

The third example presents an ellipsis of a 

dicourse marker. Although DISCOURSE-

MARKER is not invoked, the utterance implicitly 

requests a specific act. Therefore, these utterances 

are annotated with the ‘Request for action.’  

The last example shows a case where EVENT is 

not invoked. The intent of this type of utterance is 

‘Request for information.’ 

Formality 
Speech 

Styles 
Category Examples 

Formal 

합쇼체 

hapsyo style 
Raising 

계좌 개설 [누가 담당합니까]? 

‘Who is responsible for  
creating an acccount?’ 

계좌 개설 [해주십시오] 

‘Please create an account’ 
하오체 

hao style 

하게체 

hakey style 
Lowering 

계좌 개설 [누가  담당하나]? 

‘Who is responsible for  
creating an acccount?’ 

계좌 개설 [해줘라] 

‘Create an account’ 
해라체 

hayla style 

Informal 

해요체 

hayyo style 
Polite 

계좌 개설 [누가  담당해요]? 

‘Who is responsible for  
creating an acccount?’ 

계좌 개설 [해줘요]  

‘Please create an 
account’ 

해체 

hay style 
Basic 

계좌 개설 [누가  담당해]? 

‘Who is responsible for  
creating an acccount?’ 

계좌 개설 [해줘] 

‘create an account’ 

Table 6:  Honorific types in DISCOURSE-MARKER 

module 

 

Figure 4: Request/Sentence/Honorific types in 

DM module 

 

 

Figure 5:  Linking-LGG combining resource 

modules, and examples of generated results 
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4.2 Generation of training data 

Before the generation of a training data for AI pre-

trained language models, we set the speech styles 

of the utterances by selecting DISCOURSE-

MARKER modules depending on the speech styles 

that the desired TOD system should be able to 

process. We also set the number of utterances of the 

training data. We used equation (1) to control the 

number of utterances. The equation (1) assigns a 

weight to each expression used in the 

DISCOURSE-MARKER module, and we generate 

the utterances with the highest weight to reach the 

specified size of the training data. 

 𝑤𝑛 = 𝑙𝑜𝑔2(1 + (𝑠𝑦𝑙𝑚𝑎𝑥 − 𝑠𝑦𝑙𝑛)) (1) 

Equation (1) computes the weight of an 

utterance, which calculates the priorities between  

utterances. sylmax is the maximum length, in 

syllables, of the expressions in a DISCOURSE-

MARKER module. syln is the length of the current 

discourse marker. The formula applies a 

logarithmic scale to the difference, for 

normalization. Using this formula, we gives 

priority to shorter utterances over longer utterances, 

and this policy is grounded in economy of language. 

Everyday experience shows that speakers naturally 

tend to avoid redundancy and use shorter 

utterances when possible, although this rule is not 

absolute.  

After speech style and data size selection, we 

generated training data by recursive exploration of 

the transitions in each LGG module. Since Korean 

is an agglutinative language, the generation of 

linguistic forms requires a description of 

conjugations of verbs. To apply conjugation rules 

to the verbs, we used the conjugation class 

information in Dictionnaire Électronique du 

Coreen (DECO) (Nam, 2018), a Korean lexical 

database. 

5 Experiments  

5.1 Comparison with DIET performance 

To evaluate FIAD, we used the RASA open source 

framework 3  and FIAD-generated data to build 

NLU models that detect and classify intents and 

entities in utterances. RASA provides a Dual Intent 

 
3 https://rasa.com 

Entity Transformers (DIET) classifier and flexible 

training pipelines.  

We experimented several pipelines to test the 

performance of NLU models. Each pipeline uses 

the Open Korean Text Tokenizer (Okt).4  As to the 

DIET model, we used the KoRASA hyper-

parameters for Korean (M. Hwang et al., 2021), 

listed under ‘DIET-Opt’ in Table 7.  

 
As to the training data, we selected 107 types of 

intents highly used in the review data. We used 

90,999 sequences generated by FIAD with these 

types of intents.  

As to the test data, native speakers created 1,000 

TOD utterances about banking CS and annotated 

the intent and entity slots for each utterance. To 

compute the scores, we used a weighted average in 

accordance with the proportions of the intents and 

the slots. Since there are no comparable datasets 

with which we can test our dataset, we set the 

perfomance of DIET classifier with fine-tuned 

BERT model, trained by NLU-Benchmark dataset 

(Liu et al. 2019), as a baseline. The baseline result 

and performance of DIET model with FIAD are 

illustrated in Table 8. 

 
Although the FIAD is trained without fine-tuned 

BERT, our model generally outperformed in intent 

analysis. However, the results showed similar or 

slightly lower performance in entity analysis: it is 

due to the TOPIC combinations of ENTITY and 

FEATURE that raise the complexity of topic 

recognition. 

 

4https://github.com/twitter/twitter-

korean-text 

Parameter DIET-Base DIET-Opt 

Epoch 300 500 

Transformer layers 2 4 

Transformer size 256 256 

Connection density 0.2 0.3 

Embedding 

dimension 
20 30 

Hidden layer size [256, 128] [512, 128] 

Table 7:  Hyperparameters for the DIET-Base 

and DIET-Opt models 

 

 

Model Tag Precision Recall 
F1 

score 

DIET+BERT 

(Baseline) 

Intent 89.67 89.67 89.67 

Entity 86.78 84.71 85.73 

DIET  

(FIAD) 
Intent 0.9278 0.9140 0.9142 

Entity 0.8256 0.8760 0.8377 

Table 8:  Experiment results on FIAD 
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5.2 Performance of Pretrained Models 

In order to check the improvement of the 

performance, we include pre-trained embeddings 

in the pipelines. We compared three different 

Bidirectional Encoder Representations from 

Transformers (BERT) models for Korean: 

HanBERT, 5  KoBERT, 6  and KorBERT. 7  These 

models differ in their vocabulary size and training 

data. Table 9 shows the result of the evaluation. 

 
The ‘DIET+KoBERT’ model shows the highest 

f1-score in entity extraction, and ‘DIET+KorBERT’ 

shows the highest f1-score in intent extraction. 

Thus, the experiments underline that the pipelines 

with pre-trained embedding outperform the 

pipeline without pre-trained embedding. The 

results show that FIAD-generated training data 

allow for training models to efficiently extract 

intents and entities from utterances. 

 

6 Conclusion 

This study presents a linguistic resource named 

FIAD and its use to efficiently construct NLU 

training data for Korean banking CS TOD systems. 

FIAD consists of LGGs and comprises three parts: 

TOPIC(ENTITY, FEATURE), EVENT, and 

DISCOURSE-MARKER. Each part contains 

modules dedicated to semantic categories, and 

generates utterances where intents and entity slots 

are annotated as belonging to these semantic 

categories.  

TOPIC(ENTITY, FEATURE) generates 

expressions used as ‘slots’ of intents. EVENT 

provides utterances with an intent and its 

arguments realized as slots, taking into account 

semantic restrictions. DISCOURSE-MARKER 

includes diverse MWEs which represent speech 

acts, sorted by moods and speech styles, in 

compliance with the Korean system of honorific 

 
5https://github.com/monologg/HanBert-

Transformers 
6https://huggingface.co/monologg/kobert/t

ree/main 

markers. These three parts are combined in four 

ways into four types of utterance patterns for the 

training data generation. 

The models have a clear benefit from the pre-

trained embeddings. The performance of the 

DIET+KorBERT models trained on FIAD-

generated data shows 0.86 and 0.95 f1-score in 

entity and intent extraction, respectively, showing 

that the concept is applicable. In addition, the 

modular structure of FIAD offers flexibility for 

building extensive training data adapted to specific 

aims, by changing the order of the components or 

by selecting the modules to focus on particular 

types of entities, intents or speech styles. 
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Abstract 

We report the construction of a Korean 

evaluation-annotated corpus, hereafter 

called ‘Evaluation Annotated Dataset 

(EVAD)’, and its use in Aspect-Based 

Sentiment Analysis (ABSA) extended in 

order to cover e-commerce reviews 

containing sentiment and non-sentiment 

linguistic patterns. The annotation process 

uses Semi-Automatic Symbolic 

Propagation (SSP). We built extensive 

linguistic resources formalized as a Finite-

State Transducer (FST) to annotate corpora 

with detailed ABSA components in the 

fashion e-commerce domain. The ABSA 

approach is extended, in order to analyze 

user opinions more accurately and extract 

more detailed features of targets, by 

including aspect values in addition to topics 

and aspects, and by classifying aspect-

value pairs depending whether values are 

unary, binary, or multiple. For evaluation, 

the KoBERT and KcBERT models are 

trained on the annotated dataset, showing 

robust performances of F1 0.88 and F1 0.90, 

respectively, on recognition of aspect-value 

pairs. 

1 Introduction 

Aspect-Based Sentiment Analysis (ABSA) is a 

sentiment analysis technique which extracts users' 

opinions on the basis of opinion quintuples 

consisting of an entity or target, an aspect, a 

sentiment value, an opinion holder, and a time 

(Liu 2012, 2015). Since the opinion holder and 

time can be identified by meta-information 

sources such as user ids and content posting time, 

opinion triples including an entity (e), an aspect 

(a), and a sentiment value (s) are the main 

components to be extracted from texts associating 

a semantic orientation with aspects of a target 

product or service. For example, in (1), the 

opinion triple plays a vital role in identifying a 

user's ‘positive’ (s) sentiment attributed to the 

‘design’ (a) aspect of a ‘jacket’ (e) target.  

(1)  [이 자켓]은 [디자인]이 [괜찮아요] 
[i cakheys]un [ticain]i [kwaynchanhayo] 
The design of this jacket is suitable for me. 

(e:jacket, a:design, s:positive) 
   

However, current ABSA systems face 

limitations in processing texts with Multi-Word 

Expressions (MWE). For example, (2) shows a 

positive opinion about a target 자켓 (cakheys) 

‘jacket’ with an MWE 마음에 들어요 (maumey 

tuleyo) ‘fit the bill; suitable’, literally ‘listen in the 

heart’, though none of these words conveys a 

positive value: the MWE is non-compositional, i.e. 

it functions as a single word.  

(2)  [이 자켓]은 [긴] [길이]가 [마음에 들어요] 

[i cakheys]un [kin] [kili]ka [maumey tuleyo] 

The longer length of this jacket fits the bill. 
(e:jacket, a:length-long, s:positive) 

 
Additionally, traditional ABSA opinion triples 

fail to handle detailed information related to 

aspects, especially when it involves non-polar 

opinion expressions. For instance, the aspect 길이 

(kili) ‘length’ has a specific value 길다 (kilta) 

‘long’, which has pivotal relevance to fine-

grained ABSA, as it explains why the aspect has 

the polarity expressed in the sentence, but this 

value qualifies neither as aspect nor as sentiment, 

since it has no sentiment polarity in itself.  

In order to cover detailed information, this 

study uses aspect-value pairs as an enhancement 

to ABSA, and describes the Evaluation Annotated 

Dataset (EVAD), which systematically classifies 

and formalizes detailed opinion elements in 

online e-commerce domains. We adapt traditional 

ABSA opinion triples by adding a level of 

analysis defined by ‘evaluation triples’ (ET) 

(Nam, 2021a), which consist of three components: 

SSP-Based Construction of Evaluation-Annotated Data  

for Fine-Grained Aspect-Based Sentiment Analysis 
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topic, aspect, and value. The topic and aspect are 

the target and aspect of traditional e/a/s opinion 

triples. The value, however, is a new element for 

capturing the value of aspects, no matter whether 

they are realized in the form of a word or of an 

MWE.  

Either the aspect and value appear together in a 

complex phrase (i.e. aspect-value pair), as shown 

in example (2), or the aspect term is simply 

omitted, so we suggest to consider each aspect-

value pair as a single item, and to view an aspect 

term or a value expression as a particular case of 

such an item as well. In this way, the value, which 

can be sentiment-oriented or not, may constitute a 

complex aspect phrase or a sentiment predicate. In 

this study, aspect-value pairs are categorized 

according to their semantic characteristics. The 

first type, Unary, includes existential predicates 

such as 있다 (issa) ‘be present’ and 없다 (epsta) 

‘be absent’, and the polar orientation depends on 

which Unary aspect occurs. For instance, an 

aspect-value pair 방수성이 있다 (pangswusengi issa) 

‘waterproofness is present’ expresses a positive 

polarity. 

The second type, Binary, contains aspects with 

binary value, which may convey sentiment or 

non-sentiment information such as 길이가 길다 

(kilika kilta) ‘longer length’ or 짧지 않다 (ccalpci 

anhta) ‘not short’. Differently from the first type, 

the sentiment orientation is not determined by the 

aspect-value pair itself. When (2) is analyzed with 

an ET, an aspect-value pair 긴 길이 (kin kili) 

‘longer length’, classified as Binary and 

undetermined in polarity, appears as a complex 

aspect. As it is associated with a positive predicate, 

it is subsequently analyzed as ‘e:this jacket, 

a:length-long, s:length-positive.’  

Finally, aspects with more values, such 

as색깔이 빨강색이에요 (saykkkali ppalkangsaykieyyo) 

‘the color is red’, are classified as Multiple. This 

type of the aspect-value, undetermined in 

sentiment orientation, may occur as a complex 

aspect phrase. When sentiment expressions 

collocate with it, the detailed information is 

extracted as an aspect-value pair and a sentiment 

value.  

The main contribution of this study is to test a 

method to extract more intricate information than 

traditional ABSA, by annotating information 

about aspect and value simultaneously, without a 

separate pairing process. In order to implement 

the notion of evaluation triple presented above 

into the actual dataset, we built EVAD through the 

analysis of a massive online clothing review 

corpus. To build this resource, we used the Semi-

Automatic Symbolic Propagation (SSP) method 

(Nam, 2021b; Hwang et al., 2021) with Local 

Grammar Graphs (LGGs) compiled into a Finite-

State Transducer (Gross, 1997, 1999) and the 

Korean lexical databases ‘Dictionnaire 

É lectronique du Coréen’ (DECO) and ‘Deco-

Dom’ (Nam, 2018), to analyze corpora on the 

Unitex platform (Paumier, 2003). Figure 1 below 

presents the overall flow chart for the construction 

of EVAD. 

 

2 Related studies 

As several deep learning models have been used 

to perform ABSA, many researchers have 

developed datasets to train the models.  

Jiang et al. (2019) points out that in existing 

benchmark data, most examples are not 

significantly different from sentence-level 

sentiment analysis because they contain only one 

aspect, or all aspects have the same sentiment 

polarity. Therefore, the study introduces MAMS, 

a dataset for more sophisticated ABSA, allowing 

all examples to contain two or more polarities. 

The dataset is extracted from the same corpus as 

the existing benchmark data. 

 

Orbach et al. (2020) notices that existing 

sentiment analysis studies use data from a limited 

range of domains, and presents YASO, a dataset 

 
Figure 1: Flow chart for construction of EVAD 
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from Yelp, Amazon, SST (Socher et al., 2013), 

and Opinosis (Ganesan et al., 2010) for ABSA 

learning and evaluation. The YASO dataset 

covers diverse domains and allows for measuring 

cross-domain performance. However, it does not 

provide meta-information on the domains of the 

reviews. 

Other studies define new problems for ABSA. 

For example, Fan et al. (2019) points out that it is 

essential to find which words convey the 

sentiment related to a specific aspect. Therefore, a 

task called TOWE is defined and a dedicated 

dataset is provided. Peng et al. (2020) uses TOWE 

and SemEval data and argues that complete 

ABSA requires pairing aspects with the 

corresponding ‘opinion terms’, i.e. the ‘why’ 

expressions that give a clue of why the aspect has 

the polarity expressed in the sentence, e.g. 

friendly in waiters/friendly. These ‘opinion terms’ 

describe a value of the aspect. 

In some state-of-the-art datasets, expressions 

denoting aspect values are annotated, but only 

when they also convey sentiment information by 

themselves, as in waiters/friendly. Our study 

differs from that practice in that it includes in its 

subject non-sentiment information about aspect 

values, when that information is relevant to 

sentiment analysis. 

SSP is a method of generating learning datasets 

by annotating selected expressions in collected 

data such as reviews, discussions or questions in 

the relevant domain in social media. This 

technology aims to enhance learning data with the 

aid of sophisticated, large-scale language 

resources. Once the first dataset is semi-

automatically annotated, the language resources 

are edited based on this first result and applied to 

the corpus. This bootstrapping approach (Gross, 

1999) is applied to the first and second versions of 

the annotated dataset, producing a third version 

(Nam, 2021b). 

3 Method with Evaluation Triples  

In section 3, we propose a method of sentiment 

analysis that focuses on evaluation triples (ET) 

and that we have applied to clothing reviews. ETs 

allow for classifying purchasers’ objective or 

subjective evaluations on aspects such as color, 

material, pattern..., no matter whether the 

evaluation is expressed with or without an explicit 

sentiment polarity. An ET comprises a topic, an 

aspect, and a value. In the clothing domain, a topic 

is an evaluation target such as 티셔츠 (thisyechu) 

‘T-shirts’ or 바지 (paci) ‘pants’. An aspect of an 

evaluation target can be 가격 (kakyek) ‘price’ or 색 

(sayk) ‘color’. A value indicates a purchaser's 

specific evaluation of a topic or aspect. The main 

characteristic of ETs compared with traditional 

ABSA opinion triples is that values include not 

only single words and MWEs with a sentiment 

polarity, but also non-sentiment expressions 

representing purchasers’ evaluations about each 

aspect. Examples of non-sentiment expressions 

include 길어요 (kileyo) ‘it is long’ and 검정색이에요 

(kemcengsaykieyyo) ‘it is black’. The following 

sections describe the individual characteristics of 

each element of ETs in the clothing domain. 

3.1 Topics 

Topics involve various types of entity names that 

purchasers evaluate. Table 1 displays the topic 

classification of the clothing domain. There are 

five categories. The (CLO_TY) type is the most 

frequent one, including common nouns of 

clothing such as 원피스 (wenphisu) ‘onepiece’ and  

자켓 (cakheys) ‘jacket’. The other types are brand 

names (CLO_BR) such as 나이키 (naikhi) ‘Nike’, 

online shopping mall names (CLO_SH) such as 

지그재그 (cikucayku) ‘Zigzag’, store names 

(CLO_ST) such as 아뜨랑스 (attulangsu) 

‘Attrangs’, and product parts (CLO_PA) such as 

단추 (tanchwu) ‘button’. 

 

3.2 Aspect-Value Pairs 

An advantage of the ET concept is that aspect 

and value are considered as paired information, 

Subcategory Category Examples 

CLO_TY 상품타입 
Sangphwumthaip 

(Cloth Type) 

원피스, 자켓 등 
wenphisu, cakheys  

(onepiece, jacket etc.) 

CLO_BR 브랜드명 
Pulayntumyeng 

(Brand Name) 

나이키, 폴로 등 
naikhi, phollo  

(Nike,Polo etc.) 

CLO_ST 스토어명 
Suthoemyeng 

(Store Name) 

아뜨랑스, 리린 등 
attulangsu, lilin  

(Attrangs, Leelin etc.) 

CLO_SH 쇼핑몰명 
Syophingmolmyeng 

(Shopping Mall Name) 

지그재그, 서울스토어 등 
cikucayku, sewulsuthoe  

(Zigzag, Seoulstore etc.) 

CLO_PA 상품일부 
Sangphwumilpwu 

(Cloth Part) 

단추, 주머니 등 
tanchwu, cwumeni  

(button, pocket etc.) 

Table 1:  Topics in the clothing domain 
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including when the value term occurs without the 

aspect term. For example, if the predicate 길다 

(kilta) ‘long’ appears in the evaluation sentence, 

this word implicitly includes the aspect 길이 (kili) 

‘length’, which can be explicitly realized within 

the sentence or not, which is more frequent. 

Therefore, the aspect-value pair is set to save the 

implicit aspect with a predicate denoting value if 

no specific aspect is realized in a sentence. 

In this study, aspect-value pairs are classified in 

three types according to their semantic 

characteristics: Unary, Binary, and Multiple. 

First, Unary includes the aspects with values 

realized in existential predicates. We divide the 

Unary type into two subtypes: intrinsic properties 

of the product, such as elasticity and water 

resistance, and situational properties, such as 

external properties. Second, Binary is the type for 

evaluation predicates with binary value, such as 

길다 (kilta) ‘it is long’ and 짧다 (ccalpta) ‘it is 

short’. Most of such measurement adjectives 

belong to the Binary type. Third, Multiple is for 

aspects with more than two values, such as 빨강 

(ppalkang) ‘red’, 검정 (kemceng) ‘black’, and 노랑 

(nolang) ‘yellow’. The examples in Table 2 show 

that sentiment and non-sentiment evaluation for 

an aspect are considered separately. 

 

4 Resource construction 

We built linguistic resources using the SSP 

method, which annotates various language 

patterns in data with the aid of LGGs. We utilized 

lexical databases (Deco-Dom) to specify the 

language patterns in LGGs. The main advantage 

of the SSP methodology is that it produces 

training data efficiently in terms of time and cost 

as compared to crowdsourcing, which has been 

widely used to create large-scale training data. 

The following sections provide further details. 

4.1 Deco-Dom 

The Deco-Dom dictionary covers the 

vocabulary of various domains because users can 

directly configure it according to the intended 

purpose or domain. In addition, because it can be 

configured in a format compatible with the 

‘Dictionnaire É lectronique du Coréen’ (DECO) 

Korean lexical database (Nam, 2018), it enables 

morphological analysis.  

 
The DECO lexical database has been created 

through linguistic studies (Nam, 1996), bearing in 

mind the following methodological safeguards 

(Gross, 1989): 

- grounding decisions on systematic inventories 

of lexical entries, not on sporadic observations; 

- using readable, updatable data formats from 

the beginning; 

- defining modes of inflection (i.e. the set of 

morphological changes to a lemma when 

generating inflected forms) explicitly and 

independently of one another; 

- assigning each entry a code for the applicable 

mode of inflection. 

Korean being an agglutinative language, 

inflection was modularized in two steps 

(Berlocher et al., 2006), implemented by Paumier 

(2003): 

- generating morpheme-internal morphological 

variants, e.g. ᄏ (kh), a form of 크 (khu) ‘big’, with 

the method of Wehrli (1985); 

Type Aspect 
{ASPECT-

VALUE} 
Example 

UNARY 

방수성 

pangswuseng 

(Waterproof) 

WATERPROOF-

GOOD/BAD 

방수성 좋은 소재 

pangswuseng coun 

socay 

(It's waterproof 

material) 

BINARY 

길이 

Kili 

(Length) 

LENGTH-

LONG/SHORT 

기장이 긴 

kicangi kin 

(The length is long) 

LENGTH-

GOOD/BAD 

길이가 적당해요 

 kilika cektanghayyo 

(The length is 

appropriate) 

MULTIPLE 

디자인 

ticain 

(Design) 

DESIGN-TYPE 

브이넥 

 uineyk 

 (V-neck) 

DESIGN-

GOOD/BAD 

디자인이 예쁜 

ticaini yeyppun 

 (The design is 

pretty) 

Table 2:  Example of {ASPECT-VALUE} 

 

 

Element 
category 

POS 
Examples 

Count 

TOPIC noun 
자켓, 주머니 (cakheys, 

cwumeni ) 
(jacket, pocket etc.) 

1844 

ASPECT noun 
길이, 사이즈 (kili, saicu ) 

(length, size etc.) 
116 

VALUE 

adjective 
크다, 길다 (khuta, kilta) 

(large, long etc.) 
88 

verb 
덮다, 맞다 (Tephta, macta ) 

(cover, fit etc.) 
21  

Table 3:  Statistics of the Deco-Dom Dictionary 
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- appending suffixes, for instance ᄏ (kh) ‘big’ 

can be followed by the past suffix -었 (-eoss), 

giving 컸 (kheeoss) ‘was big’. 

The Deco-Dom is an extension that covers 

domains by inserting domain-specific tags and 

entries. 

4.2 Local Grammar Graph 

Local Grammar Graph(LGG) is a formalism to 

describe linguistic patterns in the format of 

directed word graphs (Gross, 1997). LGGs allow 

for annotating sequences denoting aspect-value 

pairs. For example, LGGs process collocations 

such as 뒤꿈치까지 내려와요 (twikkwumchikkaci 

naylyewayo) ‘It comes down to the heel’ and 짧지 

않아요 (ccalci anayo) ‘It is not short’. Figure 2 

shows a part of LGGs that cover the LENGTH-

LONG pair. 

 
Since an LGG is a directed word graph or 

finite-state automaton, it is equivalent to a regular 

expression, but more easily readable and 

updatable in practice. In its visual form (Fig. 2), it 

takes advantage of both dimensions: horizontal 

for sequences of words or phrases, and vertical to 

enumerate alternatives; whereas a regular 

expression, in its visual form, linearizes all 

operations on a single dimension (a formula). 

Thus, LGGs can describe more complex sets of 

expressions more clearly. 

An LGG can invoke others as subgraphs. This 

feature allows for managing complexity. As a 

matter of fact, the above graph is indirectly called 

by the main graph named ASPECT-VALUE as 

shown in Figure 3.  

 
1  http://linito.kr/ 

Invocations can be recursive, giving LGGs the 

expressive power of context-free grammars. 

LGGs can specify words or word elements 

either literally, as <짧다> (ccalpta) in Fig. 2, or 

through grammatical symbols, as <JN> which 

refers to a category of suffix sequences. When the 

LGGs are used as a query to locate or annotate 

expressions in texts, the search engine resolves 

the grammatical symbols on the basis of a lexical 

database.  

The LGG in Figure 3 calls three sets of 

subgraphs: the subgraph set UNARY which 

represents 329,153,486 expressions, BINARY 

with 268,435,457, and the MULTIPLE with 

187,856,271 expressions, which allows us to 

recognize and annotate more than 780 million 

patterns of aspect-value pairs.  

 

 
Whe the patterns in Table 4 are detected in a 

given corpus, the LGGs allow the annotation of 

the related information through the Unitex 

platform that compiles LGGs into FSTs for 

efficient application. 

4.3 SSP-based generation of annotated text 

The process defined by the SSP(Semi-automatic 

Symbolic Propagation) methodology mainly 

consists of two phases 1   Human-driven 

construction of language resources such as Deco-

Dom and LGGs and Automatic generation of 

annotated datasets based on the resources built in 

the first phase (Nam 2021b). 

 

Figure 2:  A part of LGGs for LENGTH-LONG 

 

 
Figure 3   The main LGG for Aspect-Value pairs 

 

 

 

Aspect-Value pair type # of patterns 

UNARY 329,153,486 

BINARY 268,435,457 

MULTIPLE 187,856,271 

Table 4:  Number of patterns for 3 types of  

Aspect-Value pairs 
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We selected a specific clothing website 2  to 

collect review data and construct annotated texts. 

We applied a Deco-LGG resource to 

approximately 200,000 (199,913) reviews and 

performed the annotation of the topics and aspect-

value pairs through the SSP methodology. 

Through this processing, we generated 

evaluation-annotated datasets for fine-grained 

ABSA. Figure 5 shows examples of EVAD. 

 
ETs in the annotated text EVAD contain detailed 

information about consumer products. The 

annotated dataset can be used for a shopping 

recommendation system which is likely to help 

consumers make efficient purchase decisions. 

5 Evaluation of the EVAD dataset 

To evaluate the performance of the EVAD 

dataset, and indirectly of the SSP method used to 

generate it, we experimented about aspect-value 

pairs as they are the core of ET. There are frequent 

aspect-value pairs appearing in the review corpus, 

 
2 https://wusinsa.musinsa.com 
3 https://github.com/SKTBrain/KoBERT 

such as SIZE-LARGE, FABRIC-THIN, or 

PRICE-GOOD. For these categories, we 

evaluated the annotation of EVAD. We used 

1,000 sentences extracted from the clothing 

reviews, manually annotated them with the 

correct tags, and evaluated the automatically 

annotated EVAD sentences by comparing them 

with the test set. Table 5 displays the results. 

 
The results in Table 5 show that the EVAD 

datatset, automatically generated through the SSP 

methodology, reach a F1-Score of 87%. 

6 Experiment 

We used the KoBERT3 and KcBERT4 models 

in an experiment of training them on EVAD to 

recognize aspect-value pairs. These models are 

suitable for this task since they analyze sequences 

in syllable units. The pre-trained language models 

KoBERT and KcBERT were used to train the 

model. Then, the performance of the models was 

evaluated against the manually annotated test set 

(1,000 sentences) of Section 5. Table 6 lists the 

overall performances of the pre-trained language 

models (PLM). 

 
The PLMs show F1-Scores of 88% and 90%, 

respectively. The reason why KcBERT 

performance is slightly better than KoBERT is 

that its pre-trained data comprises informal texts 

such as news comments. 

7    Conclusion 

This study proposes an application of the 

evaluation triple (ET) concept in a clothing 

domain, and the construction of a linguistic 

resource, EVAD. The ET consists of three 

components: topic, aspect, and value. The first 

two are components of traditional ABSA, whereas 

4 https://github.com/Beomi/KcBERT 

 

Figure 4:  Overview of the SSP methodology  

 

 

Figure 5:  Examples of annotated text sample 

 

 

 <FABRIC-GOOD>재질 괜찮고</FABRIC-GOOD> 
<SIZE-GOOD>핏이 좋아요</SIZE-GOOD>. 
 

<COLOR-BLACK>블랙으로 샀는데</COLOR-BLACK> 
<SIZE-GOOD>너무 잘 맞아요</SIZE-GOOD>. 
 

<PRICE-GOOD>저렴하게 잘 샀어요</PRICE-GOOD>. 
 
<ENT=CLO_TY>티셔츠</ENT>는 <LENGTH-SHORT>

기장이 약간 짧네요</LENGTH-SHORT>. 

 Recall Precision F1-Score  

EVAD  0.8804 0.8739 0.8772 

Table 5: Evaluation of EVAD 

 

 Recall Precision F1-Score 

KoBERT  0.8859 0.8886 0.8873 

KcBERT 0.8990 0.9063 0.9026 

Table 6: Evaluation of the PLMs 

 

43



    

the value is introduced to extract detailed 

information about aspects. We classify 79 aspect-

value pairs described from the clothing domain 

into three types: Unary, Binary, and Multiple. 

EVAD is generated with the SSP method and 

shows a robust F1-score performance of 90%. 

SSP-based linguistic resources using an ET frame 

can be applied to various domains. We expect that 

the concept and method implemented in this study 

will be a key asset for research on constructing 

sophisticated annotated training data for deep 

learning language models. 
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Abstract

We consider whether machine models can fa-
cilitate the human development of rule sets
for information extraction. Arguing that rule-
based methods possess a speed advantage in
the early development of new extraction capa-
bilities, we ask whether this advantage can be
increased further through the machine facilita-
tion of common recurring manual operations
in the creation of an extraction rule set from
scratch. Using a historical rule set, we recon-
struct and describe the putative manual oper-
ations required to create it. In experiments
targeting one key operation—the enumeration
of words occurring in particular contexts—
we simulate the process of corpus review and
word list creation, showing that several simple
interventions greatly improve recall as a func-
tion of simulated labor.

1 Introduction

To maximize accuracy and robustness under the
state of the art in information extraction (IE), one
trains machine learning (ML) models, typically
underpinned by neural language models, on large
numbers of sentence-level annotations (Ma and
Hovy, 2016; Zhang et al., 2018; Wadden et al.,
2019). If annotations are sufficiently numerous,
this approach yields robust extraction capabilities
that are difficult to implement through other means.
And it has methodological advantages, inasmuch
as the annotations serve as a precise extensional
definition of a given extraction problem, one that
can be trivially exploited in the development of im-
proved extractors through new learning algorithms
and architectures.

However, this approach imposes certain costs
that are not immediately apparent and that manifest
as diminished agility, including:

• Labor overhead. Success depends critically
on consistent annotation at scale, often requir-
ing a team of trained annotators, the develop-

ment of clear annotation guidelines, and the
employment of a review process.

• Domain fragility. The resulting extractors
are often domain- or genre-specific, suffering
substantial degradation when applied to texts
from different, even adjacent, domains. Re-
cent research on domain transfer and few-shot
learning offers mitigations (e.g., Huang et al.
2020), but techniques from this research often
can only be applied to problems proximal to
those for which annotations exist, and often
result in models with lower accuracy. Typi-
cally, additional annotation is required (Bai
et al., 2022).

• Use case myopia. These challenges push the
IE research community toward problems of
putative general utility, such as named entity
recognition. To the extent that these “canon-
ical” problems target relatively complex in-
formation (e.g., event recognition), they suf-
fer substantial practical limitations. For ex-
ample, the set of event types encountered
in news reporting is practically unbounded,
while the types distinguished in canonical re-
sources number in the dozens (LDC, 2005).

Most concerningly, the community’s shared focus
on a small number of canonical problems, while
it fosters replicability and fundamental progress,
inhibits progress on methods that would enable the
practical deployment of IE on a truly broad range
of problems. Many real-world problems involve
data or use cases too distinctive to be solved with
community models, and many candidate customers
of IE lack the resources for adequate data annota-
tion.

Rule-based approaches to IE offer an alterna-
tive for the deployment of competent novel extrac-
tors (Appelt and Onyshkevych, 1998; Valenzuela-
Escárcega et al., 2016). While they suffer from cer-
tain limitations—limited retargetability, reduced
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Figure 1: A notional deployment curve comparing the
accuracy of rule-based and ML-based extractors as a
function of labor investment.

recall, etc.—they possess one significant advan-
tage over ML-based approaches, as illustrated in
Figure 1. Specifically, in the early stages of an
effort pursuing novel extractors, they support very
rapid deployment. Hours of effort often suffice to
implement usable extractors, where an equivalent
ML-based extractor would require days or weeks.
We argue that this “early deployment advantage”
makes rule-based IE an important tool in real-world
settings. Importantly, rule-based methods and ML
are not mutually exclusive. We have previously
presented evidence that rule-based extractors can
be used to annotate training data for ML, and that
the resulting models generalize the rules in useful
ways (Freitag et al., 2022).

In this paper, we consider a tighter integration
between rule-based IE and ML, one in which ML
facilitates the authorship of rules by offering op-
tions and suggestions to the human technician. In
a new extraction problem area lacking annotations,
the rule author is confronted with a difficult search
problem—a difficulty that increases with the ex-
pressiveness of the rule language. We hypothe-
size that ML can be used to simplify the search in
ways that dramatically reduce effort. This paper
is an attempt to illuminate the dimensions along
which such assistance is possible. We approach
this through analysis of a historical rule set for
extracting quantitative claims from the scientific
literature on solar materials. By inspecting how
various language features were used in pursuit of
a performant extraction model, we attempt to in-
fer some of the operations employed by the author

in the initial construction and subsequent refine-
ment of an improving rule set. And we provide
preliminary quantitative evidence that some simple
interventions could have substantially accelerated
a key operation: the creation of problem-specific
word lists.

To summarize, we make the following contribu-
tions in this paper:

• We introduce the concept of facilitated rule
authorship for information extraction, a re-
search objective with the potential to dramat-
ically decrease the cost of deploying perfor-
mant IE on new problems.

• We use a historical extraction rule set to il-
luminate the operations that human authors
employ in their search through the space of
possible rule sets. Our intent is to focus atten-
tion on human deficits that might be mitigated
through focused application of ML.

• We conduct experiments to address one such
deficit, the creation of problem-specific word
lists, and provide quantitative estimates of the
labor savings that can be realized through var-
ious approaches to facilitation.

2 Related Work

The use of declarative, efficiently executable rules
for information extraction was a common feature of
early work in the area, which led to the creation of
several rule frameworks (Appelt and Onyshkevych,
1998; Reiss et al., 2008; Thakker et al., 2009). Mo-
tivated by the difficulty of purely manual rule cre-
ation, early applications of machine learning to the
problem sought to facilitate aspects of the author-
ing process, particularly the creation of what we
call word sets and what the literature often calls dic-
tionaries or semantic lexicons (Riloff, 1993; Soder-
land et al., 1995). This line of research led to some
general methods for exploiting syntagmatic search
(contextual patterns) for the assembly of paradig-
matic resources (lexicons) (Jones et al., 1999), but
by treating the lexicon as an end in its own right,
it begged the question of ultimate utility for the
downstream task of information extraction.

Early successes in lexicon induction gave rise
to research pursuing end-to-end extraction through
supervised rule or pattern induction (Freitag, 1998;
Soderland, 1999; Freitag and Kushmerick, 2000;
Califf and Mooney, 2003). This work offered
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the advantage of improved replicability and retar-
getability, replacing the highly technical activity
of rule creation with the more transparent activity
of data annotation. However, once annotated data
was available in sufficient volumes, rule-based rep-
resentations were eventually outperformed by less
constrained representations better able to integrate
diverse signals in the data (Freitag and McCallum,
1999; Lafferty et al., 2001; Collobert et al., 2011).

The center of gravity in subsequent research has
focused on models able to exploit large volumes
of annotated data and the acquisition of data in
sufficient volumes to realize their advantages. Be-
cause annotation overhead hampers application of
these methods to new problems, the field continues
to investigate approaches to reducing annotation
overheads, including few-shot learning (Han et al.,
2018; Fritzler et al., 2019; Huang et al., 2020) and
transfer learning (Wang et al., 2018; Huang et al.,
2018; Yang and Katiyar, 2020). In some cases,
these methods make it possible to achieve impres-
sive competence in a new task with very few train-
ing examples. But note that such approaches, inas-
much as they often transfer extraction knowledge
from known target types or from highly resourced
domains to adjacent ones, do not eliminate the need
for annotation. And it is often questionable whether
the resulting models are sufficiently performant for
downstream use without supplementation.

If rule-based approaches to extraction have
ceased to be a major research focus, they remain an
important tool in the toolkit of practitioners (Chiti-
cariu et al., 2013) and available as features of
several general-purpose NLP toolkits (Thakker
et al., 2009; Kluegl et al., 2016; Honnibal et al.,
2020). Although new rule frameworks occasion-
ally feature in the more recent literature (Chang and
Manning, 2014; Valenzuela-Escárcega et al., 2016;
Khaitan et al., 2008; Krishnamurthy et al., 2008),
these works are almost exclusively descriptive, fail-
ing to provide empirical benchmarks that would fa-
cilitate continued research in the area. In particular,
the process of authoring rules has received no prior
empirical scrutiny, making it difficult to corrobo-
rate perceived advantages of rule-based methods.

3 A Historical Rule Set

As part of a project attempting to document
progress in solar materials research, we developed
an extractor for quantatitive “claims,” statements
that communicated some important scientific mea-

the devices exhibited a short-circuit current density of -6.14 mA/cm(2), an open-circuit voltage of 0.44 V, 

and a power conversion efficiency of 0.86% under AM1.5G conditions. 

metric metric

metric

measurement measurement

measurement

claim claim

claim

Figure 2: Several examples of the claim relation in a
sentence from the solar energy literature.

surement. Our experimental data consisted of ap-
proximately 160K abstracts from the Web of Sci-
ence1 on solar energy research from 1968 to 2014.
As is typical in projects like this, IE was not the
focus of the effort, but only a means to assemble
structured data for downstream analysis, which in
this case sought to summarize diachronic progress
on several key research dimensions.

As shown in Figure 2, a claim is a binary rela-
tion between two domain-specific entities or con-
cepts: a quantitative expression or measurement,
and the corresponding metric or quantity being
measured. For greatest flexibility in downstream
analysis, our definition of claim was inclusive, en-
compassing any expression reflecting the result of
a scientific measurement. As the example in the
figure illustrates, the two phrasal extraction targets
pose different challenges. Measurements, consist-
ing typically of a number and a unit of measure-
ment, exhibit strong orthographic regularities, parts
of which could be exploited with regular expres-
sions. Metrics, on the other hand, are noun phrases.

To address this extraction challenge, we em-
ployed VALET, a recently described IE rule syntax
and framework implemented in python (Freitag
et al., 2022). The earlier version of VALET used
in this work lacked several of the features of the
current framework. In particular, the rule author
had no access to syntactic information. Thus, the
problem of extraction amounted to scanning to-
kens in the input stream sequentially, relying on
orthographic and lexical clues to decide when the
left and right boundaries of the two phrasal targets
were observed. We briefly describe VALET’s provi-
sions for such scanning to simplify later exposition.
Readers interested in more detail or a review of
VALET’s more recent features are referred to the
paper or the more extensive documentation in the
public release.

A statement or rule in VALET is a sequence of

1https://clarivate.com/
webofsciencegroup/solutions/
web-of-science/

47



Type Example
regex /ˆ[a-z]/i
set { a an the }i
reference &myclass

Table 1: The types of atomic token class expressions
available in this study.

three things: a name, a piece of syntax indicating
the type of rule, and an expression defining the
rule’s behavior. The evaluation of such a statement
yields an extractor, which can be applied directly
to text (e.g., via scripts from the command line) or
incorporated into subsequent statements through
reference to the rule’s name.

The rules in this study relied on two types of
expressions, token class expressions and phrase
expressions. The example token class expression

determiner: { a an the }i

defines a case-insensitive extractor matching the
individual words listed between the braces. Table 1
lists the full set of atomic token class expressions
historically available to the rule author. A full to-
ken class expression is a Boolean combinations
of these classes using the operators and, or, and
not. Thus, the token class

notdet: not &determiner

matches any token that is not a determiner.
Phrase expressions employ a regular expression

syntax to match multi-token sequences, enabling
the rule author to mix previously defined token
classes with literal tokens. In addition, phrase ex-
pressions can co-refer, enabling context-free com-
position. Consider the rules:

cap : /ˆ[A-Z]/
honor : { Dr Mr Mrs Ms }
caps -> &cap+
person -> &honor .? @caps

The person phrasal extractor in this example rec-
ognizes person mentions prefixed by an honorific,
incorporating a separate phrase extractor for se-
quences of capitalized tokens (caps) by reference.
(Unlike in standard character-level regular expres-
sions, the optional ‘.’ has no special significance
and matches period tokens in the input literally.)

The rule set used to extract claims consists of
34 rules (15 token class expressions and 19 phrasal

the devices exhibited a short-circuit current density of -6.14 mA/cm(2), an …

metric measurement

claim

claim -> @metric @between @measurement

notmetricword : { . a an the and of to is are … }
metricword : not &notmetricword
metrichead : { efficiency voltage density … }
metric -> metricword* metrichead

quant      -> ( - | + ) ? &num ( . &num )
unit        : { Hz kHz MHz angstrom m nm cal kcal … }
unitphrase -> &unit ( . ? &unit ) * ( / &unit ) ?
measurement -> @quant @unitphrase

Figure 3: An excerpt of the rule set for extraction quan-
titative claims.

extractors). We next review the structure of this rule
set and consider what it implies about the process
of human rule development.

4 Rule Search

A human technician confronting a new extraction
problem faces a daunting challenge. Even if they
possess the means to observe the effects of any
changes to rules, a protracted exploratory process
is required to arrive at an effective solution to any
extraction problem other than the most trivial. To
understand where ML and automation might fa-
cilitate that process, we first seek to form an intu-
ition regarding the solution structure for extracting
claims, as representative of a broader class of sim-
ilar problems, then enumerate potential points of
intervention in the putative search that produced
this solution.

4.1 Rule Set Structure

Figure 3 presents an excerpt from the most produc-
tive portion of the claims rule set in simplified form.
In this segment, a claim is a metric expression
separated by intervening language (captured by the
between rule, not shown in the figure) from a
following measurement. The key rules imple-
menting metric and measurement are shown
at the bottom of the figure, with coloring to draw
attention to how several key components align to
the example text.

The phrase highlighted in purple is an exam-
ple of an extraction constituent exploiting ortho-
graphic regularities. The appropriate structure
of the numeric portion of a measurement fol-
lows very predictable patterns and is amenable
to succinct characterization. As a consequence,
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the corresponding rule provides high-recall ac-
cess to good candidate regions where mentions
of measurement and claim might be found.
Such substructures provide a natural starting point
at the beginning of rule set construction, providing
the technician a means to review a large number
of candidate expressions to form initial intuitions
about the nature of a given extraction problem.

The rules in green correspond to a very common
feature in rule-based extraction models: essentially
special-purpose lexicons that list precisely the to-
kens that may occur in a particular context. Such a
feature is critical for the identification of metric
mentions, which lack the orthographic clues af-
forded by measurement mentions. In this tech-
nical domain, the concepts subject to measurement
are practically finite, and variations in metric are of-
ten indicated through qualifiers prepended to a key
head word (e.g., by prepending the phrase “short-
circuit current” to “density”). Note that even if the
set of possible head words is finite, it need not be
small. Thus, if the rule author opts to approach an
entity recognition challenge through enumeration,
they still face a signficant challenge in many cases.

Finally, the rule in red employs a similar strat-
egy toward a different objective. Specifically, it
lists a set of stop words that a metric phrase
may not contain and indirectly defines the start of
the phrase as the first word following this bound-
ary class. This objective can be addressed more
conveniently through reference to parts of speech—
something supported in more recent versions of
VALET—but both the problem of delimiting men-
tions and the strategy of explicit exclusion are rele-
vant in any rule writing endeavor.

4.2 Search Operations

Although we only possess the final product, we are
now in a position to infer a plausible sequence of
steps by which this rule set was created. Figure 4
depicts such a sequence, with colors to distinguish
the various textual regions and classes of operations
that were involved. While the actual sequence is
unknown, the required activities or operations can
be inferred with certainty from the structure of the
ultimate rule set. In this section, we describe each
of these operations and speculate about opportuni-
ties for automation or facilitation.

4.2.1 Anchoring ( )
The starting point for our extraction of claims is
the numeric portion of the measurement, which,

exhibited a short-circuit current density of -6.14 mA/cm(2), an …

metric measurement

Figure 4: A likely sequence of operations in authoring a
rule set to extract claims, including anchoring ( ), elab-
oration ( ), positive word set ( ), and negative word set
( ).

as noted, is suggestive of the presence of a claim
and largely accessible through surface features. We
write a simple rule that matches any numeric token
—a rule that overgenerates by design—and use it
to inspect measurement candidates. Although
we show only a single match of this putative rule,
it would presumably match multiple spans in the
example. However, what matters is that, to a first
approximation, this simple rule matches all textual
regions in which we might expect a claim to ap-
pear. Note that this step depends heavily on the
technician’s intuition and is difficult to automate in
settings lacking annotated data.

4.2.2 Elaboration ( )
This syntagmatic operation can be internal or con-
textual and involves extension beyond the match
boundaries returned by a current rule. In the exam-
ple, if 6 is the anchoring match, an obvious first
step is to elaborate the rule so that it encompasses
the entire phrase -6.14. Here, we have an early
rule that reliably matches tokens or sub-phrases of
an extraction target, and we use it to elaborate the
internal structure of the target.

The interstitial text between measurements and
metrics (of in this example) provides an example
of contextual elaboration. We use anchoring nu-
meric expressions to investigate and characterize
the “bridge” language that separates our two target
entities. If, as is often the case, this language is
highly stereotpyical and expressed in a vocabulary
of manageable size, we can create a rule for it in a
way analagous to our elaboration of the anchoring
numeric expression.

The operation of elaboration, which we have
defined rather coarsely, almost certainly involves
more specific actions that are currently difficult to
articulate, but a thought experiment might point the
way to forms of machine facilitation possible in the
short term. Consider the state of affairs after the ini-
tial seed rule and the fact that we match 6 but want
a rule matching -6.14. Instead of editing the rule
directly, the technician might indicate a handful of
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elaborations, say by dragging their cursor over the
complete number phrase in each case, hoping that
the system can suggest an accurate elaboration.

The resulting problem resembles grammar in-
duction (Lang et al., 1998), but has some features
distinct from the typical framing of that endeavor.
For one thing, the examples are embedded, and
the surrounding text, which must not be matched
by the final rule, provides useful constraint on any
proposed “grammar.” Second, although the num-
ber of ground-truth examples (those touched by
the human) may be small, the number of candidate
examples can be huge. If the rule author indicates
that 6 should be followed by .14, we can in princi-
ple notice that the pattern num.num is a common
theme in the textual regions selected by our anchor-
ing rule. Finally, the induction process has access
to a rich and extensible set of elements, as well as
a human collaborator to assist in choosing them
(or proposing new ones). For example, we have
already defined a class of numeric tokens to im-
plement our seed rule, which is available, where
appropriate, for characterizing the 14 part of our
example expression. Similarly, when we turn our
attention to units of measurement, we may define
a class that includes both mA and cm, affording
the induction algorithm an easy path to elaborate
a rule matching individual unit tokens (e.g., mA)
to the extended syntax exemplified in the figure
(mA/cm(2)).

4.2.3 Enumeration ( and )
This paradigmatic operation can be used to address
two opposing needs. When we pursue positive enu-
meration ( ), we are attempting to specify exactly
the set of tokens that may appear in some context
in an extraction target, such as the head word of
metric phrases or possible unit abbreviations in
measurement phrases (the rules shown in green
in Figure 3). In constrast, negative enumeration ( )
is akin to the definition of stop word lists and can
be used to delimit extraction targets, as in the rule
shown in red in Figure 3.

In contrast to elaboration, enumeration is a
well-defined activity, one that should be readily
amenable to machine facilitation. We possess at
least two levers that might be used to implement
such facilitation. First, if the rule author’s ap-
proach is to build out from a core component, as
in Figure 4, the resulting word sets will be pop-
ulated with the tokens occurring in proximity to
our currently implemented rule set. For example,

once we can recognize the numeric portion of a
measurement accurately, we can tabulate the to-
kens that tend to follow such expressions (perhaps
ranking them by pointwise mutual information with
the numeric expression) to derive a noisy word list
that can be quickly reviewed and codified in a new
token class.

A generalization of this approach, and an ap-
proach ultimately offering more flexibility, is to
exploit corpus co-occurrence statistics to infer lexi-
cal affinities (e.g., through distributional distances
or embeddings). Using an authoring framework
equipped with such information, a technician might
point at a token in context and be presented with a
list of semantically comparable tokens, again with
the option of selecting some subset to define a new
token class.

5 Experiments

5.1 Framing

Our experiments investigate the feasibility and
value of automated facilitation of word set enu-
meration. We simulate a rule author constructing
the two word sets shown in green in Figure 3, one
for metric head words (metrichead) and one
for units of measurement (unit). We investigate
two settings. In one, we suppose that before this
process begins, the user has created a high-recall
anchoring rule that captures some aspect of the con-
text in which the new class of words is expected to
appear. In the other setting, there is no such anchor,
and the user must rely on other means to find good
candidate inclusions.

Unassisted, the user must scan the corpus se-
quentially, considering candidate words the nomi-
nating procedure provides. This is our unit of cost:
the review of an individual word for inclusion or
exclusion. As each new word is added to the set,
our recall of claims improves. Our experiments
investigate precisely this trade-off: How can we
maximize recall while minimizing human effort?
We measure two forms of recall: word recall, or the
fraction of words found in the respective ground-
truth word set; and claim recall, the fraction of
ground-truth claims found when the current word
set is used in place of the ground-truth one. Note
that our experiments consider only the situation
in which the user has access to some nomination
procedure. If a nomination procedure is entirely
lacking, labor requirements are presumably higher
than any of our experimental alternatives.
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For cases where there is no anchoring rule, we
must rely on knowledge of the current word set and
corpus analysis to suggest additions. For this vari-
ant we imagine an iterative setting in which, at each
step, the system analyzes the current version of a
partial word set and draws on its models of the cor-
pus to present a ranked list of candidate words ad-
ditions to the user. The user then repeatedly scans
down this list until a single good addition is found,
then requests a new list. For both of our targets,
the initial word set is a singleton containing the
first metric head word (or unit, respectively)
encountered in a sequential scan of the corpus.2

We experiment with two approaches to unan-
chored candidate ranking. In each case, we com-
pute a ranking over all terms in the corpus vocab-
ulary that are not in the partial word set and not
previously reviewed. The first approach (call it
FT-centroid) uses FastText embeddings. We rank
all possible additions according to their cosine dis-
tance from the centroid of the words in the cur-
rent word set. We also experimented with a vari-
ant, FT-max, that uses maximum cosine similarity.
This variant produced results comparable to FT-
centroid.

The second approach (call it IT-set) employs an
information-theoretic analysis, where each word in
the corpus vocabulary is represented as a distribu-
tion over observation contexts. We consider words
occurring up to two tokens removed from the refer-
ence observation, encoding each unique token and
offset as a distinct context (e.g., “the” one token
to the left is a distinct context from “the” two to-
kens to the right of the reference word). The matrix
formed from the set of such distributions is then
submitted to a coclustering operation that groups
rows and columns while minimizing Shannon infor-
mation loss. This results in a dense distributional
embedding for each word as a distribution over
context clusters. We then compute the Hellinger
distance between all word pairs and rank all can-
didate word set additions in descending order by
mean distance from words in the current word set.

For anchored review, we introduce the count
method which simply ranks matches to the anchor
rule according to their marginal corpus frequency,
suppressing any that the user has already reviewed.
To simulate the putative process the historical au-
thor followed, we introduce sequential, a variant

2This is “temperature” for metrichead and “degrees”
for unit.

Figure 5: Word and claim recall as a function of words
reviewed, using an anchoring rule for nomination.

that considers candidates in corpus order and per-
forms no tracking of already reviewed words. In
this case, a word may be reviewed more than once.

Building on the count approach, we also explore
a point-wise mutual information variant (PMI). In-
stead of ranking by count, we rank by pointwise
mutual information between word occurrence and
matches of the anchoring rule. This closely follows
the counting approach but has extra information
about how frequently a word matches the anchor-
ing rule. Finally, we experiment with an anchored
variant of the rankers (IT-set and FT-centroid) that
limits their nominations to words proximal to the
anchor rule.

5.2 Results

Figure 5 presents results from our experiments em-
ploying anchoring rules. In these experiments, the
rule used for unit nominated any word immedi-
ately following a numeric expression. The rule
for metrichead uses the same numeric expres-
sion rule, extended with the rule used to model the
intervening text typically found between such ex-
pressions and a preceding metric head word (e.g.,
the word “of” in Figure 3). Obviously, the anchor
we use for metrichead is more selective than
that for unit. In the plots, we use a dashed style
for count and sequential, which, because of their
simplicity, are useful baselines in both sets of ex-
periments.

As the results make clear, this simplicity does
not imply inferior performance. In an outcome that
represented something of a surprise for us, corpus-
analytic rankers offer benefit to the process of word
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Figure 6: Word and claim recall as a function of words
reviewed in the absence of an anchoring rule. The meth-
ods count and sequential do use such a rule and are in-
cluded in the plot for the sake of comparison.

set enumeration only under limited conditions. In
particular, early in the process, IT-set apparently
nominates more pertinent unit words, but the
effect disappears as the word set is built out and
(crucially) does not apply to claim recall, arguably
the more important metric. If the objective is not
to find a good set of words alone, but instead to
find a set that maximizes extraction recall, it is dif-
ficult to improve on a review prioritized by corpus
frequency. PMI adds incremental benefit in some
cases and does not appear to hurt on balance. The
key appears to be the selection of a good anchoring
rule.

Figure 6 displays the results of our experiments
lacking an anchor rule (except for the dashed
lines, which are included to make comparison with
anchor-based methods easier). Here, IT-set con-
tinues to display its relative strength on the word
recall metric, but the results for claim recall are
much more ambiguous. More work is required to
resolve this ambiguity, which is relevant to very
agile deployment. In cases where reasonable recall
is desired as early as possible, we care about, say,
the 0.5 or 0.75 recall levels in the plots. Our experi-
ments lead to no clear recommendation for this use
case. Presumably, what is required is a variant of
these methods that incorporates corpus frequency
more prominently into the score used in ranking.

6 Discussion

This work is an initial step in a line of inquiry that
could lead to better tooling in support of more agile

extraction. The key insight is that once we have a
performant rule set, one that we are willing to treat
as authoritative, we can simulate the process that
led to its creation and experiment with new modes
of facilitation in pursuit of greater labor savings
and model robustness. Critical to such research,
and a focus of future work, is a credible cost model
that quantifies levels of authoring effort. Not only
would such a model provide a more precise charac-
terization of the “early deployment advantage” of
rules over ML, but it could help widen this advan-
tage as an objective function for simulations of the
authoring process.

Of course, this approach has certain shortcom-
ings. For one, any model, including our historical
rule set, that is not developed and vetted against a
thoroughly annotated data sample is typically an
approximation, usually one that is recall-limited.
In our previous work, we sought to overcome this
limitation by using the rule set to generate a large
annotated sample to train a high-recall sequence la-
beler (Freitag et al., 2022). Here, we treat the rules
as definitional, but it seems clear that some of the
“false positive” elements nominated by our corpus-
analytic rankers belong in the definition. For ex-
ample, only one of the top ten terms nominated
for metrichead by IT-set after two iterations of
review was in the historical word set, but many of
the excluded nominations appear plausible (e.g.,
reflectance, oxidation, or transmittance). Many
of these words presumably occur rarely (if at all)
as part of claim expressions, and our performance
metric’s emphasis on maximizing recall punishes
rankers that promote terms in the tail of the distri-
bution, but a complete account of claim language
in this domain might want to include them.

A salient feature of all of these results is our abil-
ity to reach full recall quickly using a high-quality
anchoring rule and a relatively simple ranking pol-
icy. But this outcome may in partly reflect a cir-
cularity in the experimental methodology. Our an-
choring rules are elements of the historical model,
and they therefore necessarily enable us to review
all sentences that the rule set considers relevant. A
key unanswered question is: what do these anchors
miss? Our previous work, which used this rule set
to train an ML extractor, yielded apparently valid
claim expressions that the rule set does not sanc-
tion (Freitag et al., 2022). Perhaps methods such
as IT-set and FT-centroid, which seem wasteful of
human effort, can be used to identify alternative or
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develop more general anchors.
More generally, the structure of a historical rule

set is a reflection of the rule language and tooling
available to the author, and conclusions drawn from
a study of such a rule set may overlook promis-
ing points of integration between rule-based meth-
ods and machine learning or corpus analytics. For
example, the current VALET framework supports
on-demand application of IT-set via an interactive
dialog presenting a large list of words deemed to
be close to a chosen word in the text. The user can
select any of the words in the list and ask the devel-
opment UI to generate a new word set expression.
Similarly, VALET offers a “radius” statement that
matches words within some distance of a seed set
in lexical embedding space. And we have begun
investigating a trainable word set feature that en-
gages the user in an active learning loop to derive a
customized word matcher, one that can in principle
exploit contextual embeddings.

While such features are potentially powerful,
they sacrifice transparency and fine-grained control–
two attractive aspects of rule-based methods. In
this respect, they are in the tradition of alterna-
tive approaches to rapid IE deployment, such as
Snorkel (Ratner et al., 2017), which seeks to learn
performant extractors from collections of noisy “la-
beling functions.” Such approaches, for problems
on which they work, can lead to impressive labor
savings, but they are difficult to control and opti-
mize. But note that while Snorkel-like approaches
and traditional rule-based methods approach the IE
objective from different angles—Snorkel through
redundant, high-recall labelers, rule-based methods
through high-precision set covering—they are fun-
damentally compatible and offer interesting oppor-
tunities for hybridization. Trivially, a framework
like VALET can be used to conveniently implement
labeling functions. By the same token, Snorkel
points the way to a mode of rule set application
distinct from the typical disjunctive mode.

7 Conclusion

Rule-based methods remain an important compo-
nent of any toolset addressing the broader problem
of information extraction, especially in cases where
existing extraction models or sources of annotated
data are misaligned to new use cases. A trained
technician, outfitted with a suitable rule authoring
framework, can create a performant extractor for
a new problem in a fraction of the time required

to produce a ML model of comparable accuracy.
Moreover, we have shown that some simple facili-
tations, based on an analysis of the rule authoring
process, can serve to increase this “early deploy-
ment advantage.” And by treating rule development
as the focus of empirical investigation, we have
pointed the way toward future systems in which
rules and ML are combined creatively to lower the
barrier to entry in the creation of custom extraction
solutions.
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Abstract

In low resource settings, data augmentation
strategies are commonly leveraged to improve
performance. Numerous approaches have at-
tempted document-level augmentation (e.g.,
text classification), but few studies have ex-
plored token-level augmentation. Performed
naively, data augmentation can produce seman-
tically incongruent and ungrammatical exam-
ples. In this work, we compare simple masked
language model replacement and an augmenta-
tion method using constituency tree mutations
to improve the performance of named entity
recognition in low-resource settings with the
aim of preserving linguistic cohesion of the
augmented sentences.

1 Introduction

Deep neural networks have proven effective for a
wide variety of tasks in natural language process-
ing; however, these networks often require large
annotated datasets before they begin to outperform
simpler models. Such data is not always avail-
able or sufficiently diverse, and its collection and
annotation can be an expensive and slow process.
The trend of fine-tuning large-scale language mod-
els originally trained using self-supervision has
helped to alleviate the need for large annotated
datasets, but this approach relies on the dataset for
fine-tuning being diverse enough to train a model
that generalizes well. Careful data augmentation
can help to improve dataset diversity and ultimately
the model’s generalizability.

Data augmentation, a technique to generate data
given training set characteristics, continues to play
a critical role in low-resource settings; however,
the majority of work on data augmentation focuses
on improving document-level tasks such as text
classification. Far less attention has been paid to
token-level tasks (Feng et al., 2021).

Prevailing approaches to sequence tagging tasks
such as named entity recognition (NER) require

token-level ground truth. Naive replacement-based
methods for augmentation may introduce noise in
the form of sentences that are ungrammatical, se-
mantically vacuous, or semantically incongruent.
Whether in the form of insertions, deletions, or
substitutions, care must be taken with token-level
augmentation to preserve linguistic cohesion.

There is evidence that large language models
may possess some syntactic knowledge (Hewitt
and Manning, 2019; Wei et al., 2021). Work by Bai
et al. (2021) suggests that incorporating syntactic
tasks into pre-training improves the performance
of large language models. Inspired by these find-
ings, we investigate how constituency trees might
be used to guide data augmentation. We use tree-
based transformations to mutate sentences while
minimizing undesired side effects of syntactic ma-
nipulation (i.e., preserving linguistic cohesion). Re-
lated work by Zhang et al. (2022) explores a similar
approach in different settings. They focus on the
effect of constituency based replacement in single
classification and pair sentence classification tasks,
while this work examines token-level classification.

We compare our syntax-driven method with no
augmentation (our baseline), augmented data gen-
erated through cloze-style (Taylor, 1953) masked
language modeling using a BERT-based classifier,
successful approaches introduced by Dai and Adel
(2021), and two of the top-performing augmenta-
tion strategies according to past work: synonym-
based replacement and mention-based replacement.
Following prior work, we We use the i2b2-2010
English language dataset (Uzuner et al., 2011) for
NER.

2 Related work

A variety of approaches have been explored for
document-level data augmentation. The usage of
backtranslation to generate augmented samples was
introduced by Kobayashi (2018). Wei and Zou
(2019) explored synonym replacement, random in-
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sertion, random swap, and random deletion for text
classification. Quteineh et al. (2020) introduced an
approach using monte carlo tree search (MCTS) to
guide generation of synthetic data.

Augmentation for token-level sequence tagging,
however, is understudied. Simple approaches for
token-level classification (e.g., synonym replace-
ment, mention replacement, shuffling, etc.) was
investigated by Devlin et al. (2019). They used a
sample of 50, 150, and 500 sentences to simulate
a low-resource setting. Token linearization (TL)
was introduced by Ding et al. (2020). The main
idea of TL is to incorporate NER tags inside the
training sentences themselves. Ding et al. (2020)
experimented with various sizes of training data
across six languages.

A Similar idea to that presented here has been
used in parallel research by Zhang et al. (2022).
Their approach, TreeMix, works similarly to our
approach in that it replaces a phrase with another
phrase from another another training instance by
swapping phrases with the same constituent labels.
Zhang et al. (2022) demonstrated that TreeMix out-
performs a method that selects a random span of
text as the replacement for a target phrase, sug-
gesting that syntactically=aware replacement can
improve data augmentation for at least some tasks.

3 Approach

3.1 Synonym Replacement (SR)

Dai and Adel (2021) experimented with replacing
randomly selected tokens from the training cor-
pus with a multiword synonyms originating from
WordNet (Miller, 1992). In this case, if the re-
placed token is the beginning of a mention (B-
ENTITY), then the first token of the synonym will
be tagged as B-ENTITY and the rest will be con-
sidered as I-ENTITY. In cases where the replaced
token is in the middle of a mention (I-ENTITY),
then all of the synonym’s tokens will be assigned
to I-ENTITY.

3.2 Mention Replacement (MR)

Dai and Adel (2021) described mention replace-
ment as using a Bernoulli distribution to decide
whether each mention should be replaced. If yes,
then another mention which has the same entity
type as the target mention from the original train-
ing set is selected to replace the target mention.
For instance, if the mention "myelopathy / B-
PROBLEM is selected for replacement, then we

can select one of {"C5-6", "COPD", ...} which all
have the same entity type (PROBLEM).

3.3 Language Model (LM)

We experimented with token replacement using a
masked language model. We restrict the system
to replace only non-mention tokens (tokens with
category O). This is because if we replace tokens
with a named entity, we cannot guarantee that the
output from the masked language model will have
the same category, such that if we replace a token
categorized as B-TEST, we could not guarantee
that the masked language model will replace it with
a similar token to those in B-TEST category.

We randomly select, without replacement, n to-
kens as candidates to be replaced. The selected to-
kens are masked from the original sentence. Next,
we the language model generates replacements for
the masked tokens. We may repeat this token gener-
ation up to k times to generate different augmented
sentences. We use Allen AI’s SciBERT model from
the Hugging Face model repository.

3.4 Constituency Replacement (CR)

As a preprocessing step, we perform constituency
parsing over all of the training data using
Stanza (Qi et al., 2020). Given an XP non-terminal,
we select p non-terminals as candidates for replace-
ment. For each non-terminal, we find other non-
terminals with the same category from the training
data, to replace the candidate. Assuming that we
chose VP as the non-terminal taget node for re-
placement, the algorithm will choose another VP
from the set of parsed sentences in the training
corpus and mutate the whole subtree (VP root and
the nodes below it). We can repeat this process to
generate k augmented sentences. Additionally, we
target nodes that have NER mentions as one of its
children.

4 Experiments and Results

4.1 Dataset

We used the i2b2-2010 dataset (Uzuner et al.,
2011), an English language NER dataset. Simi-
lar to Dai and Adel (2021) we use 3 different sizes
of dataset to simulate low-resource settings. We
select the first 50, 150, and 500 sentences from
training set and denote them as S, M, L. We used
the default train-test split and limit the augmenta-
tions to training set.
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4.2 Model

Following Dai and Adel (2021), we model NER
task as sequence-labeling. We used same compo-
nents for modeling: a neural encoder and a condi-
tional random field layer. For our neural encoder,
We used SciBERT. This model has been proven to
work effectively with scientific and medical data,
like i2b2-2010.

4.3 Experiments

Each experiment was repeated with 5 different ran-
dom seeds to calculate standard deviation.

For our SR and MR approaches, our hyperpa-
rameters are the replace ratio (0.3) and the number
of generated samples (1).

LM and CR hyperparameters are similar. Both
will have the number of generated samples and
number of replaced tokens (only for LM) or non-
terminals (only for ST). In this work, we limit CR
replacements to non-terminals (phrases) in the fol-
lowing set: {NP, VP, ADJP, ADVP, PP}. We leave
out FRAG (fragment) because it has too low of a
non-terminal count.

One question to be explored is whether more
augmented data can result in continued gains in
model performance. To answer this, we experi-
mented with {5, 10, 20} generated samples. For
each number of generated samples, we also set the
number of replaced tokens for the LM and the num-
ber of replaced non-terminals for CR to be {1, 3,
5}. We have described the distribution of non ter-
minals in Table 1. All of these settings were tested
against the 27,625 sentences from our validation
set.

Phrase S M L
NP 332 637 2562
VP 93 189 881
PP 54 130 690
ADJP 31 42 189
ADVP 16 27 126
FRAG 2 2 4

Table 1: Distribution of the number of phrases in the
training data.

4.4 Results

Table 2 described the highest F1 scores for each
augmentation strategy. The best F1 scores were
taken for each strategy, across multiple hyperpa-
rameters. We found that synonym replacement still

outperforms other augmentation strategies in small
and medium dataset sizes.

Experiment S M L
NoA 46.3± 0.5 61.4± 0.1 70.7± 0.1
SR 53.0± 0.2 65.7± 0.1 71.0± 0.0
MR 51.9± 0.2 61.7± 0.1 70.2± 0.0
LM 52.9± 0.1 63.3± 0.1 73.3± 0.2
CR-ADJP 47.8± 0.2 61.0± 0.1 71.2± 0.1
CR-ADVP 50.5± 0.3 61.9± 0.1 71.3± 0.1
CR-NP 52.1± 0.3 60.6± 0.1 70.2± 0.1
CR-PP 52.1± 0.1 62.4± 0.1 71.9± 0.1
CR-VP 52.9± 0.2 62.8± 0.1 72.8± 0.1

Table 2: Results for data augmentation experiments
across different data set sizes. Top results for each data
partition are marked in bold.

All augmentation methods tested seem to im-
prove performance in terms of F1 for the small
training set ( 50 sentences). When we look at the
medium dataset, however, some methods such as
CR-ADJP or CR-NP, start to have a negative impact
compared to no augmentation settings. Even more
augmentation strategies begin to show diminishing
or negative effects on performance for the larger
dataset (e.g., MR and CR-NP). This suggests that
some of the augmented data might be detrimental
for the model fine-tuning process.

To understand how the augmented data may start
to hurt the original model’s performance, we con-
sider one original sentence processed using CR-
NP strategy. For example, “Dr. Foutchner will
arrange for an outpatient Holter monitor”. In the
case of the CR strategy, the augmentation algo-
rithm draws an NP from another training sentence,
resulting in “Dr. Foutchner will arrange for a T2
signal change” or “Dr. Foutchner will arrange for
10 beats”. These augmented sentences are gram-
matical, but they lack cohesion. This phenomenon
may impact the model negatively. Future work
should explore strategies to control for this drift.
For instance, by fine-tuning a large-scale language
model to perform masked language modeling on
sentences where a portion of tokens are provided
in terms of phrasal category (XP) or functional
category (part of speech tag), we might hybridize
syntax-driven transformations and instantiate syn-
tactic templates using large-scale language models.

We observed that among CR strategies, CR-NP
performance seems to be worse compared to CR-
VP or CR-PP, despite NP has the most occurrences
in the training data. We suspect that the effective-
ness of this strategy will heavily depend on the
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S M L
5 10 20 5 10 20 5 10 20

LM 50.6 51.5 50.6 61.2 60.8 61.0 71.1 70.8 70.6
CR-VP 50.5 52.0 52.3 61.9 62.3 62.5 71.9 72.3 72.3

Table 3: Comparison between CR-VP and LM aug-
mentation. CR-VP holds more consistent performance
across the number of generated sentences, while LM
performance drops when the number of generated sen-
tences is low.

scope of the constituency tag. NPs are usually lo-
cated low in the constituency tree, while VPs are
usually located toward the top.

The augmentation strategies explored in this
work can be further divided into two groups: strate-
gies that produce new vocabularies and strategies
that do not produce new vocabularies. SR and LM
methods fall into augmentation that produce new
vocabularies. SR uses the Penn Treebank (Mar-
cus et al., 1993) to generate synonyms of replaced
tokens. LM use its word embedding to guess the
masked target token and may generate new words
that do not exist in the training data. The other
strategies (MR and CR) rely solely on the current
training dataset. This phenomenon suggests aug-
mentation strategies that produce new vocabularies
seem to be more effective. This is plausible since
new words will make the fine-tuned model more
robust to unseen data. Although CR does not gen-
erate new words like the LM and SR methods, it
still performs competitively in comparison. The
delta between F1 scores produced by CR-VP and
LM with our best hyperparameters for all dataset
sizes are remarkably small at around 0 0.5 points.
The effect of simpler data augmentation strategies,
SR and MR, seems to be diminishing as the data
size increases; however, it is not the case with the
LM and CR-VP strategies. They seem to perform
well when more training data is available.

Looking at Table 3, the CR-VP augmenta-
tion strategy seems to show more consistent per-
formance growth compared to the LM strategy.
Whether it is 5, 10 or 20 sentences generated, CR-
VP consistently trends upward as the number of
augmented sentences increases (cf the instability
of the LM). The average performance of the CR
strategy shows an increased F1 as the number of
synthetic sentences grows. In contrast, the aver-
age performance of the LM strategy is inconsistent
and trending downward as the number of synthetic
sentences increases.

Lastly, the performance of the CR strategy will

also be affected by the performance of constituency
parser component itself. For one of our augmented
examples, the original sentence “She [VP had a
workup by her neurologist] and an MRI [VP call
with any fevers , chills , increasing weakness... ]”
was mutated into “She [VP had a workup by her
neurologist] and an MRI [VP flare]”. Here, the
word flare was falsely predicted as a verb and thus
erroneously predicted as a VP constituent, while
the word flare here should be a part of COPD flare
and classified as noun.

5 Conclusion and Future Work

In this work, we examined data augmentation
with a large-scale language model (LM) and con-
stituency tree mutation (ST). We compared these
augmentation methods with a baseline and previ-
ously proposed strategies for data augmentation:
synonym replacement (SR) and mention replace-
ment (MR). We found that SR performance is
still most effective, by a small margin, but the
performance degrades quickly as the data size in-
creased. We have also observed that both LM and
CR retained their performance throughout larger
dataset sizes. We also showed that CR performance
seems to be consistent in its improvement as the
augmented dataset size increases, while the LM
showed degrading performance with more aug-
mented data.

Future work should include improvements that
hybridize the syntactic transformations with a large-
scale language model. One possibility to increase
the performance of the baseline language model
is to train it to recognize phrase-level constituents
and functional categories to understand more about
constituency tags by first randomly swapping a few
tokens with part of speech tags. For example, the
original sentence is “I take my medicine.”, then
the pre-training sentence is “I VB my medicine.”
and "I take my NN.". We hypothesize that this pre-
training will improve the prediction performance
of the baseline language model that we used for CR
augmentation by attending to functional categories.
Another possibility is to assign different weights
to datapoints that inform the model how much to
"trust" augmented data compared to gold data. This
weight could be in the form of different learning
rate.
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Abstract

Data annotation has been a pressing issue ever
since the rise of machine learning and asso-
ciated areas. It is well-known that obtaining
high-quality annotated data incurs high costs,
be they financial or time-related. In our previ-
ous work, we have proposed a custom, SQL-
like retrieval language used to query collections
of short documents, such as chat transcripts or
tweets. Its main purpose is enabling a human
annotator to select “situations” from such col-
lections, i.e. subsets of documents that are re-
lated both thematically and temporally. This
language, named Matcher, was prototyped in
our custom annotation tool. Entering the next
stage of development of the tool, we have tested
the prototype implementation. Given the lan-
guage’s rich semantics, many possible execu-
tion options with various costs arise. We have
found out we could provide tangible improve-
ment in terms of speed and memory consump-
tion by carefully selecting the execution strat-
egy in each particular case. In this work, we
present the improved algorithms and proposed
optimization methods, as well as a benchmark
suite whose results show the significance of
the presented techniques. While this is an ini-
tial work and not a full-fledged optimization
framework, it nevertheless yields good results,
providing up to tenfold improvement.

1 Introduction

In recent years, rule-based approaches to vari-
ous tasks pertaining to information extraction (IE)
and natural language processing (NLP) have been
“benched” by the academic community. Even ten
years ago, rule-based systems were on their down-
fall of popularity (Chiticariu et al., 2013), and the
situation does not seem to have changed now with
the rise of machine learning models that are eas-
ily fine-tuned for any tasks and frameworks that
provide even non-experienced users with all the
necessary tools. Even the task of data annotation,
which has been traditionally dealt with via manual

labour, can now be simplified by annotation tools
that leverage machine learning capabilities1. Meth-
ods such as few-shot or zero-shot learning can help
deal with the problem of limited available data, and
produce outstanding results in domain-independent
natural language tasks.

However, rule-based approaches have held their
ground in a specific area: industrial applica-
tions, especially those that require domain adapta-
tion (Chiticariu et al., 2010b), such as biomedical
information extraction (Kreimeyer et al., 2017).
In settings that require high accuracy, the conve-
nience of using an ML model can be traded off
to obtain better results. However, using a declara-
tive approach instead of a classical approach to IE
(programs written in general-purpose programming
languages intended for extraction of “hard-coded”
features) adds the convenience and flexibility back.
Additionally, using such approaches can help over-
come issues with machine learning bias (Yapo and
Weiss, 2018), unfortunate examples of which have
been recorded many times.

Furthermore, the questions of performance and
costs constitute a pressing issue. Using machine
learning in an enterprise environment usually re-
quires the company to both obtain expensive com-
putational resources such as specialized GPUs and
develop new ETL pipelines, given the need to pro-
tect the data that their customers provide. Further-
more, using an ML model might just not be fast
or scalable enough for a business need. However,
a rule-based approach to information extraction is
scalable by definition, with the help of optimization
and other techniques. Our project, Chat Corpora
Annotator, implements a rule-based approach. It
is intended for the task of data exploration and
subsequent annotation. At present, its main use
is exploring very long chat transcripts with ex-
tracting and annotating subsets of messages with
open-domain tagsets defined by the user. A sim-

1A prominent example of this is prodi.gy by spaCy.
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Figure 1: The Matcher interface implemented inside Chat Corpora Annotator. The left side of the window contains
all of the available operators, as well as the word lists used for matching. The top frame contains a Matcher query,
and the bottom frame contains its results, which can be navigated using the buttons below. The messages that match
the query are highlighted in red. The query can be interpreted as extraction of mentions of job postings.

ple example of such extraction would be finding
all subsets of messages in which the users of a
chatroom make plans to meet in real life. Our pre-
vious paper presents the first version of the tool
together with a detailed description of its intended
usage (Smirnova et al., 2021). The semi-automatic
rule-based extraction is implemented by our cus-
tom query language Matcher. It is a declarative,
SQL-like language whose main purpose is to match
over groups of messages according to the specified
predicates and constraints. The supported predi-
cates are all natural-language related, which makes
the queries and their results easily interpretable.
Additionally, Matcher supports complex Boolean
querying and subqueries, which provide rich data
exploration capabilities. Further on, we will pro-
vide the description of all supported operators and
showcase several query examples on real data. Fig-
ure 1 presents the interface used to run Matcher
queries.

The first version of Matcher was more of a pro-
totype than an actual ready-to-use instrument, and,
subsequently, the methods that actually retrieved
and matched messages were implemented without
optimization at all. Developing the second ver-
sion, we ran into many performance-related issues
while testing Matcher on large datasets, especially
complex queries with several sub-queries, such as
extremely long processing times. Therefore, we
have proceeded with the decision to develop and

study various query evaluation strategies for our
language. Query optimization is an essential part
of database query processing, so we reuse some of
its core ideas in our approach. Overall, the contri-
butions of this paper are:

1. A description of the next version of Matcher,
which was extended by adding a new key-
word.

2. A discussion of five query evaluation strate-
gies which were implemented and bench-
marked in the next version of CCA.

3. A benchmark suite which will provide repeata-
bility of our experiments and may serve a ba-
sis for further studies concerning optimization
of such queries.

The rest of this paper is organized as follows: Sec-
tion 2 contains an overview of related work, Sec-
tion 3 provides a description of our query language,
Section 4 describes the algorithms that we propose
for query optimization, and Section 5 and Section 6
describe the benchmark and showcase the experi-
mental results. Finally, we give some concluding
remarks in Section 7.

2 Related Work

2.1 Rule-Based Systems
Probably one of the most prominent examples,
IBM’s SystemT (Li et al., 2011), is an informa-
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tion extraction system that implements AQL — a
declarative rule language that is intended for ex-
tracting structured information from unstructured
documents. It is similar to SQL in syntax, and its
output is presented as an SQL view. Below we
will briefly discuss its query optimization approach.
An interesting development worthy of mentioning
is the rule-based NERL language (Chiticariu et al.,
2010b) built on top of SystemT and intended for
customized named entity recognition.

A different declarative approach is implemented
in the DeepDive system (Zhang et al., 2017; Shin
et al., 2015). They employ a language based on
SQL and Datalog in order to facilitate the devel-
opment of declarative programs for information
extraction and subsequent use of this information,
such as constructing knowledge bases.

Odinson (Valenzuela-Escárcega et al., 2020) is
one of newest rule-based information extraction
frameworks, presented in 2020. It features a sys-
tem for annotating and essentially constructing a
custom knowledge base, and a declarative pattern
query language which is used for extracting infor-
mation out of them. The language has the capabili-
ties to run over not only tokens and token features,
but graph-like annotations as well (such as syntac-
tic dependencies). Internally, Odinson is based on
a custom Lucene index, specifically implemented
to index as much information about annotated doc-
uments as possible. This provides a large share
of runtime optimization. Additionally, since not
everything can be indexed, Odinson also contains
a query compiler that optimizes the queries that
involve syntax annotations, compiling them into a
graph traversal pattern. The authors state that due
to their optimizations, Odinson is 150,000 times
faster than its predecessor Odin.

GATE (Cunningham et al., 2002) is a well-
known IE system/framework which was first re-
leased in 2002. It features a possibility to construct
annotators with JAPE (Java Annotation Patterns En-
gine), which is an imperative rule-based language
adhering to the CSPL (Common Pattern Specifi-
cation Language) standard. As far as we know,
approaches based on CSPL cannot be optimized,
as they produce a finite state transducer and have a
set rule execution order.

Finally, another notable information extraction
system is the UIMA Ruta framework (Klügl et al.,
2016). It features an expressive matching lan-
guage that allows building concise representations

of matching rules. It is not declarative, similarly
to GATE. However, the authors state that their lan-
guage does not suffer from the drawbacks of CSPL,
as it supports variable execution order, but they do
not touch on optimization.

2.2 Query Optimization

Overall, query optimization is a well-developed
and well-studied area. Starting out in 1979 with
System R’s optimizer (Selinger et al., 1979), stud-
ies of optimization allowed optimizers to become a
standard and indispensable feature in all industrial
DBMSes (Özsu and Valduriez, 2011). Some of
the most prominent works of this area concern the
Starburst and the Volcano optimizers. Overall, over
the years optimization has accumulated a rich set
of concepts and principles such as selectivity, inter-
esting orders, minimization of intermediate results,
data sketches (histograms) and many more.

However, query optimization for lesser-known
purposes, such as query languages intended for
information extraction, has not been properly ex-
plored. Further on, we will try to provide an
overview of existing solutions. In their 2013 ar-
ticle (Chiticariu et al., 2010a), the authors of Sys-
temT present an algebraic query optimizer for
AQL. Unlike its main competitors, CSPL-based
languages that use cascading grammars, AQL does
not place evaluation order restrictions on its oper-
ators. This opens up the fundamental possibility
of constructing an operator graph, and furthermore,
many operator graphs for a single query, which
in turn makes it possible to select the best one.
The authors formally prove that the CSPL gram-
mars cannot produce a finite state transducer that
is faster than any algebraic graph, and compare the
performance of SystemT and GATE on a rule-based
Named Entity Recognition task. Their system won
in both throughput and required memory.

The SQoUT project (Jain et al., 2009a) was a sys-
tem that allowed its user to run structured queries
over relation tuples extracted from natural language
texts. The authors have implemented a full-fledged
cost-based query optimizer for SQL over a database
that stores such relation tuples. In their later arti-
cle(Jain et al., 2009b), they consider join optimiza-
tion for their system, focusing not only on perfor-
mance, but on output quality, because in such a task
it is critical: i.e., the relation tuples cannot be in-
valid. Their optimizer chooses between three join
algorithms: Independent Join, Outer/Inner Join,
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and Zig-Zag Join. The authors provide a thorough
evaluation of both performance and quality of out-
put, and come to the conclusion that their optimizer
is effective.

Finally, in their 2012 article, El-Helw et al. (El-
Helw et al., 2012) introduce the concept of extrac-
tion views: database views whose data is obtained
by running information extractors on specific docu-
ment collections. The authors state that any extrac-
tor such as GATE or UIMA can be used for this
purpose. They introduce a system that integrates
SQL with such extractors, which can be used to
build special tables out of tuples extracted from un-
structured documents. Additionally, they provide
a cost-based optimizer for SQL queries over such
tables, which supports visualization of the used
execution plan.

To the best of our knowledge, these are the only
papers that concern optimizing queries for infor-
mation extraction systems. However, none of them
were intended for the task that we have formulated:
extracting subsets of messages out of short text
datasets, such as raw dumps of chats and tweets.
They could not be adapted for the task either, as
they are focused strictly on extracting pre-specified
information, such as, for example, detecting phone
numbers in a set of email documents. Whereas
our approach is more oriented towards discovery of
information that may match a specific, but rather
loose pattern. This is prompted by the nature of
chats and tweets, as they are often entangled and
noisy, and traditional IE tools may fall short in the
task we propose. At the same time, considering
their optimization, such IE systems are necessary
for both academic and industrial community and
ensuring their performance is of priority. There-
fore, reusing query optimization techniques from
the database domain looks like a promising ap-
proach.

3 Matcher Query Language

Matcher query language consists of a basic set of
rule-based matching operators, which can be com-
bined into a matcher with Boolean operators, and
which, in turn, can be combined into matching
groups with commas. Furthermore, Matcher also
contains a restriction operator INWIN and the UNR
modifier, which will be explained below. The for-
mal query syntax of Matcher is as follows:
query = SELECT body window
body = query_seq | restriction_seq
window = | INWIN N

query_seq =
(query)
| (query) ; query_seq

restriction_seq =
restriction_seq_body
| restriction_seq_body UNR

restriction_seq_body =
restriction
| restriction, restriction_seq

restriction =
restriction AND restriction
| restriction OR restriction
| (restriction)
| NOT restriction
| condition

Here, bold denotes language keywords and regu-
lar denotes nonterminal symbols. Let us consider
the language in a bottom-up fashion.

Formally, a matcher is a template that is matched
against a single message in chat history. It consists
of a Boolean expression which is evaluated for each
message, and if it equals True, then the message is
added to the output. Therefore, a matching group is
a set of matchers, each of which provides a single
message for the output. In the formal syntax, a
matcher is described by the restriction non-
terminal symbol, an individual rule-based matching
operator by condition, and a matching group
by the restriction_seq.

The currently the available set of rule-based
matching operators is the following:

• haswordofdict(dict) matches mes-
sages that contain any word from a pre-
specified named list;

• hasdate(), hastime(), hasloca-
tion(), hasorganization(),
hasurl() match messages that contain
tokens with the respective Named Entity
annotations2;

• hasusermentioned(user) matches
messages that contain a username mention in
the text field;

• byuser(user) matches messages that con-
tain a specified username in the user field;

• hasquestion() matches messages that
contain at least one question-like sentence.

2Our system obtains NER annotations via external integra-
tion with a running CoreNLP instance.
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Matcher relies on a simple data schema consist-
ing of three fields: a username-like field, a date-like
field, and a text-like field. CCA focuses on chat
datasets, and we believe that this is a minimal re-
striction on such data.

Next, the body nonterminal symbol specifies
two admissible types of queries: matcher-only and
subquery-only. The first one consists only of match-
ers separated by commas. The second one requires
nested SELECTs (separated by semicolons) inside
the parent SELECT.

Matcher-only queries are intended for simple
use-cases, while queries with subqueries provide
flexibility by allowing to express complex patterns,
constructing them in a bottom-up fashion. Such
queries concatenate results of individual subqueries
while checking additional restrictions such as dis-
tance between them and ordering. Matcher sup-
ports subqueries of arbitrary depth. Use-case ex-
amples are provided in Section 5.

The window nonterminal describes an optional
INWIN clause. It provides a way to explicitly
restrict the length of the window in which all
matched messages should fit. For example, query
SELECT hasdate(), haswordofdict(me
eting) INWIN 20 means that in each returned
set of messages, the two messages that conform
to the matchers must not be further away than 20
messages from each other. If not specified, this
length is implicitly restricted to 50 on the language
implementation level for performance reasons.

The current version of Matcher has been ex-
tended with a special UNR clause, which signifi-
cantly improves the expressiveness of the language.
It is a modifier that removes the match order con-
straint on matching groups. Without this clause,
the outputs of each matching group are ordered
according to their order in the query.

4 Query Processing

4.1 Basics

The goal of our query processor is to construct a
list of answers, each answer being a list of integer
message ids. Thus, all operations are performed on
integer lists (groups) or lists of integer lists (group
lists).

Due to the space constraints we will not present
the pseudocode of algorithms, but we will sketch
out the ideas behind them instead.

In general, Matcher’s query evaluation consists
of four phases, which correspond to functions in

the source code:

1. VisitQuery. It is the first function that han-
dles a submitted query. If there are subqueries
in it, it obtains their results and then performs
merging, calling MergeQueries which checks
order and INWIN requirements. If there are
no subqueries, i.e. the query contains only
a matching group, then VisitRestrictions is
called. After this, the output of VisitQuery is
constructed by eliminating duplicates and sort-
ing final message lists by their first message
position. Note that VisitQuery is a recursive
function that is run for each subquery.

2. VisitRestrictions. It obtains a group list in
which the i-th group contains all messages
that conform to the i-th matcher (the entire
Boolean formula) and sorts it if necessary.
This phase also handles the UNR clause by
generating all possible permutations of the
groups. This method calls VisitCondition to
obtain message ids that conform to individual
conditions.

3. VisitCondition. It queries the transcript to
extract all messages that conform to a sin-
gle predicate (haswordofdict, byuser,
hasdate, hastime, etc).

4. MergeRestrictions. This function accepts
a group list, where each list corresponds to
an individual restriction. Items of these lists
are message ids that conform to the respec-
tive Boolean formula. The output is another
group list, but each group corresponds to an
answer. Thus, MergeRestrictions constructs
this list by taking ids from different input
groups while checking the INWIN clause.

Our initial experiments demonstrated that there
are two most expensive functions which needed
to be optimized — VisitCondition and MergeR-
estrictions (see Fig. 4). The first one works by
issuing calls to Lucene, which stores indexed chat
transcript data. There are many possible straightfor-
ward methods, e.g. implementing reuse or setting
up caching, tuning Lucene, using another storage
layer and so on. In terms of DBMS query process-
ing and optimization, this part is similar to the ac-
cess method selection problem. On the other hand,
optimizing MergeRestrictions resembles join op-
timization and it is trickier than VisitCondition.
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For this paper, we have decided to develop sev-
eral different strategies for optimizing this part. Let
us consider in detail how a Matcher query is evalu-
ated.

Query evaluation starts with the body of the main
SELECT clause. Any SELECT can consist of ei-
ther a sequence of nested subqueries or a sequence
of matchers, i.e. a matching group.

If the body consists of n matchers, we find the
ids of messages that satisfy the respective condi-
tions, obtaining n groups of messages. Let us de-
note this stage with an asterisk (*). If the UNR
modifier is used, all possible permutations of the
obtained groups are generated, and if not, a single
order (which is specified in the query) is considered.
For each group order (that is, for each permutation),
we merge the groups taking into account order con-
straints and the INWIN condition, i.e., we create
lists of n ids, each element of which is an element
of some group. We check the uniqueness of these
lists, deleting those that are already in the resulting
list, and add the rest to the output of the current
query or subquery.

However, if the body consists of k subqueries,
we process each subquery and merge the obtained
lists, taking into account order constraints and the
INWIN condition, obtaining a group list sequence.
Merging produces lists that contain k groups, each
of which is an element of the resulting list of the
corresponding subquery. Thus, this is recursion —
we process sequences of subqueries until we reach
a subquery that does not have its own subqueries.

Now, for the MergeRestrictions phase we pro-
pose several different algorithms, namely:

1. N+NS: naive, no sort;

2. N+S: naive, with sort;

3. P+NS: position-based, no sort;

4. P+S: position-based, with sort;

5. H+S: histograms, with sort.

The first part of their name encodes method and
shows whether the groups to be merged have been
sorted at the (*) stage (i.e., when they were ob-
tained).

4.2 N+NS: naive, no sort
The N+NS algorithm is the most basic version of
all considered algorithms. It is a recursive algo-
rithm which at first selects the first group and starts

iterating over its values, launching itself for each in-
dividual value. This value will be the beginning of
an answer, which is a list. Each launched instance
has this partial answer as the first parameter and
the remaining groups as the second. On subsequent
recursion steps, the algorithm tries to add the next
message id (taking it from the first group, out the
remaining ones) to the partial answer. For this, it is
necessary to check: 1) whether the id of previous
message is smaller than the id of the current one,
and 2) whether the INWIN restriction holds. If
there are no suitable message ids in the considered
list, then this recursion branch terminates. Thus, at
each recursion step, the partial answer grows by a
single id until all groups are checked.

4.3 N+S: naive, with sort

The N+S algorithm is the same, except that it lever-
ages the fact that the contents of lists to merge are
sorted. Thus, it makes possible to greatly reduce
the number of recursive paths to traverse.

There is a number of differences from the N+NS
algorithm. Firstly, it sorts each obtained group at
the (*) stage in ascending order. Next, on the sec-
ond and all subsequent recursive steps it conducts
different checks to test whether the considered id
can participate in the result.

More specifically, if the current message id goes
beyond the INWIN restriction, further processing
of the next elements of the current group stops.
Indeed, due to the ascending order of the groups,
all subsequent messages of this group definitely
cannot fit into the window.

Such approach allows to early terminate the eval-
uation, which will have a good effect on the overall
performance. However, sorting will incur addi-
tional costs, which should be taken into account
and which we will experimentally evaluate.

4.4 P+NS: position-based, no sort

The next algorithm is built around the following
idea: we should start merging groups from the
smallest ones (in terms of their size) and finish
with the largest one. Using this approach, we can
reduce the number of recursive branches which do
not satisfy the INWIN and order requirements. At
the same time, the need of a novel approach to
checking order requirements arises. The idea is
illustrated in Figure 2. When we add an id to the re-
sulting list we have to check that the id of previous
message is smaller and that id of the next message
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Figure 2: The P+NS algorithm

is greater (if they have been already placed). We
call this class of algorithms position-based.

4.5 P+S: position-based, with sort

Similarly to P+NS, this algorithm exploits the idea
of merging smallest groups first. But at the same
time it relies on the sorting idea of the N+S algo-
rithm. Thus, the P+S algorithm sorts each resulting
group at the (*) stage, and at the start the algorithm
is supplied with the number of messages in each
group.

Then, similarly to the N+S, it is possible to prune
a large number of recursive branches that do not
satisfy the order and INWIN restrictions.

4.6 H+S: histograms with sort

The next stage in the development is the H+S al-
gorithm, which uses equi-width histograms (Ioan-
nidis, 2003) of message distribution. The idea is
the following: unlike all previous algorithms which
merged all groups at-a-time we merge groups two
at-a-time.

At the same time, we try to merge groups that
will result in as few intermediate results as possible
first. This resembles the idea of classic optimiza-
tion of a join sequence in SQL query processing,
where the size of intermediates is reduced too. In
order to estimate the sizes, we employ equi-width
histograms, which are constructed in advance.

The algorithm itself is as follows. At first, we
sort groups by their sizes. Then we iterate over
triples of groups and try to assess the benefit for per-
forming local permutations on them if their sizes
are close enough. In our experiments (see Sec-
tion 6) it was shown that sorting groups by their
sizes (position-based approaches) already results
in formidable improvement, therefore we should
build our next algorithm upon this idea.

Assessing benefits of permutations is done in
the following way. Suppose that we have groups

A, B, C which we have to merge, and they are of
similar size. We consider the following three per-
mutations: ((AB)C), ((BC)A), and ((AC)B) which
represent different evaluation orders. Each of them
is assessed by “intersecting” histograms of the cen-
tral part. After the intersection, we estimate the
size of the intermediate result using obtained his-
tograms. Then we select the evaluation order that
corresponds to the smallest histogram.

Figure 3: Distribution Example

Consider the example presented in Figure 3. Sup-
pose that we have to merge A, B, and C lists with
the message distributions as shown in the figure. It
is evident that it is better to merge A and C (B and
C) first than A and B. This way we will discard a
lot of intermediates as soon as possible.

This approach will not provide performance im-
provement if there is an identical data distribution
in all considered groups. But at the same time it
will not incur a significant overhead except the his-
togram construction phase, which can be done in
advance.

This is a prototype of a full-fledged optimizer
intended to demonstrate its viability in our setting.

5 Benchmark

To ensure repeatability we have created a bench-
mark which consists of four queries and a mes-
sage set. This message set contains the first 1 mil-
lion messages from the freeCodeCamp Gitter Chat
dataset, available on Kaggle3. Its Lucene index
takes around 100MB of disk space.

Listing 1: Query 1 (Q1)
SELECT

hasword(job), hasword(code),
hasusermentioned(Kadams223)

UNR INWIN 40

The Q1 query matches a group of three messages
that have words related to jobs, words related to
code and a mention of a specific username. It can

3https://www.kaggle.com/
datasets/freecodecamp/
all-posts-public-main-chatroom
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be interpreted as extracting a discussion that the
specified user has been actively partaking in, receiv-
ing many replies. This is a simple query that illus-
trates the concept behind the UNR clause. The re-
sults of the matchers are not ordered in accordance
to their order in the query, but the whole group
should fit into a window of 40 messages. Note in
that the following listings haswordofdict was
shortened to hasword for better readability.

Listing 2: Query 2 (Q2)
SELECT

hasword(job), hasword(skill),
hasword(skill), hasword(area),
hasword(money)

INWIN 40

Q2 extracts a group of five messages that discuss
coding job listings with the mentions of the area
of the job, required skill and the salary. This is
a simple query with no subqueries, however, it
has many matchers and a window length of 40
messages in which the extracted group should fit.

Listing 3: Query 3 (Q3)
SELECT

(SELECT
hasword(job), hasword(skill),
hasword(code), byuser(Lumiras)
INWIN 60

);
(SELECT
byuser(Lumiras) AND hasword(issue)

)
INWIN 200

The Q3 query extracts the following information:
a discussion of job search and coding languages in
which user Lumiras took part, and it is followed
by an issue alert by the same user. This query
contains two subqueries, the first of which has a
medium-sized window, and the second one has a
Boolean AND which specifies that the output of this
matching group, containing a single message, must
be by the specified user and contain a reference to
an issue.

Listing 4: Query 4 (Q4)
SELECT

(SELECT
hasword(job), hasword(skill),
hasword(code), byuser(Lumiras)

);
(SELECT
hasword(job), hasword(skill),
hasword(code), byuser(odrisck)
INWIN 40

);
(SELECT
hasword(job), hasword(skill),

hasword(code), byuser(odrisck)
INWIN 40

)
INWIN 300

Q4 extracts three message groups, each of which
discusses job search and coding languages. User
Lumiras participates in the first group, and user
odrisck takes part in the second and the third.
This query contains three similar subqueries and a
large window for the groups to fit in.

6 Experiments and Discussion

Experimental evaluation was conducted on a PC
with the following characteristics: 8-core In-
tel®Core™ i7-11800H CPU @ 2.30GHz, 16
GB RAM, running Windows 10.0.19042.1645
(20H2/October2020Update).

The current version of CCA is implemented
in C# (.NET 6, WPF) using the following
libraries: Antlr4, Lucene.Net 4.8.0, Newton-
soft.Json, and SoftCircuits.CsvParser. To obtain
accurate measurements, we have used Benchmark-
DotNet v0.13.14. It was run with default parame-
ters, a confidence interval of 99.9% was calculated
by the benchmark (as a different number of runs
was used in each case), and we manually checked
that relative error was less than 2%. Our source
code is available publicly5.

In our first experiment we have compared the
four initial versions of the algorithm: N+NS, N+S,
P+NS and P+S. For this, we used the first four
queries of our benchmark. The overall results are
presented in Table 1.

To provide better insights into the results, we
have also constructed a stacked barchart presented
in Figure 4. It shows four approaches each depicted
by its own bar. Each bar is divided into parts that
correspond to the contribution of each method.

Our experiments have clearly demonstrated that
all of the proposed strategies are superior in perfor-
mance to the basic N+NS. Overall, P+S is the most
efficient approach, which noticeably beats N+S and
N+NS, and to a lesser extent P+NS. It was possible
to obtain more that 10x speedup for a subset of
queries.

The next observation is that sorting of group
elements is almost free in terms of time. Sorting is
conducted inside the VisitRestriction function and

4https://github.com/dotnet/
BenchmarkDotNet

5https://github.com/yakovypg/
Chat-Corpora-Annotator
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Query Msgs N+NS Impr N+S Impr P+NS Impr P+S Impr

Q1 1M 2253.5 - 1232.8 1.8x 209.4 10.8x 207.0 10.9x
Q2 1M 4260.6 - 1954.6 2.2x 530.6 8.0x 419.1 10.2x
Q3 1M 4354.1 - 2248.0 1.9x 408.1 10.7x 379.2 11.5x
Q4 1M 11615.2 - 6193.5 1.9x 2016.7 5.8x 1318.6 8.8x

Total — 22483.4 - 11628.9 1.9x 3164.8 7.1x 2323.9 9.7x

Table 1: Overall results
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Figure 4: In-depth results

the figure shows that its presence has almost no
impact on the bar height.

Listing 5: Query 5 (Q5)
SELECT

byuser(sludge256),
byuser(sludge256),
byuser(trisell) OR byuser(seahik) OR
byuser(odrisck) OR byuser(jsonify) OR
byuser(cerissa) OR byuser(mykey007) OR
byuser(AhsanBudhani) OR
hasusermentioned(seahik)

INWIN 50

The second experiment concerned out last strategy,
H+S. H+S does not always beat P+S, but it never
loses to it, either. We have added the Q5 to our
benchmark as an example on which H+S beats
P+S: it takes 1479 ms compared to 1865 ms, thus
providing 25% improvement.

7 Conclusion and Future Work

In this paper, we have presented and described our
custom query language Matcher, intended for ex-
ploration and annotation of large natural language
datasets such as chat transcripts. The main body of
our work consisted in optimizing one of Matcher’s

execution stages that deals with merging the results
of individual parts of the query, which in essence
resembles join optimization. We have created five
algorithms and a benchmark of five queries to test
them against. We have not presented a proper op-
timizer, but a collection of simple techniques that
nevertheless yield surprisingly good results, provid-
ing up to 10x improvement. All this warrants fur-
ther investigation. Concerning our future work, the
first evident direction is to implement a proper cost
model, design rules for enumerating plan space,
employ more sophisticated statistics and estima-
tors of intermediate result sizes. Next, looking at
graphs for the P+S algorithm, one may notice that
for Q4, Lucene index access has become the most
costly part and thus, it is necessary to address this.
There are many approaches to optimizing Lucene
index access which can be investigated. Finally,
note that Matcher itself does not support variables
so far, however, it is a necessary feature and it will
have impact on optimization.
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Abstract

Natural language (as opposed to structured
communication modes such as Morse code)
is by far the most common mode of communi-
cation between humans, and can thus provide
significant insight into both individual mental
states and interpersonal dynamics.

As part of DARPA’s Artificial Social Intelli-
gence for Successful Teams (ASIST) program,
we are developing an AI agent team member
that constructs and maintains models of their
human teammates and provides appropriate
task-relevant advice to improve team processes
and mission performance. One of the key com-
ponents of this agent is a module that uses
a rule-based approach to extract task-relevant
events from natural language utterances in real
time, and publish them for consumption by
downstream components.

In this case study, we evaluate the performance
of our rule-based event extraction system on
a recently conducted ASIST experiment con-
sisting of a simulated urban search and rescue
mission in Minecraft. We compare the perfor-
mance of our approach with that of a zero-shot
neural classifier, and find that our approach out-
performs the classifier for all event types, even
when the classifier is used in an oracle setting
where it knows how many events should be
extracted from each utterance.

1 Introduction

Humans communicate with each other using both
explicit (e.g., written and spoken natural language)
and implicit (e.g., tone of voice, body language)
modalities. While we posit that an artificially in-
telligent (AI) agent needs to handle both of these
modalities to serve as an effective teammate on
a hybrid human-machine team, in this paper, we
focus on the former.

To that end, here we present a case study de-
scribing our approach for extracting events relevant
to team coordination (e.g., instructions, requests,

knowledge-sharing statements about the locations
of people and objects, etc.) in real-time from nat-
ural language dialog. This was carried out in the
context of DARPA’s Artificial Social Intelligence
for Successful Teams (ASIST) program,1 a 4.5 year
program aimed at developing technologies for im-
buing artificial agents with social intelligence, i.e.,
the ability to construct and maintain models of their
human teammates in order to provide more effec-
tive assistance. The program is structured around
five large-scale experiments. One of the primary
goals of these experiments is to evaluate the AI
agents developed in the program on their ability to
successfully predict human behavior and improve
team processes. In order to do this, the agents need
to understand (and perhaps contribute to) the dialog
that takes place between their teammates.

This case study focuses on the third of these
five experiments (ASIST Study 3), in which teams
consisting of three humans and an AI advisor must
work together to rescue as many victims as possible
within a limited time. The mission takes place in
a collapsed office building simulated in Minecraft.
The human players participate remotely, commu-
nicating with each other using voice chat.2 The
goal of our event extraction component is to detect
specific team coordination-related events, and relay
them to AI agents, who then update their under-
standing of the state of the team members and the
mission. The event extraction component is embed-
ded into a larger architecture, which is described in
our preregistration document (Pyarelal, 2022, 5).

Critically, the actual design of these missions is
subject to change with little notice. There is no
training data for supervised approaches, and the
specificity of the domain means that many open-
domain approaches are unsuitable. For these rea-

1https://www.darpa.mil/program/
artificial-social-intelligence-for-successful-teams

2For further details on the experimental design, see Huang
et al. (2022a).
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sons (described further in § 2) we employ a rule-
based approach for our event extraction component.
This allows us to rapidly pivot and adapt to changes
in requirements, as well as encode details of the
specific domain.

In this setting, this work provides these key con-
tributions:

1. Case study comparison of a rule-based and a
zero-shot approach to team coordination event
extraction in a (semi) real-world scenario. We
describe each approach and discuss the advan-
tages and drawbacks of each. We also show
that, at least in this setting with these con-
straints, the rule-based system outperforms
the zero-shot system and is more flexible, with
richer representations.

2. Evaluation dataset annotated for twenty com-
munication events. This data can be used to
evaluate other approaches to the same task,
as well as serving as an example of what to
do (and not do) when designing an annotation
task for event extraction.3

2 Motivation for Rule-Based Approach

While most current academic research focuses on
machine learning (ML) based approaches to in-
formation extraction (Ahmad et al., 2021; Du and
Cardie, 2020a; Nguyen et al., 2016a; Tozzo et al.,
2018; Chiticariu et al., 2013), here we use a rule-
based approach that was developed in response to
the specific constraints of the task and the ASIST
program.

1. Rapid adaptation. The experimental setup of
ASIST is subject to change at each experiment.
Thus, this is a dynamic domain where entities,
events, and relations are likely to change dra-
matically. Hence we need a system that can
quickly and reliably adapt to such changes.
Further, it would be near-impossible to anno-
tate data and train or fine-tune a neural agent
on the new vocabulary of a study prior to its
actual execution. By using rules, we can sim-
ply add, modify, or remove rules as needed.
In this way, adaption is straightforward and
endlessly repeatable.

3Due to some issues we found with our annotations de-
scribed in § 5.1, we will release our annotated data set in its
original form and in its corrected version.

2. Structured events. In ASIST, communica-
tive events that shed light on individual cog-
nitive states and team processes are of par-
ticular interest for downstream components.
These events generally have a complex struc-
ture with one or more arguments. Our rule-
based system allows an unlimited number of
arguments for events and allows events to be-
come arguments of other events. This leads to
highly nested, but still interpretable structures.
While complex structures are certainly possi-
ble with ML approaches, they are not what
is supported by zero-shot approaches and we
simply do not have annotated datasets of the
necessary size to train such a model.

3. Transparency. A rule-based approach allows
our system’s decisions to be immediately in-
spectable, which helps with maintainability.
The transparency of rules also makes it easier
for us to inject domain knowledge into the
system.4 ML based approaches can provide
attention weights, but these are not necessar-
ily an interpretation of why the system made
the prediction it did (Jain and Wallace, 2019),
and regardless, they are not straightforwardly
actionable.

3 Related Work

Rule-based approaches to event extraction (EE)
have a long tradition in previous work (e.g., Ap-
pelt and Onyshkevych, 1998; Cunningham et al.,
2002; Levy and Andrew, 2006; Hunter et al., 2008;
Valenzuela-Escárcega et al., 2018; Sharp et al.,
2019). These rules were written over a variety
of language forms, from surface to syntactic or se-
mantic structures. Here we use rules that combine
surface and syntactic forms (Valenzuela-Escárcega
et al., 2015), to allow for richer representations
while also mitigating the effect of parsing errors
resulting from imperfect transcriptions from the
automated speech recognition system.

That said, much of the recent literature is on
machine learning approaches to EE (Nguyen et al.,
2016b; Liu et al., 2018; Sha et al., 2018; Wadden
et al., 2019; Du and Cardie, 2020b; Nguyen and
Nguyen, 2019; Xiang and Wang, 2019, inter alia).

4For example, due to the nature of the mission, we know
that when players interact with unnamed entities, those entities
can only be victims. So a statement such as “I will go get the
guy in A3”, must be about saving a victim. We can easily bake
this knowledge into our rules.
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Much of this work, however, relies on supervision,
a luxury we do not have in this setting.

With the rise of large pretrained neural models,
there are now several approaches to common nat-
ural language processing tasks that do not train
or fine-tune a model, but instead use prompting
to glean desired information from the knowledge
already contained in the model (e.g., Wei et al.,
2021; Liu et al., 2021; Min et al., 2021). This cat-
egory of approach is desirable in scenarios such
as ours, where annotated data is unavailable and
would be difficult to produce at scale. For this
reason, we compare our rule-based approach to a
zero-shot approach based on prompting. In § 7, we
show that for our scenario, the rule-based approach
performed better and was able to produce richer
representations.

4 Approach

Our rule-based EE system uses the Odin
(Valenzuela-Escárcega et al., 2016) event extrac-
tion framework, which consists of an expressive,
declarative rule language and a runtime system for
applying the rules. More specifically, we have an
Odin rule grammar that extracts two broad types of
events from natural language: (i) simple events that
do not have arguments,5 and (ii) complex events,
that can take other events as arguments.

Each event is associated with a unique span of
text and is assigned a label by the rule that extracts
it. The event labels we are using are organized into
a hierarchical ontology. If a rule assigns a label
to an event from this ontology, the parents of that
label in the ontology are also assigned as labels for
that event.6

Our system currently contains 420 active rules.
These map to a total of 238 event labels, including
both parent labels as well as the labels for the events
we intentionally target.7 For example, if our system
detects a event label for a specific room on the map
(example: “A4”), it will output that specific event
label and all its parent labels like so: “Concept
> EventLike > Location > Infrastructure > Room
> A4”.8 This allows us to look at outputs at any

5Simple events are mostly entities, but they can also be
actions or events without arguments. For this reason we prefer
to call them events, as opposed to entities.

6See § 4.1 for details.
7Due to the hierarchical nature of the ontology, some event

labels are never exported by a rule directly, they exist only as
parents for grouping. These parent event labels can still serve
as arguments of other events.

8Note that we do not use the term Event in a strict way,

level of granularity and define event arguments at
any level of granularity. That is, we can define an
event that only requires an “A4” label as a possible
argument, or else we can define an event that takes
a “Location” event label as a possible argument.

Odin’s support for nested patterns allows the
user to implement recursive passes on the data, as
well as specifying at which pass the system should
match against which specific rules. For our pur-
poses, we use this to first look for simple events
only, and then on later passes we look for com-
plex events. The passes are recursive because prior
extractions are part of the input for later passes.
For example, a “Room” event that was extracted
in pass 3 can be an argument of a “Search” event
in pass 6, which can in turn be an argument of an
“Instruction” event in pass 12. Figure 1 shows a
visual representation of a sample utterance and the
events extracted from it.

The code, rules, and documentation for our ap-
proach are publicly available on our github reposi-
tory.9

4.1 The Label Ontology and Nested Events
Our event labels we are using are organized in a
hierarchical ontology. We present a sample of this
ontology in the appendix, page 13. This allows us
to access labels at different levels of granularity.
For example, in this domain there are different sub-
types of victim entities – thus, we have different
rules and labels for each sub-type. All sub-types of
the victim label are hierarchically organized within
a general Victim label. When we write event rules
that need to take a Victim-type label as an argu-
ment (for example, the Save event), we can simply
specify the higher ranking general Victim label as a
possible argument, which will automatically target
all subordinated labels as well. If we need to spec-
ify an event that only targets a very specific kind
of victim, then that is equally possible. The nested
ontology allows us to generalize over events while
still keeping as much granularity as we want.

Our system does not distinguish between enti-
ties and events; it treats every label as an event.
Events take other events as arguments (if so spec-
ified), leading to nested event structures. This al-
lows us to generate complex and informative label

locations are not events in a classic or true sense, but as in
our implementation they can possibly have “arguments” (i.e.,
relative positions, etc.), we consider them EventLike.

9Please note that v4.1.5 is the version that used for this
paper. This version can be found here: https://github.
com/clulab/tomcat-text/tree/v4.1.5
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structures. In Figure 1, there is a DeliberatePlan
label that takes a MoveTo label as a topic argument.
The MoveTo label itself takes a Deictic label as a
target argument. In the exported JSON, the Delib-
eratePlan label will contain this entire hierarchical
structure and all superordinate labels. We present
a full JSON output for the above example in the
appendix, page 12.

Neural event extraction often uses a named entity
recognition (NER) model to find all entities that can
serve as arguments for events. While we consider
all labels as “events" for practical purposes, we do
have classes of labels that fall under “entities" in the
ontology. However, for the actual implementation,
they operate the same way as “events" do in our
system. Since our events can take other events as
arguments (and are not limited to entities), we can
generate more informative relationships between
events, and are not limited to entities as possible
arguments.

4.2 Rule Writing for Dynamic Domains

The experimental setup of ASIST changes with
each new experiment. These changes can be small,
such as new types of player interactions, or they
can entail changing the entire base task that play-
ers perform itself. While we know ahead of time
that changes will happen, we can never completely
predict how players will communicate under the
changed environment. This has lead us to adopt a
2-stage style of rule writing:

1. Predictive Rule Writing: In this stage we
know what the domain will be, but we do
not have any actual data yet. We write rules
that aim to predict how players will talk about
certain events.

2. Subject Data Informed Rule Writing: Once
we receive pilot data, we evaluate our pre-
dictive rules on that data and make changes
to them accordingly to prepare a improved,
frozen version of our system that is deployed
for the actual data collection.

This approach has helped us to manage rapid
adaption, while retaining a high standard of results.
For an example of one of our rules please refer
to the Example Rule with Commentary in the ap-
pendix.

5 Data

In order to quantitatively evaluate our approach and
highlight shortcomings, we annotated an evaluation
dataset10 of in-mission dialog transcriptions for
several key team coordination-related events. The
dynamic nature of the experiments in ASIST means
that annotations for ASIST Study 3 cannot be used
as training data for ASIST Study 4 and ASIST
Study 5. For this reason we (a) only annotated
enough for evaluating our approaches (rather than
training), and (b) only annotated for key events,
which were more likely to remain central, even as
the experimental paradigm shifts.

Our annotated data is drawn from live mission
dialog and constitutes a subset of the ASIST study
3 dataset (Huang et al., 2022b). The dialog is tran-
scribed in real-time using the Google Cloud Speech
automatic speech recognition (ASR) system. We
do not manually correct the transcription errors, as
we are interested in exploring what can be achieved
by our EE system in a realistic, live scenario. Due
to the nature of its origin, the utterances are often
messy and grammatically incorrect. Further, they
contain filler phrases, repetitions, and interruptions.
For example:

okay okay yeah so many patients I need
picked up was marker with the SOS

As mentioned above, we chose a set of 20 event
labels to evaluate (see appendix for detailed expla-
nations), consisting of labels we considered most
important or interesting to us in the context of the
ASIST program, and thus more likely to stay rele-
vant. Specifically, we selected:

• ‘Superset’ events that account for multiple
types of events. For example, a “Plan” event
subsumes different kinds of utterances that are
indicative of planning activity (see appendix
for details).

• Events highly specific to our use case, such as
“RescueInteractions”.11

• Events where we were unsure of the specific
label’s performance (recall that the primary
purpose of the data is to evaluate the validity
of our approach).

10The dataset is publicly available at https://osf.io/
6hr8t/.

11This event type subsumes different actions that players
can do with/to victims.
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Figure 1: Visualization of extractions produced by our rule-based system. Note that some events are simple events
without arguments, while others are complex, such as the “Agree” and “ Sight” events respecitvely. Additionally,
events can nest, as with the “DeliberatePlan” event, which takes the “MoveTo” event as an argument. Finally, note
that the utterances that serve as input are often not grammatically well-formed.

Of our 20 labels, nine are simple events (entities)
and eleven represent complex events.

We tasked annotators with annotating 3686 ut-
terances of game dialog for the labels in our set.
Specifically, we asked that for each event, they (a)
mark the span of all arguments, and (b) label the
event as a whole. We did not ask them to indicate
the labels of arguments themselves.

Concurrently, we also annotated a subset of the
same data internally for precision alone12. This
precision-based evaluation was done to gain more
fine-grained insight into the arguments selected by
our event labels.

5.1 Annotation Issues and Lessons Learned

We provided a manual for our two annotators with
descriptions of each event type and some typical
examples of how they show up in the natural lan-
guage utterances. In an initial 90-minute training
session, we discussed each event and walked anno-
tators through some examples. Subsequently, we
let them annotate a test set which we used to cal-
culate inter-annotator agreement (Cohen’s kappa =
0.7451).

After annotations were complete, it was evi-
dent that our system performed significantly worse
when evaluated against the annotated set than it had
in internal evaluations conducted for ASIST Study
1 and ASIST Study 2. We quickly realized that the
annotators had slightly different conceptualizations
of our events than we thought or intended. As a re-
sult, they were essentially annotating for a different
task than the one we originally planned.

This was caused by a few mistakes on our part.
We underestimated the degree to which the annota-
tors would need to be intimately familiar with the
domain. Their relative unfamiliarity with the do-
main caused them to miss instances of events that
they would otherwise have identified. Another is-
sue we observed was that annotators only annotated

12This involved running our system on the data and manu-
ally annotating the output and its argument structure as either
correct or incorrect.

certain action-related events if it could be inferred
that the player actually performed that action. For
example, compare the following utterances:

1. I am going to A3

2. We should go to A3 next

Annotators tended to give the first utterance a
“Movement” label, but not the second. However, in
the context of ASIST, we want to apply a “Move-
ment” label to both, as we would like our AI agent
to be able to better predict future actions, not sim-
ply identify current and past ones.

In order to address this issue, we manually cor-
rected all instances of disagreement between our
system and the annotators. After removing same-
utterance duplicates, we had 3920 annotated labels.
Of those, there were 2817 disagreements with our
system.13 After manual corrections, we found 1303
disagreements remaining.14 We would like to re-
mark that we did not make any changes of our
codebase during this process.

This method of correction is not ideal, as it risks
instilling bias. If only disagreements are examined,
then we could incorrectly bake in false negatives
that our system and the annotators both missed.
The same is potentially true for false positives from
both (though due to the general nature of the is-
sues, this was less of a concern). To check on this
clear risk for bias, we subsampled 20 instances of
agreement between our annotators and our system
for each of our 20 event labels15 and checked those
samples for any inaccuracies. We found that in
our set of 20*20 decisions, only two were faulty
(one “Precedence” and one “Instruction”). Finally,
we also checked 50 utterances where neither an-
notators nor our system had assigned any event
labels. We found that in 50 utterances, there were

13These were either cases where our system assigned a label
and the annotators did not, or the inverse case.

14This means that annotators were correct in their disagree-
ment a little under 50% of the time.

15Two event labels had fewer than 20 instances of agree-
ment: “Search” and “RescueInteractions”.
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again only two instances where both annotators
and our system had missed a “CriticalVictim” label.
No other issues were found. Given this, we use
the corrected annotations to evaluate both the zero-
shot baseline as well as the rule-based system. We
found that the corrected annotations improved the
performance of both our system and the zero-shot
baseline.

As a takeaway, we recommend creating internal
test annotations to compare against annotator work
at the beginning of the annotation process. By do-
ing a mix of qualitative comparison and calculating
inter-annotator agreement between the internal an-
notations and annotator work, this kind of situation
can be avoided.

6 Evaluation

We evaluate our rule-based approach at two differ-
ent levels of granularity: coarse and fine-grained.
For the former, we compare the performance of our
approach to that of a zero-shot classifier (see § 6.1).

For the coarse-grained evaluation, we evaluated
whether the correct labels were assigned to utter-
ances, without checking for argument structure or
spans. A given utterance may contain multiple
events with the same label.16 For simplicity in this
evaluation, and to streamline comparison with the
zero-shot approach, here we evaluate extractions
on a presence-only basis. That is, if the annotator
assigned one “Victim” label to an utterance, and
our EE system assigned two “Victim” labels to the
same utterance, we consider this correct for the
purposes of evaluation.

For the fine-grained evaluation, we annotated a
subset of our data for the precision of the argument
structure of our outputs. We only consider outputs
that we had already annotated as correct. If all their
arguments match for the correct event, we consider
the extraction as a true positive.17

During our evaluation process, we considered
the code-base “frozen". We did not make any ad-
justments to our system based on insights from the
annotation or evaluation process until the evalua-
tion was complete and all data was gathered. In

16For example, a player might use the term “victim” multi-
ple times in a single utterance.

17An implementation detail is that our system assigns a
“GenericAction” label to events that it does not recognize.
These event labels will only be exported by the system if
they become an argument of a later event. When creating the
dataset, if the arguments contained “GenericAction” events,
we did not consider the event for annotation.

contrast, we continually improved the zero-shot
baseline approach during the evaluation process.

6.1 Zero-Shot Classification Baseline

For our zero-shot baseline we leverage the bart-
large-mnli18 checkpoint provided by Meta on Hug-
gingface (Wolf et al., 2020). This zero-shot text
classifier can take a label set and text as input and
will return probability scores for the labels passed.

The model is based on a textual entailment
framework which can work without annotated data
of seen labels (Yin et al., 2019), an approach that
has been adopted by previous work (such as Ye
et al., 2020; Sainz and Rigau, 2021; Sun et al.,
2021).

To recast our EE task as text classification, we
provided the utterance as the text to be classified
and the event labels as the classes. The labels pro-
vided were slightly adjusted to make them more
amenable to the natural language expections of the
approach (e.g., we changed “Move” to “movement”
and “KnowledgeSharing” to “inform”). While we
feel that the labels given to the zero-shot classifier
could be further improved, we consider this to be
beyond the scope of this work.

Since we require the classifier to be able to pre-
dict more than one event at a time, we cannot sim-
ply take an argmax. In an effort to more fairly
compare the zero-shot model with our rule-based
approach, we sampled different approaches for cut-
off points of the label probability scores to serve
as thresholds for extracting the events. Unfortu-
nately, all methods sampled yielded overall micro
F1 scores of < 0.1 (< 0.2 for macro F1) for the
classifier.

While we believe it is likely that with further
optimization we could have improved the perfor-
mance of the zero-shot baseline, we hypothesize
that the improvement would be limited. The data
we are processing is real spoken language produced
during times of stress and high focus for the partici-
pants. It is not comparable to the type of text-based
data most modern large transformers are trained
on.

However, we also implemented an oracle ap-
proach for the classifier that yielded much stronger
performance. In our oracle approach, for each ut-
terance we select the top n outputs of the zero-shot
classifier as the given output, where n is the num-

18https://huggingface.co/facebook/
bart-large-mnli
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Precision Recall F1

Event Label Rule-based Zero-shot Rule-based Zero-shot Rule-based Zero-shot Support

Simple CriticalVictim 0.959 0.751 0.729 0.423 0.828 0.541 350
Victim 0.870 0.691 0.804 0.561 0.836 0.619 342
Room 0.997 0.572 0.939 0.286 0.968 0.381 809
Engineer 1.000 0.957 0.997 0.609 0.998 0.744 294
Transporter 1.000 0.303 0.986 0.888 0.993 0.451 277
Medic 1.000 0.696 1.000 0.567 1.000 0.625 210
Rubble 1.000 0.950 0.986 0.551 0.993 0.697 69
MarkerBlock 1.000 0.272 0.833 0.708 0.909 0.393 48
Meeting 0.978 0.279 1.000 0.856 0.989 0.421 90

All simple
(weighted av.)

0.975 0.634 0.910 0.508 0.940 0.518 2489

Complex Move 0.912 0.254 0.804 0.595 0.855 0.356 296
Precedence 0.745 0.112 0.976 0.159 0.845 0.132 126
RescueInteractions 0.792 0.091 0.528 0.222 0.633 0.129 36
KnowledgeSharing 0.948 0.246 0.704 0.111 0.808 0.154 314
ReportLocation 0.849 0.127 0.745 0.236 0.794 0.165 106
Search** 0.818 0.064 – 0.156 – 0.091 45
HelpRequest 0.805 0.098 0.713 0.057 0.756 0.072 87
Question 0.705 0.308 0.298 0.038 0.419 0.068 104
YesNoQuestion 0.827 0.248 0.684 0.120 0.749 0.161 209
Instruction 0.700 0.133 0.531 0.018 0.604 0.031 224
Plan 0.814 0.645 0.855 0.045 0.834 0.084 447

All complex
(weighted av.)

0.829 0.299 0.733 0.165 0.770 0.144 1994

All events
(weighted av.)

0.844 0.528 0.829 0.472 0.840 0.450 4483

Table 1: Comparison of our rule-based EE system and the zero-shot baseline system for our coarse-grained
evaluation. The zero-shot scores are all for the oracle setting, where we assume knowledge of the gold number of
unique events in the utterance. The rule-based system does not use this oracle knowledge.
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Event Label Precision Support

Move 0.942 120
Precedence 0.978 46
RescueInteractions 1.0 21
KnowledgeSharing 0.981 159
ReportLocation 1.0 57
Search 1.0 14
HelpRequest 0.961 26
Question 0.923 52
YesNoQuestion 1.0 21
Instruction 0.917 12
Plan 0.974 155

Weighted average 0.969 683

Table 2: Weighted average of argument structure preci-
sion scores for our rule-based approach (for events with
arguments).

ber of unique gold labels for the utterance. While
this method is not realistic, as it requires a-priori
knowledge of the number of gold labels, it allowed
us to generate a stronger baseline for comparison.
Note we did not provide this knowledge to our
rule-based approach.

7 Results

Table 1 shows the results of our evaluation. Our
rule-based system achieves micro F1 scores of
0.940 and 0.770 for simple and complex events
respectively.

The oracle zero-shot classifier baseline shows
a micro F1 score of 0.518 for simple events and
0.144 for complex events. Our system outperforms
the baseline on every event label, with the gap
being particularly pronounced for domain-specific
complex events such as “RescueInteractions”.

In our system, both simple and complex events
display consistently higher precision than recall,
with “Precedence”19 being the only exception. This
outcome is expected; we designed the rules to favor
precision over recall because the outputs of the EE
system form inputs for further downstream tasks.

Table 2 shows the results for the precision-only
fine-grained argument structure evaluation. Those
events that can take arguments score a weighted
average of 0.969 for precision of their argument
structure.

19“Search” also displays higher recall than precision, but
this is due to annotators not assigning any Search labels at
all. We removed the recall score for the Search label from the
table to reflect this fact.

8 Conclusion

Here we presented a case study on extracting team
coordination events from natural language dialog.
This dialog consists of live communications, which
suffer from mistranscriptions, gap fillers, and inter-
rupted or truncated utterances. While supervised
neural approaches make up much of the recent liter-
ature for event extraction, these approaches become
infeasible for this task due to the lack of training
data. Further, the rapidly changing requirements
for what should be extracted, as well as the need
to embed domain-specific knowledge, led us to
implement a rule-based approach.

Recently, large-scale pretrained language models
have made zero shot and/or prompting-based ap-
proaches a convenient go-to for strong baselines, as
these approaches make knowledge gained through
large-scale pretraining accessible to various tasks.
For this reason, we compare our rule-based method
to a zero-shot classifier approach. We showed that
in our case, our rule-based method out-performed
the classifier for all event types we considered. Fur-
thermore, the events output by our rules contain
rich structure that can be used by downstream com-
ponents for inference.
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Appendix

List of event labels and their meanings
What follows is a list of event labels we used for
the evaluation. We provide explanations for each
event and examples, some from the data used for
this paper.

Simple Events

1. CriticalVictim: ASIST mission participants
can encounter regular victims and critical vic-
tims. Critical victims require the entire team

to save them. Examples: “type C”, “critical
guy”, “c type”

2. Victim: Regular victims can be saved by the
team member with the medic role. Examples:
“guy in C3”, “type a person”, “b type victim”

3. Room: This is a collection of different room
type events. We have specific event labels for
every room on the map of any given experi-
ment. Examples: “A2”, “room”, “office”

4. Engineer: One of the possible roles a player
can assume. The engineer can clear rubble
that is blocking the players’ path. Examples:
“rubble guy”, “engineer”, “shovel guy”

5. Transporter: Assuming the transporter role
allows players to move faster and to trans-
port regular victims. Examples: “transporter”,
“transport specialist”, “scout”

6. Medic: The medic can triage victims. Triag-
ing victims yields points for the team. Exam-
ples: “medic”, “medical specialist”, “healer”

7. Rubble: Players will encounter rubble block-
ing their path on their mission. Examples:
“gravel”, “rubble”, “rebel” (common mistran-
scription), “blockage”

8. MarkerBlock: Participants can drop a series
of different markers on the floor. These can
have different meanings and are used to mark
important rooms etc. This event label is a
collection of all specific marker block event
labels. Examples: “c victim marker”, “gravel
marker”, “victim block”, “threat sign”

9. Meeting: One of the participants will have a
list of meetings that were going on when the
building collapsed and their location. This is a
collection of event labels capturing the terms
used for those meetings. Examples: “manage-
ment meeting”, “lunch”

Complex Events

10. Move: A collection of different event labels
capturing participants discussing movement
of themselves and others. Examples: “I’m on
my way”, “Can you come to A2?”, “entering
c1”
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11. Precedence: A collection of different event
labels capturing participants discussing tem-
poral precedence. The event arguments aim
to sort the two actions as an initial and sub-
sequent action. Examples: “same thing M1
M1 M3 and then we can go i4a and then I2”,
“after I4 let’s go to j4”

12. RescueInteractions: Participants can triage,
wake up, and stabilize victims. This is a col-
lection of labels capturing all these cases. Ex-
amples: “heading back to get all the victims”,
“yeah I can get this one let’s wake up the there
he’s awake”

13. KnowledgeSharing: This event captures par-
ticipants relaying information about entities
that exist around them. Examples: “there’s
loads of victims in here”, “there’s a critical
condition in the back”

14. ReportLocation: This event captures partic-
ipants reporting their own location or the lo-
cation of other entities. It also captures par-
ticipants relaying certain information about
the location.20 Examples: “yeah I’m right I’m
right by C6”, “M3 is a trap room”

15. Search: This event captures participants talk-
ing about searching a room for victims. Ex-
amples: “we have searched F4 F4 is lunch this
is medic”, “have you checked a4a”

16. HelpRequest: Participants requesting help.
This is a collection of different event labels
which can be summarized under this umbrella.
Examples: “if someone could help me I am
trapped in j4”, “and transporter if you can also
assist in j4”

17. Question: Participants asking content ques-
tions. Examples: “this is the engineer how
do you guys know whether they goes north or
south”

18. YesNoQuestion: Participants asking binary
questions. Examples: “do we clear this out”

19. Instruction: Participants giving instructions.
Examples: “go to the middle section there’s
about 45 criticals so we know there’s points
there”

20This is handled by different event labels which are summa-
rized under this event label for the purpose of the evaluation.

20. Plan: Participants engaging in planning. Ex-
amples: “okay if we want to start on i4a just
to get some people moving”, “okay I’ll take
care of the B type”
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Listing 1: Example JSON output for "I’ll head there
first oh jeez what."

1 {
2 "participant_id": "----",
3 "asr_msg_id": "----",
4 "text": "I'll head there first oh

jeez what.",
5 "utterance_source": {
6 "source_type": "message_bus",
7 "source_name": "agent/asr/final"
8 },
9 "extractions": [

10 {
11 "labels": [
12 "DeliberatePlan",
13 "Commitment",
14 "Plan",
15 "Communicate",
16 "SimpleAction",
17 "Action",
18 "EventLike",
19 "Concept"
20 ],
21 "span": "will head there",
22 "arguments": {
23 "topic": [
24 {
25 "labels": [
26 "MoveTo",
27 "Move",
28 "SimpleAction",
29 "Action",
30 "EventLike",
31 "Concept"
32 ],
33 "span": "head there",
34 "arguments": {
35 "target": [
36 {
37 "labels": [
38 "Deictic",
39 "Inferred",
40 "Location",
41 "EventLike",
42 "Concept"
43 ],
44 "span": "there",
45 "arguments": {},
46 "attachments": [],
47 "start_offset": 10,
48 "end_offset": 15,
49 "rule": "deictic_detection"
50 }
51 ]
52 },
53 "attachments": [
54 {
55 "text": "I",
56 "agentType": "Self",
57 "labels": [
58 "Self",
59 "Entity",
60 "Concept"
61 ],
62 "span": [
63 0
64 ]
65 },
66 {

67 "value": "future"
68 }
69 ],
70 "start_offset": 5,
71 "end_offset": 15,
72 "rule": "move_deixis_action"
73 }
74 ]
75 },
76 "attachments": [
77 {
78 "text": "I",
79 "agentType": "Self",
80 "labels": [
81 "Self",
82 "Entity",
83 "Concept"
84 ],
85 "span": [
86 0
87 ]
88 },
89 {
90 "value": "future"
91 }
92 ],
93 "start_offset": 1,
94 "end_offset": 15,
95 "rule":

"commit_to_something_plan-type"
96 },
97 {
98 "labels": [
99 "MoveTo",

100 "Move",
101 "SimpleAction",
102 "Action",
103 "EventLike",
104 "Concept"
105 ],
106 "span": "head there",
107 "arguments": {
108 "target": [
109 {
110 "labels": [
111 "Deictic",
112 "Inferred",
113 "Location",
114 "EventLike",
115 "Concept"
116 ],
117 "span": "there",
118 "arguments": {},
119 "attachments": [],
120 "start_offset": 10,
121 "end_offset": 15,
122 "rule": "deictic_detection"
123 }
124 ]
125 },
126 "attachments": [
127 {
128 "text": "I",
129 "agentType": "Self",
130 "labels": [
131 "Self",
132 "Entity",
133 "Concept"
134 ],
135 "span": [
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136 0
137 ]
138 },
139 {
140 "value": "future"
141 }
142 ],
143 "start_offset": 5,
144 "end_offset": 15,
145 "rule": "move_deixis_action"
146 }
147 ]
148 }

Listing 2: Sample of a subsection of the Label Ontology
1 - Communicate:
2 - Instruction:
3 - HelpCommand # for players

instructing others to help,
f.e.: "Help the engineer!"

4 - ReportStatus:
5 - Stuck # for players stuck in a

room (for whichever reason),
has some overlap with
AmTrapped

6 - ReportLocation # players
reporting on their, or other
players locations: "I’m in
B2"

7 - RoleDeclare # players
declaring their role to the
team

8 - RoomStatus:
9 - RoomClear # "A1 is clear"

10 - ReportThreatRoom # players
declaring rooms as
threatrooms: "A1 is a
threat room"

11 - KnowledgeSharing # players
reporting that something
exists: "There is a critical
victim here" or "I have some
rubble in B2"

12 - Need: # labels for players
discussing the needs of the
team or their own needs

13 - NeedRole
14 - NeedItem
15 - NeedAction

Example Rule with Commentary

Listing 3: Example Rule
1 - name: "Help_command"
2 label: HelpCommand
3 example: "You should help him."
4 priority: ${ rulepriority }
5 pattern: |
6 trigger =

[lemma=/assist|help|aid|support/]
7 agent: Entity = >nsubj

[!mention=Self] |<xcomp >nsubj
[!mention=Self]

8 helpee: Entity = >ccomp >nsubj
[!mention=You] | >ccomp
[!mention=You] | >dep
[!mention=You] | >dobj
[!mention=You]

9 location: Location? = >/${preps}/|
10 >/advmod/

• name: Every Odin rule requires a unique
name.

• label: This field defines the actual label that
this rule will export. The label’s place in the
ontology is defined elsewhere
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• example: We try and provide an example
with each rule, for easier development.

• priority: This field defines at which itera-
tion the rule will be applied. In this case this
is defined via a vaiable.

• pattern: The pattern field defines the trig-
ger and its arguments.

• trigger: Rules with an argument need a
trigger field. If the trigger is found, the rule
starts searching for the arguments. In this
case, the trigger is defined as series of possible
lemmas.

• agent: Entity – This field states that
this rule takes an “agent” argument which as
to carry the label "Entity" (or any of the sub-
ordinate labels of entity)

• >nsubj [!mention=Self] |<xcomp
>nsubj [!mention=Self]: These
statements define the dependency relationship
that the agent argument needs to have with
respect to the trigger. In plain English, this
statement requires: An outgoing “nsubj”
dependency, at the end of which there may
not be an event label You, or an outgoing
“ccomp” dependency, at the end of which
there may not be an event label You, and so
on.
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Abstract

In this work we propose a neural-based ap-
proach for rule synthesis designed to help
bridge the gap between the interpretability, pre-
cision and maintainability exhibited by rule-
based information extraction systems with the
scalability and convenience of statistical infor-
mation extraction systems. This is achieved
by avoiding placing the burden of learning an-
other specialized language on domain experts
and instead asking them to provide a small set
of examples in the form of highlighted spans
of text. We introduce a transformer-based ar-
chitecture that drives a rule synthesis system
that leverages a self-supervised approach for
pre-training a large-scale language model com-
plemented by an analysis of different loss func-
tions and aggregation mechanisms for variable
length sequences of user-annotated spans of
text. The results are encouraging and point
to different desirable properties, such as speed
and quality, depending on the choice of loss
and aggregation method.

1 Introduction

Rule-based information extraction is interpretable,
maintainable, and highly precise, but typically re-
quires both domain expertise and deep knowledge
of an esoteric rule language. The language bar-
rier presents a major impediment to adoption for
subject matter experts who are otherwise comfort-
able with providing examples of their information
need in the form of a handful of highlighted spans
of text. Synthesizing information extraction rules
from such examples has the potential to bridge
this divide and empower subject matter experts,
but how can we learn to synthesize such programs
for any domain? We propose a self-supervised
approach for pre-training a large-scale language
model for synthesizing information extraction rules
using randomly generated rules (programs) paired
with matched spans in context (program specifica-
tions). The contributions of this work are:

• A transformer-based neural architecture for
rule scoring designed to drive a rule synthesis
process by jointly encoding candidate rules
and a specification that represents the user’s
intent.

• The introduction of a relevant in domain self-
supervised pre-training objective for the rule
synthesis problem.

• The exploration of different training scenarios
using different loss functions and aggregation
methods to score candidate rules in the pres-
ence of variable length user specifications.

2 Related Work

Generating computer programs automatically has
been a longstanding dream within the field of Arti-
ficial Intelligence. The goal of program synthesis
is to generate programs from a high-level specifica-
tion1 (Gulwani et al., 2017). Existing approaches
to program synthesis fall into one of two broad cat-
egories: search-based methods (e.g., enumerative
search, stochastic search (Alur et al., 2013) etc.)
and constraint satisfaction (Solar-Lezama, 2009;
Torlak and Bodik, 2013). In this work, we focus on
search-based program synthesis (Alur et al., 2018),
specifically a neural-guided enumerative search.

Neural approaches have come to dominate
search-based program synthesis (Balog et al., 2016;
Parisotto et al., 2016; Kalyan et al., 2018). Similar
to Parisotto et al. (2016), our approach learns a
distribution over programs to guide every step of
the search. Unlike Parisotto et al. (2016), however,
we score only the transitions allowed by the DSL
grammar and encode the specification in a man-
ner which reflects that our programs are meant to
match natural language.

Rule-based information extraction systems are
more interpretable than its statistical counterparts.

1A description (visual, example-based, etc.) of what the
program should accomplish.
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Rule languages with high expressiveness allow
to model complex surface and syntactic patterns
(Valenzuela-Escárcega et al., 2016). These systems
are suitable to create highly specialized domain-
specific information extraction tools without the
need of large and expensive annotated datasets
(Valenzuela-Escárcega et al., 2018). Unfortunately,
mastering rule-based systems often implies a steep
learning curve and a significant time investment by
domain experts.

In this work we focus on the intersection of both
pattern-based and neural-based techniques by train-
ing a statistical model to synthesize rule patterns by
exposing it to user-provided examples.

3 Odinson Information Extraction
System

In this work, we are interested in synthesizing infor-
mation extraction rules expressed in a domain spe-
cific language (DSL) first described in Valenzuela-
Escárcega et al. (2016). This language supports
extraction rules based on token constraints (e.g.,
parts-of-speech and lemmas) as well as syntactic
patterns. However, only surface rules are targeted
in this work, leaving support for syntactic rules for
future work.

We apply the rules expressed in the DSL us-
ing the Odinson information extraction frame-
work (Valenzuela-Escárcega et al., 2020), which
supports the efficient application of the extraction
rules over a large corpus through the use of a cus-
tom Lucene2 index. Like Lucene, Odinson can
store an index on-disk or in-memory, and we take
advantage of both indexes types during this work.
An on-disk index is used to store a large corpus
used during the data generation process described
in Section 5, and an in-memory index is created on-
the-fly during the enumerative search to store the
sentences that form part of the user specification, in-
dicated in Algorithm 1 as the make_index() func-
tion.

4 Enumerative Search

The enumerative search procedure, outlined in Al-
gorithm 1, takes as input a user specification, (re-
ferred to as specification for brevity) comprised of
a collection of sentences and a set of spans repre-
senting the desired extractions; a rule scorer com-
ponent which drives the behavior of the search;

2https://lucene.apache.org/

and a performance threshold that functions as a
stopping criteria for the search.

The specification encodes the user’s intent and is
the main source of signal at the time of scoring any
given partial rule encountered during the search.

Rules are composed of syntactic elements de-
fined by the DSL. One noteworthy element is the
placeholder, represented by the symbol □, which
is introduced to represent an underspecified portion
of the rule that must be expanded by following the
grammar of the DSL. A rule is considered valid
(grammatical) if it has no placeholders, otherwise it
is a partial rule containing one or more placeholder.
Partial rules are subject to further expansions of the
form allowed by the DSL grammar.

To conduct an enumerative search, we create an
in-memory index containing the phrases included
in the rule’s specification and initialize a priority
queue with a partial rule consisting of a single
placeholder (i.e., the root of the search tree). At
each iteration, we retrieve the top-ranked partial
rule in the priority queue and check its validity.
If it is a valid rule, we query the index to verify
if the rule matches the spans highlighted in the
specification, and compute a score to measure the
rule’s performance (e.g., an F1 score over the spans
matched in the specification). If the score is above
some threshold3, the candidate rule is returned. If
the rule still contains placeholders, we expand the
left-most placeholder according to our DSL gram-
mar and use the rule scorer to produce a score
for each of the expanded rules with respect to the
user-provided specification. Each expanded rule is
placed into the priority queue according to its score.
The process repeats until a complete rule is found
that meets or exceeds the specified performance
threshold.

Our enumerative search process implements
the branch-and-bound algorithm (Land and Doig,
1960) using a priority queue. An ideal scorer would
guide the expansions directly to a correct rule ap-
proximating a depth-first search, but the priority
queue allows the search to backtrack to the most
promising candidate if necessary.

It is worth noting that the rule scorer component
of the algorithm can be any function that takes as
input a partial rule and the specification, and re-
turns a score denoting the rule’s priority for further
expansion. In the remaining sections of this work,
we describe neural architectures for training rule

3A system hyperparameter.
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scoring models (§7.1) with supervised training data
(§5).

Algorithm 1 Enumerative search.
Require: spec ▷ user specification
Require: scorer ▷ partial rule scorer
Require: threshold ▷ score threshold

(sentences, gold_spans)← spec
index← make_index(sentences)
queue← priority_queue()
push(queue,□,∞)
while queue ̸= ∅ do

candidate← pop(queue)
if is_valid(candidate) then

results← query(index, candidate)
score← eval(results, gold_spans)
if score ≥ threshold then

return candidate
end if

else
children← expand(candidate)
for all child ∈ children do

score← scorer(child, spec)
push(queue, child, score)

end for
end if

end while

5 Data Generation

To learn to synthesize information extraction rules
in a supervised fashion, we first need (spec, rule)
pairs. Conceptually, a spec (i.e., matches in con-
text) is easily obtained by querying an index, as
long as the rule is available. Our data generation
pipeline can be broken down into 4 steps, as high-
lighted in Algorithm 2.

Algorithm 2 The algorithm to generate
(spec, rule) pairs without any supervision

1: Generate a random rule r
2: Query the index using the rule r
3: Select a spec s out of all the query results
4: Return (s, r)

In order to generate a rule (step 1 in Algo-
rithm 2), we need a sentence and a span of interest.4

4In practice, this would be provided by a user (e.g., a
domain expert). To generate data for our pre-training task in
this work, we simply select a random sentence together with a
random span within that sentence.

Then, we randomly manipulate constraints to al-
ter the rule’s complexity. After each subsequent
change in the candidate rule, we query a large in-
dex to avoid generating rules without any matches.
Once we have a final form of a rule, we use it to
query the index and collect the matches (spans in
context) to use as the rule’s specification (spec).
We describe our rule generation process in Algo-
rithm 3.

Algorithm 3 The algorithm to generate a random
rule
Require: Sentence sent together with span, a

span inside sent
rule← surface_constraints(sent, span)
rule← random_constraints(rule)
rule← random_surface(rule)

The heart of our rule generation algorithm lies
inside 3 functions: surface_constraints,
random_constraints, and
random_surface. Concretely,
surface_constraints uses the under-
lying tag, lemma, or word constraints to generate
an initial rule. Then, random_constraints
adds additional token-level constraints, such as
and, or, and not. Lastly, random_surface
adds surface level constraints, such as wildcards
and or constraints. For example, consider The
quick brown fox jumps over the
lazy dog together with the desired span quick
brown fox. The surface_constraints
will generate an initial rule, such as
[lemma=quick] [tag=JJ] [word=fox].
Then, random_constraints will modify this
initial rule and add random constraints, changing
the rule to something like [lemma=quick |
lemma=fast] [tag=JJ] [word=fox].
Then, random_surface adds surface level
constraints. For example, the rule can now become
([lemma=quick | lemma=fast])?
([tag=JJ] | [word=lazy])
([word=fox] | [word=cat]). Note
that both random_constraints and
random_surface add a random number
of changes to the initial rule.

6 Pre-training

We take inspiration from the Question-Answering
community (Rajpurkar et al., 2016, 2018) and train
a model to predict the span matched by a given rule
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in a given sentence. Concretely, we use a dataset
generated according to the description in Section 5
and interpret the concatenation of the rule (rule)
with the sentence (sent) as the question. Then, the
self-supervised task becomes to predict the start
and the end of the span, as in classical span-based
question answering.

This pre-training objective has two aims. First,
we expose the backbone model (a transformer) to
the in-domain vocabulary in which the words and
symbols of the DSL are much more frequent than
they are in the Wikipedia or Book corpora (Devlin
et al., 2019). Our second aim is to expose the
model to an unfamiliar task closely related to our
ultimate goal: span prediction (i.e., the match for an
information extraction rule against some sentence).
By learning to predict spans, the model is primed
to learn to score candidate rules generated through
enumerative search.

7 Rule Scorer Architecture

The heart of the enumerative search process lies at
the rule scoring function. The rule scoring func-
tion assigns a priority value to each of the rule’s
expansions encountered throughout an enumerative
search. Since priority scores control the exploration
behavior during the search, it is critical to have an
optimized scoring model that can discriminate be-
tween promising or futile rule expansions.

We opt to follow a data-driven approach to train
a rule-scoring artificial neural network. Figure 1
depicts the architecture of scoring network. The
network takes as input a rule: either partially or
totally expanded, and the specification; as output,
it produces a score used to prioritize a candidate
rule in the search process.

We used the rule-specs described in §5 to build a
dataset of transitions for rule scoring. We split the
rules into training, development and testing with
1.5 million, 6,000 and 500 items, respectively. For
the training and development subsets, we used the
Odinson’s language grammar to enumerate all the
transitions necessary to derive each of the rules,
and collected the transitions along the path from
the root placeholder to the ground truth rule that
matches the specification. To obtain negative exam-
ples, at any given step we collected the syntactically
valid expansions that don’t lead to the ground truth
rule. Figure 2 shows an example of the expansion
steps to generate a simple rule composes of two to-
ken constrains in DSL. Each row shows a transition,

considered a positive training example while the
rest of the other syntactically valid transitions (not
shown in the figure) are used as negative examples.

Following this approach, the dataset contains
9,731,804 and 748,836 transitions in the training
and development subsets, respectively. The ratio
of positive to negative transitions is 1 to 3.21.

7.1 Encoding the Rule with the Specification

The provided specification encodes the intent of
the rule. Without a specification, it is impossi-
ble to know what a rule is expected to match. In
other words, the specification sets the context of a
rule, and without it, there is no signal to guide the
search process beyond the syntactic properties of
the DSL’s grammar and the statistics of the training
dataset.

The specification consists of a variable length list
of sentences with an annotated span that the target
rule is expected to match. We propose a two-step
method to encode a rule with its specification into
a combined representation inspired in the investiga-
tion of different aggregation methods for multiple
input sequences proposed by (Noriega-Atala et al.,
2022). This rule-spec embedding is then used to
compute the priority score.

In the first step, a partially expanded rule will
be paired with each phrase in the spec. The pair
is encoded by prepending the rule to the phrase,
separated by the [SEP] token. Special markup
tokens are inserted at the boundaries of the match.
This annotated input sequence is then passed to a
BERT-based encoder to generate a contextualized
representation of the rule with one of its individual
spec phrases. Figure 3 shows an example

In the second step, we aim to reduce all the con-
textualized representations of the partial rule to rep-
resent the totality of the user’s intent into a fixed-
size embedding. We achieve this by collecting
the [CLS] tokens of the contextualized sequences
from the previous step and aggregate them together
using one of the following methods: average, max-
pooling over time or an attention mechanism (Yang
et al., 2016), whose attention matrix and single
query vector are tunable parameters optimized dur-
ing training.

8 Experiments

We tested the rule scoring architecture on several
rule synthesis processes. For each model, we con-
trol the loss function (§8.1) used for training and
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Figure 1: Rule scoring architecture. Step 1 takes as input the pair-wise concatenation of a) the partial rule and
b) the annotated phrases in the provided specification. The input is fed through a foundation transformer model
which outputs the [CLS] embedding for each rule-spec pair. Step 2 aggregates the matrix of [CLS] embeddings,
either through average pooling or an attention layer, and outputs a fixed-size rule-spec vector. Step 3 linearly maps
the rule-spec vector into a real-valued scalar score. The output score will be used as the priority value during the
enumerative search process.

□ → □□
□□ −→ [□]□
[□]□ −→ [tag = □]□
[tag = □]□ −→ [tag = JJ]□
[tag = JJ]□ −→ [tag = JJ] [□]
[tag = JJ] [□] −→ [tag = JJ] [word = □]
[tag = JJ] [word = □] → [tag = JJ] [word = rule]

Figure 2: Expansion transitions to generate a rule. The
transitions shown here are used as positive examples in
the training set for the rule scoring model.

the method for aggregating the specification (§7.1).
All models are fine-tuned on top of a BERT check-
point pre-trained for rule span prediction (§6).

Each trained model was applied on a held-out
test set of 500 rule synthesis problems with their
respective specification. Each synthesis process
was carried out by an enumerative search with a
limit of 500 steps.

8.1 Loss Functions for Rule Scoring
One crucial property required to carry out enumer-
ative search efficiently is the rule scoring function.
The function must give a high score to rules gen-
erated from transitions leading towards a rule that
matches the specification and vice-versa.

We explore two loss functions designed to re-
ward accurate transitions and penalize transitions
that don’t lead towards the ground-truth rule.

8.2 MSE Loss
We use the mean squared error loss function (Equa-
tion 1) in which an expansion is scored as ii = 1
when it the expansion is the result of a transition
towards the ground-truth rule, and li = 0 otherwise.
This loss configuration does not take into account
any information about the location of the expansion
in the AST of the rule.

ℓ(l, s) =
1

n

n∑

i=1

(li − si)
2 (1)

8.3 Margin loss
Additionally, we use a margin loss function to train
a scoring function to rank the scores of a rule with
respect to the score of its parent. The element-wise
loss function from Equation 2 takes as as input ar-
guments two scores: A partial rule’s score (sc) and
its parent’s rule score (sp). Each score is generated
by a forward pass through the model. Individual
losses within a batch are averaged to generate the
batch’s loss. Optimizing this loss will tune the
model such that the difference between the pair
of scores is at least as large as the margin hyper-
parameter m. This loss function is designed to give
a higher score to a rule or partial rule than its parent
if it was a transition leading towards the ground-
truth and vice-versa. Ideally, this property should
prioritize partial rules that are closer to matching
the specification.

ℓ(sp, sc,m) =





max(0,m− sc + sp)

if sc is correct
max(0,m− sp + sc)

if sc is incorrect

(2)

9 Results

Table 1 shows the number of problems for which
each rule scoring model matched the user specifi-
cation. Cases in which all the spans in the speci-
fication are matched exactly are considered exact
matches and those where a span is missing or an
incorrect span is matched are considered partial
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[CLS] [tag = JJR] [lemma = natural ] [□|□|□]□ [SEP] The <MATCH> more natural , or background </MATCH> , sound
you can tape , the better . [SEP]

[CLS] [tag = JJR] [lemma = natural ] [□|□|□]□ [SEP] so there are <MATCH> less natural , wild </MATCH>,
hatchery fish that make it to the ocean [SEP]

[CLS] [tag = JJR] [lemma = natural ] [□|□|□]□ [SEP] The further back one traces the race , the fewer are con-
cerned in the government ; the fewer are so concerned , the <MATCH> more natural , </MATCH> because the easiest , is the
system of effecting changes - aye , improvements - by “ despatching ” the government . [SEP]

Figure 3: Partial rule and its target specification encoded as input to a rule scoring network. The partial rule is paired
with every phrase in the specification to attend to every match with a transformer encoder.The boundaries of the
specification’s spans are delimited with specially designated markup tokens in the architecture’s tokenizer model.
For each input sequence, the rule scoring network will pool the [CLS] output embedding as the contextualized
representation of the partial rule with respect to its corresponding matching span. The matrix of [CLS] embeddings
will reduced to fixed size rule-spec encoding with an aggregation layer as described in §7.1. The contents of this
figure represent the left-most input block in figure 1

Loss Spec Exact Partial Any
Function Aggregation Matches Matches Matches

Margin Attention 68(14%) 263(53%) 331(67%)
Margin Average 57(11%) 248(50%) 181(61%)
MSE Attention 113(23%) 358(72%) 471(95%)
MSE Average 84(17%) 383(77%) 838(94%)

Margin No Spec 0 28(6%) 28(6%)

Table 1: Number of matches in the specifications of the testing set. Exact matches are cases in which all the spans
in the specification are matched exactly. Partial matches are cases where a) a span is missing or b) an incorrect span
is matched. Total matches are the sum of both.

matches. The right-most column counts the number
of matches, irrespective of the type.

The architectures that aggregate the rule-span
pair encodings using an attention mechanism are
better at matching the specification in terms of ex-
act and partial matches. Specifically, the model
trained using the MSE loss function has the highest
exact match rate and combined match rate. For
any given problem, every span in the specification
represents constraints for rule synthesis. These
constraints interact together to encode some intent.
We hypothesise that the attention mechanism helps
capture the signal in those implicit constraint in-
teractions better than averaging the rule-span pair
encodings, which effectively weights the contribu-
tion of every encoding to the rule’s score equally.

To highlight the crucial role of the specification,
we trained a model that generates scores by only en-
coding partial rules, ignoring the specification dur-
ing the enumerative search algorithm. This model
is represented by the bottom row of the table. Its un-
surprisingly poor performance illustrate how with-
out the specification (which represents the intent),
there is simply not enough signal to successfully

synthesize a rule.

In addition to the number of matches of each
model, we are also interested in the quality of
the matches. Tables 2 and 3 show the macro and
micro average performances of the rule scoring
models, respectively. To compute precision, recall
and F1 scores, a) matches to specification spans,
b) matches to spans not in the specification, and
c) unmatched spans in the specification are con-
sidered a) true positives, b) false positives, and
c) and false negatives, respectively. The models
that encode the rule and specification with atten-
tion outperform those that average. The attention
mechanism also improves recall. These results are
consonant with our hypothesis about the utility of
the attention mechanism to model the interaction
of the elements in the specification. In addition,
models trained with the margin loss function are
faster at synthesizing rules (i.e., they require fewer
steps to generate a complete rule). This observation
reflects the design, as the margin loss prioritizes
partial rules close to complete expansion, resem-
bling more a depth-first search approach, whereas
training with MSE just estimates how “right” or
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Loss Spec
Precision Recall F1 StepsFunction Aggregation

Margin Attention 0.55± 0.02 0.34± 0.02 0.36± 0.02 13.08± 0.37
Margin Average 0.49± 0.02 0.32± 0.02 0.33± 0.02 13.43± 0.46
MSE Attention 0.82± 0.01 0.50± 0.02 0.56± 0.02 74.15± 3.65
MSE Average 0.73± 0.02 0.45± 0.02 0.48± 0.01 55.55± 3.73

Margin No Spec 0.01± 0.00 0.02± 0.01 0.01± 0.00 4.0± 0.0

Table 2: Macro-average performance of different rule scoring models on the testing set. Results are computed
by evaluating the rules generated using enumerative search on their corresponding specification in the testing set
(see §7). The testing dataset is bootstrapped re-sampled 10,000 times to calculate standard deviations of each
metric. To compute precision, recall and F1 scores, a) matches to specification spans, b) matches to spans not in the
specification, and c) unmatched spans in the specification are considered a) true positives, b) false positives, and c)
false negatives, respectively. The steps column reports the average number of steps to successfully find a rule.

Loss Spec
Precision Recall F1Function Aggregation

Margin Attention 0.55± 0.03 0.41± 0.03 0.47± 0.02
Margin Average 0.53± 0.03 0.41± 0.03 0.46± 0.03
MSE Attention 0.69± 0.04 0.30± 0.02 0.42± 0.03
MSE Average 0.32± 0.02 0.27± 0.02 0.30± 0.01

Margin No Spec 0.13± 0.03 0.16± 0.04 0.14± 0.03

Table 3: Micro-average performance of different rule scoring models on the testing set. Results are computed by
evaluating the rules generated using enumerative search on their corresponding specification in the testing set (see
§7) and the matches to calculate micro average performance metrics. The testing dataset is bootstrapped re-sampled
10,000 times to calculate standard deviations of each metric. Metrics are compared similarly. The definitions of
precision, recall and F1 are the same of table 2

“wrong” is the rule, and has no implicit consider-
ation about how far or close a partial rule is to
completing expansion.

We looked at the rules generated using the
MSE+Attention rule-scoring model. Out of all
the rules generated, approximately 2.5% perfectly
match the gold rule. Nevertheless, approximately
20% of the generated rules obtain a perfect F1 score
(i.e. 1.0). This is an example of program aliasing,
where a different program produces the same result.
In our case specifically, a different rule matches
the same specification. We can observe this phe-
nomenon in the first two rows of table 4. Nonethe-
less, there is still ample room for improvement, as
we can see how sometimes the synthesizer gener-
ates a rule that misses most of the specification.

10 Future Work

The results presented in this work are promising
and open the door for further research in several
directions that will help to better understand the

properties of the rule scoring architectures. In its
current state, our approach has at least avenues to
future work.

Extrinsic Analysis We evaluated the methods
on a testing dataset. This evaluation is useful to
compare the relative performance of the different
architectures analyzed in this work. It is necessary
to implement named captures to be able perform
an extrinsic evaluation, similar to the evaluation
protocol proposed by (Vacareanu et al., 2022) on
an external dataset to validate the utility of our
method for the information extraction task.

Finding equivalent rules Our training procedure
prunes branches that will not lead to the target rule,
but this may inadvertently prune paths leading to
equivalent rules that match the same specification.
The large search space makes it impractical to enu-
merate all equivalent rules for each specification.
Reinforcement learning is a viable alternative to
training a rule scoring model. Multiple rules that
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Target Rule Synthesized Rule F1

[tag=NN] [lemma=in]
[raw=many] [word=of]
[tag=PRP$]

[tag=NN] [lemma=in]
[lemma=many] [lemma=of]
[tag=PRP$]

1.0

[raw=always] [lemma=make]
[tag=NNS] [word=that]

[lemma=alway] [tag=VBP]
[lemma=decision]
[lemma=that]

1.0

[lemma=describe] [raw=how]
[word=the]

[tag=VBZ] [lemma=how]
[tag=DT] 0.59

[lemma=mikhail | tag=NN] [word=The | lemma=range] 0.08

Table 4: Examples of rules generated with an enumerative search. Target Rule is the ground truth rule which
matches the user specification. Synthesized Rule is the rule generated by the enumerative search process; F1 is the
synthesized rule’s score over the user specification for the corresponding target rule.

match the specification can be found by exploring
the space of syntactically correct expansions. This
could improve the expressiveness of a rule syn-
thesis system and increase data efficiency without
incorrectly penalizing valid rules that are not part
of the training dataset in supervised learning.

Grammar synthesis The current approach as-
sumes a single rule must match the entire specifi-
cation. For diverse specifications (i.e., spans with
highly varied contexts), a single rule may end up
containing many disjunctive clauses. Long, com-
plex rules may adversely affect interpretability and
maintainability. Rather than generating a single
rule for a specification, it may be advantageous
in some cases to learn to generate a set of two or
more complementary rules with low complexity
and better generalization.

Interactive use The model trained using margin
loss and an attention mechanism for encoding is
able to find a rule much faster (on average) than
the rest of the models without suffering a steep loss
in performance. Further investigation is needed to
understand not only what changes might increase
the quality of the matches in rule synthesis but also
what changes will make they system fast enough
for interactive use.
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