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Abstract 

The problem of transliteration deals with the 

phonetic transcription of text from a source 

writing system into a target writing system. 

With the inception of neural net models like 

Sequence-to-sequence networks, transliteration 

has seen significant progress in the last 

decade. However, the accuracy of such 

systems is still far from ideal. This is made 

more appar- ent when the source text to be 

transliterated itself is entered incorrectly by 

intermediary users, further degrading the 

performance. In this paper, we propose 

Syllabified Sequence- to-Sequence network 

(Syll-S2S) towards im- proving the 

transliteration quality from Roman script to 

low-resource Indic scripts like Devana- gari.   

As part of this, we present the rules of 

Sonority sequencing principle to Devanagari 

and other Indic scripts. In addition, the pro- 

posed framework incorporates Elastic Search 

stack which maps incorrect transliterations to 

their existing reference transliterations for han- 

dling erroneous entries of source texts. 

Experi- ments demonstrate significant 

performance im- provement of the proposed 

framework with re- spect to the existing 

schemes. 

 
1 Introduction 

English is one of the most widespread foreign lan- 

guages in India, a home to 22 official languages 

and more than 1000 dialects written in more than 

14 different scripts. With the rapid advancements 

in worldwideweb and mobile devices, people in 

India create, share, tag and search multifaceted data 

multi- lingually but mostly using the Roman or 

Latin script (Chanda et al., 2010) across different 

mediums. The text written in a native language, but 

using a non- native script like Roman, mostly does 

not follow any standard spelling rule, but uses the 

orthography of 

the script based on pronunciation of the words. This 

process of phonetically transcribing a word or text 

from one writing system into the another writing sys- 

tem such that the pronunciation of the word remains 

same is called Transliteration. 

Transliteration is a part of Natural Language Pro- 

cessing (NLP) and has several useful applications; 

Cross language information retrieval, Machine trans- 

lation etc. It has wide ramifications in low-resource 

languages in general, where web presence is limited, 

specifically for Indian languages. A substantial 

por- tion of textual data being generated and 

queried upon the web belongs to the transliteration 

domain, thus containing a good amount of 

information and therefore needs to be studied. 

In this paper, we focus on transliteration from the 

most commonly used Roman script to native Indian 

scripts. Most of the major Indian language scripts 

are derived from the ancient Brahmi script and con- 

sequently are highly phonetic in nature. Hence, we 

primarily focus on the task of transliteration from 

Roman to Hindi. Hindi, an Indo-Aryan language, 

written in Devanagari, is the lingua-franca of In- 

dia. We therefore consider Hindi as the primary link 

for Roman to native Indian script transliteration, as 

the quantity of Hindi literature (especially online) is 

more than twice as in any other Indian language. 

For the Roman-Hindi transliteration task, the ear- 

liest methods are rule based approaches (Goyal and 

Lehal, 2009; Kang and Kim, 2000; Jia et al., 2009) 

which involved character, phoneme and grapheme 

matching between the parallel transliteration cor- 

pora. But the rule based approaches fall short due 

to the several exceptions possible. Another popular 

method is Anoop et al.’s Indic-nlp (Kunchukuttan 

et al., 2020), which is a statistical machine trans- 

lation based approach relying on language model 

training. Recently, Sequence-to-sequence attention 
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based networks (seq-to-seq) proposed in (Sutskever 

et al., 2014), have garnered wide attention for ma- 

chine translation (Bahdanau et al., 2014; Luong et 

al., 2015; Vaswani et al., 2017) and works (ud Din, 

2019; Ameur et al., 2017; Mandal and Nanmaran, 

2018) extended the same for the transliteration task. 

However, the existing seq-to-seq models too have 

failed in producing desirable results. 

In this paper, we develop a Syllabified 

Sequence- to-sequence net (Syll-S2S) for improving 

the quality of Roman to Devanagari transliteration 

w.r.t. the state-of-the-art works. The proposed 

approach uses Sonority Sequencing Principle (SSP) 

to get the syl- lables of the source (and target data 

during training) thus enabling the enforcement of 

syllable-syllable at- tention. This way, the model 

would be able to learn the target data with a greater 

precision and would also enable faster knowledge 

acquisition than con- ventional seq-to-seq models. 

Additionally, we consider an important practical 

aspect with regards to transliteration which is the 

user input. In several applications, the primary 

source of the input text in Roman is derived from an 

intermediary user. In such scenarios, the user given 

input word may have slight variation from its correct 

form in the supposed cases of well-established words 

like dictionary-based-words or named entities. For 

handling such cases, we incorporate Elastic Search 

stack (ES stack); a distributed, open source search 

and analytics engine (Gormley and Tong, 2015). In 

the case where reference transliterations are avail- 

able, we use fuzzy search query (Gu et al., 2018) 

on ES stack with added constraints on consonant 

match for mapping the model output 

transliterations and the reference transliteration. 

The main contributions of this paper are 3-fold. 

1. We develop a novel Syllabified Sequence-to- 

sequence model (Syll-S2S) for improving the 

transliteration quality from Roman to Devana- 

gari in comparison to the state-of-the-art. 

2. In the case where true transliterations in De- 

vanagari are available, we incorporate fuzzy 

searching on user-given Roman input for accu- 

rate matching to its indexed reference translit- 

eration with Elastic Search stack. 

3. We have demonstrated the superiority of the 

proposed approach with extensive performance 

evaluation. 

The remainder of this paper is organized as fol- 

lows. In Section 2, we present the related work. 

We present the background of seq-to-seq net, ES 

stack 

and inverse mapping in Section 3 followed by pro- 

posed approach in Section 4. Experimental results 

and conclusions are presented in Section 5 and Sec- 

tion 6 respectively. 

 
2 Related work 

In this section, we briefly describe few of the existing 

works which do transliteration. 

Methods in (Goyal and Lehal, 2009; Kang and 

Kim, 2000; Jia et al., 2009) incorporate rule-based 

transliteration which can again be divided into 3 

categories. (1) Character mapping approach (Goyal 

and Lehal, 2009) uses character mapping for doing 

transliteration. Under this approach, the characters 

of source script are mapped to those of the target 

script on the basis of pronunciation. Character map- 

ping does not give very good results as the pronunci- 

ation of characters and the total number of character 

varies from script to script. (Kang and Kim, 2000) 

uses (2) Phoneme Based Approach which defines the 

relation and correspondence between the phonemes 

of the source and target script. An alignment of the 

phoneme for the characters of source script to the 

phoneme of the target script is done using methods 

like language modeling (Chelba and Jelinek, 2000). 

(Jia et al., 2009) uses Phoneme Based Approach by 

defining the relation and correspondence between the 

(3) graphemes of the source and target scripts. 

The second class of works is based on 

statisti- cal machine translation (SMT). Anoop 

kunchkuttan et al. propose Indic-NLP in 

(Kunchukuttan et al., 2020) and develop a SMT 

approach with a Moses de- coder for transliteration. 

Moses (Koehn et al., 2007) allows us to 

automatically train translation models for any 

language pair. It uses phrase based transla- tion 

Models and word alignments. 

With the recent advancements of Sequence-to- 

sequence models (seq-to-seq), transliteration quality 

has improved greatly. Proposed in (Sutskever et 

al., 2014), these networks are used for translation of 

an input text from one language to another. Works 

(ud Din, 2019; Ameur et al., 2017; Mandal and 

Nan- maran, 2018) have later extended seq-to-seq 

mod- els for transliteration as well and various 

attention- based seq-to-seq models have been 

subsequently been proposed (Bahdanau et al., 2014; 

Luong et al., 2015; Vaswani et al., 2017). Attention 

based seq-to-seq models (Bahdanau (Bahdanau et 

al., 2014)) work by using an encoder to learn 

representations of the input sequence and a decoder 

to produce the out- put sequence from the hidden 

representations the encoder created. Few attention 

variants in seq-to- seq architectures include (Luong 

et al., 2015) by Lu- 



ong et al. and self-attention (Vaswani et al., 2017). 

Luong attention differs from Bahdanau in the align- 

ment calculation and the position at which the atten- 

tion mechanism is introduced in the decoder. Self- 

attention introduced in (Vaswani et al., 2017), is an 

attention mechanism relating different positions of a 

single sequence in order to compute a representation 

of the same sequence. 

 
3 Background 

In this section, we explain the sequence-to-sequence 

networks and present the details of our employed 

Elastic Search stack. 

3.1 Sequence-to-sequence network 
 
 

 
 

Figure 1: Sequence-to-sequence network 

 
Sequence-to-sequence network (seq-to-seq) 

(Sutskever et al., 2014) is used for converting one 

sequence into another, particularly when the input 

and the output sequence lengths vary. They use 

encoder-decoder networks (Figure 1). Their details 

are presented below. 

1. Encoder: The encoder has sequential recurrent 

layers which learn to encode the input data 

accurately and produce a set of hidden states 

which are passed to the decoder. 

2. Decoder: The decoder takes the states from en- 

coder and uses it to generate context vector at 

every time-step t. Context vector holds the 

weighted cumulative information from all of en- 

coder hidden states and varies across the time- 

steps. At every time-step, the previous decoder 

hidden state along with the corresponding con- 

text vector is passed as input to the recurrent 

layer at t. The joint output from all time-steps 

gives us the output text sequences. 

The above network employs attention so that the 

decoder learns to focus on relevant encoder hidden 

states. It mainly employs two kinds of attention, 

• Global attention: considers all the hidden states 

in creating the context vector. 

• Local attention: considers only a subset of the 

hidden states in creating the context vector. 

We train all our seq-to-seq methods using Adam op- 

timiser. The encoder and decoder have bi-directional 

GRU cells (Deng et al., 2019). 

3.2 Elastic Search stack 

Consider cross language information retrieval, a well 

known user-driven application. Such an applica- 

tion consists of transliterating and matching a user- 

given input in Roman to its already indexed refer- 

ence transliteration in the target domain (Eg: De- 

vanagari). In such cases, the transliteration frame- 

work’s output should have to match accurately to 

the source, regardless of the slight variations in the 

user-given input in Roman script from its originally 

intended form. To handle this, we have built an end- 

to-end framework which incorporates Elastic Search 

stack into the proposed framework for precise match- 

ing to the reference after transliteration. Elastic 

Search stack (ES stack) (Gormley and Tong, 

2015), is a distributed, open source search and an 

analytics engine. It can also easily map rogue 

model predic- tions to their references. 

3.2.1 Terms 

• Index: Adding ‘data’ to ES stack is known as 

“indexing.” In our case, we can either index 

the true scripts of native words to Devanagari or 

the known transliterations of non-native words. 

• Mapping: It is the process of defining how a 

document, and the fields it contains, are stored 

and indexed. 

• Fields: Fields are properties in a mapping. Ev- 

ery mapping contains a list of fields or properties 

pertinent to the document. In our case we use 

mappings to define the properties of the words 

being indexed. There are 2 types of fields: 

Key- word and text. Keyword fields are only 

search- able by their exact value. Text field 

allows search for individual words within each 

full text field. 

• Analyzer: The analyzer parameter specifies 

the analyzer used for text analysis when indexing 

or searching a text field. The default analyzer 

for Keyword type is standard and is 

immutable. 



• Match and Multi-match query: A match query 

returns documents that match a provided text 

which is further analyzed before matching. 

The multi-match query builds on the match 

query to allow multi-field queries. We can 

influence scoring as needed by prioritizing more 

important fields. 

 

• Fuzziness parameter: Adding fuzziness param- 

eter 1 to a multi-match query turns a plain 

multi-match query into a fuzzy one. It gener- 

ates matching terms that are within the max- 

imum edit distance specified in the parameter 

and then checks the term dictionary to find out 

which of those generated terms actually exist 

in the index. 

 

3.2.2 Inverse mapping with fuzzy search 

We have used 3 fields in the mapping we have 

built. Their details are presented below. 

1. Devanagari_script_field, denotes the script of a 

word being indexed in Devanagari. The field 

type is keyword, so the search on this field hap- 

pens full-text. 

 

2. Roman_script_field, denotes the script of the 

word being indexed in Roman. The field type 

is keyword. 

 

3. Consonants_field, denotes the sequence of just 

the consonants of the word being indexed. The 

field type is text, so the search on this field 

hap- pens consonant wise. For this, we use an icu 

an- alyzer 2 with icu tokenizer 3 and a custom 

char filter which converts all the vowels in the 

text being analyzed to NULL using the 

predefined unicode mappings of vowels in 

Devanagari. 

The search works as follows. The transliterated 

can- didates are queried against the ES stack 

consisting of the indexed reference transliterations. 

This is done using a multi-match query which jointly 

queries on the fields Devanagari_script_field and 

Conso- nants_field with a fuzziness score of 0.7. 

Those can- didates which are mapped to a reference 

transliter- ation are updated to be the same as the 

reference before being returned. 
 

1https://www.elastic.co/guide/en/elasticsearch/ 
reference/current/query-dsl-fuzzy-query.html 

2https://www.elastic.co/guide/en/elasticsearch/ 
plugins/current/analysis-icu.html 

3https://www.elastic.co/guide/en/elasticsearch/ 
plugins/current/analysis-icu-tokenizer.html 

4 Proposed framework: Syll-S2S 

In this section, we propose a novel Syllabified 

Sequence-to-sequence model for improving the per- 

formance of Roman to Devanagari transliteration to 

that in the existing approaches. We first present the 

basic idea of the proposed approach. Next, we ex- 

plain the proposed approach in detail. 

 

4.1 Basic idea 

Local attention based sequence-to-sequence models 

have been under-explored for the task of translitera- 

tion and could dramatically improve the knowledge 

gain with respect to global attention based sequence- 

to-sequence models. Leveraging this, the idea is to 

segment both the input Roman text and its par- 

allel counterpart Devanagari text into syllables be- 

fore building the attention based seq-to-seq model. 

Syllable is a unit of spoken language consisting 

of a single uninterrupted sound formed generally by 

a vowel (Eg: a,e,i,o,u) and preceded or followed by 

one or more consonants (Eg: b,c,d,..). By reducing 

the sequences into their constituent syllables offline, 

we can employ a teacher forcing method and force 

the model to attend to a fixed window length of 

sylla- bles at each decoding step in the attention 

part of decoder in seq-to-seq networks. At each 

decoding time-step, a window centered around the 

source po- sition based on the syllable alignment is 

used to com- pute the context vector for the syllable 

corresponding to the target position. Thus, the 

attention weights at each time-step are distributed 

and limited to the corresponding syllables of the 

positions in the win- dow which allows effective 

knowledge building by the model. 

 

4.2 Sonority Syllabification 

The process of splitting a text into its constituent syl- 

lables is referred to as Syllabification (Treiman and 

Zukowski, 1990). Since it is derived directly from 

pronunciation, syllables are script-agnostic and are 

vital information pillars for machine translation and 

transliteration tasks. For doing syllabification, we 

utilise Sonority syllabification principles (SSP) avail- 

able for Roman script (Henke et al., 2012). The 

Sonority Sequencing Principle (SSP) or Sonority 

se- quencing constraint is a phonetic principle that 

aims to outline the structure of a syllable in terms 

of sonority. Basing on the SSP rules for Roman, 

we present the SSP rules for Devanagari and other 

In- dic scripts. We are the first to present SSP rules 

for Indic scripts. 

http://www.elastic.co/guide/en/elasticsearch/
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4.3 Syllabified local attention with 

seq-to-seq net 

Consider the Roman text ‘Hajagiree’ and its refer- 
ence transliteration `हजिगरी'. Observe the one-to-one 
mapping between the source (Roman) and the target 
(Devanagari) text syllables (Figure 4.3(a)). More- 
over, this mapping is both static and sequential. 
Based on this, we propose Syllabified Sequence-to- 
sequence model using local attention. Recall from 
Section 3.1 that in a local attention based seq-to- 
seq, at a given time-step, the decoder is fed only a 
part of encoder context information. This informa- 
tion is generally limited to the corresponding input 
part. 

With syllabification, the decoder needs to attend 

 

(a)  

(b) 

Figure 2: (a) shows the syllable-syllable 

correspondence between an example’s input and 

output texts. (b) shows the attention windows 

W={1,3} focused by the decoder when at tth 

time-step 

only on the select parts of the encoded input data 

specified by us at each time-step. This way, the 

model can learn to decode more accurately when 

it focuses on just the needed input syllables rather 

than the parts which it does not depend on. Thus, 

the attention scope is limited to just the input sylla- 

ble/s corresponding to the present decoder time-step. 

However, considering an x-length window towards 

left and right could prove beneficial as syllabification 

is not always perfect (Figure 4.3(b)). 

The pseudo-code of the test process is as follows. 

1. Input text in Roman script is cleaned and syl- 

labified using SSP principles. 

2. The preprocessed input text is sent to the 

trained Syll-S2S for transliteration to one of the 

Indic scripts. Outputs Top-N (N=3) candidate 

transliterations. 

3. The transliterations are queried using inverse 

mapping described in Section 3.2.2 and the 

mapped candidate transliterations are updated to 

their references. 

4. Returns the final candidate transliterations. 

 
5 Experimental setup 

All the experiments are conducted on an Intel i5 pro- 

cessor with 8GB RAM running Ubuntu Linux 

oper- ating system. 

5.1 Dataset 

It is to be noted that the parallel transliteration cor- 

pus i.e, the text in Roman and its counter translit- 

eration in Devanagari is very limited and had to be 

scraped from several existing open sourced works. 

We have 1.5 million parallel words worth of data 

in Roman and Devanagari after scraping. The 

words in the resulting data are diverse ranging from 

named entities to native words from Roman and 

Devana- gari. We use a train-val-test split of 4:1:1 

and train all the neural net models for 100 epochs. 

5.2 Data preprocessing 

Data cleaning and preprocessing was done on both 

the corpus before model building. This includes 

stripping unwanted characters like tags, HTML en- 

tities, UNK tokens, special characters etc and 

lower- casing the Roman data corpus. We use UTF-

8 en- coding on both the source and target corpus. 

Once cleaning is done, for implementing the pro- 

posed approach, we pass the input text to the Sonor- 

ity syllabification module (Section 4.2) for splitting 

into syllables. The syllabified text is then passed as 

input to Syll-S2S model. 

5.3 Methods and metrics 

We have considered the following methods for per- 

formance evaluation. 

• Rule-based (RL): Rule based transliteration sys- 

tem based on predefined character-to-character 

mapping. 

• Google Transliterate (Google): Google’s 

official open API for transliteration 4. 

• Indic-NLP (Indic) (Kunchukuttan et al., 2020). 

• Seq-to-seq (S2S): A sequence-to-sequence model 

incorporating Luong’s attention based scoring 

(Luong et al., 2015). 

• Self attention (SA): A self attention model based 

on transformers (Vaswani et al., 2017). 
 

 

4https://inputtools.google.com/request?itc= 
hi-t-i0-und&num=4&cp=0&cs=0&ie=utf-8&oe=utf-8&app= 
demopage&text='' 



Scores RL Indic S2S SA Google Syll-S2S-W{1,3,5} 

      W1 W3 W5 

Top-1 Accuracy 0.45 0.57 0.72 0.79 0.83 0.82 0.86 0.85 

Top-2 Accuracy 0.52 0.66 0.75 0.81 0.84 0.84 0.87 0.87 

Top-3 Accuracy 0.58 0.71 0.77 0.83 0.84 0.84 0.87 0.87 

Levenshtein distance 0.63 0.77 0.85 0.90 0.92 0.92 0.94 0.94 

BLEU before inverse mapping 0.39 0.48 0.63 0.71 0.74 0.76 0.77 0.75 

BLEU after inverse mapping 0.46 0.59 0.75 0.82 0.85 0.85 0.87 0.87 

Table 1: Performance comparison of the considered methods in all the metrics. The top scores are highlighted in red and the 

second best are highlighted in green. 

 

• Syllabified monotonic Sequence-to-Sequence 

(Syll-S2S): The proposed approach involving 

monotonic attention from source to target 

syllables using S2S model. We also vary the 

syllables’ window-size W={1,3,5} and the 

vari- ants are named as Syll-S2S-W1, Syll-

S2S-W3, Syll-S2S-W5 respectively. 

A beam size of 3 (means 3 candidate transliterations 

for every input) is employed for all the neural net 

methods (Freitag and Al-Onaizan, 2017). 

The following performance metrics have been em- 

ployed. 

• Top-N accuracy: The average number of 

correct transliterations within the Top-N (N= 

{1,2,3}) beam-search candidate 

transliterations of the source text. 

• Levenshtein distance: The number of single- 

character edits required to change predicted 

transliteration into the correct reference. 

• 3-gram match: The average number of word- 

level 3-grams with matches to their correspond- 

ing 3-grams from the reference text. 

• BLEU scores before inverse mapping: The 

sim- ilarity of transliterated text to its reference 

be- fore inverse mapping. 

• BLEU scores post inverse mapping: Fuzzy- 

search based inverse mapping (Section 3.2.2) 

is used to map the candidate transliterations 

to the existing reference transliterations in the 

Elastic Search stack (Section 3.2) before com- 

puting BLEU scores. 

 

5.4 Results 

5.4.1 Performance comparison 

Table 1 shows the performance of all the imple- 

mented methods in various score metrics (leftmost 

column). The best scores highlighted in red are 

by 

the proposed approach Syll-S2S. Note the perfor- 

mance improvement from S2S to Syll-S2S. This is 

because of the monotonic local attention employed 

in the latter by enforcing syllable-syllable corre- 

spondence between the source and the target texts. 

In particular, Syll-S2S-W3 which is Syll-S2S with 

window-size 3 is performing the best overall with 

re- spect to the second best method Syll-S2S-W5 

(win- dow size=5) highlighted in green.   This is 

because of the reduced attention window size in 

Syll-S2S- W3 w.r.t. W=5 as in the former, only the 

imme- diate left and right syllables apart from the 

current syllables are focused while computing the 

attention scores whereas in W=5, the left and the right 

window span increases by a step more leading to 

distributed attention. Between Syll-S2S-W1 and 

Syll-S2S-W3, the latter does well as vowels might 

be split between the current and the next/before 

syllables making the learning process more reliable 

when the attention window covers them beside just 

the current syllable. The model closely following 

the Syll-S2S-W{1,3,5} variants is the Google 

transliterate. Even the model with the best 

architecture, SA is still behind the pro- posed 

approach because of over-fitting due to limited data. 

Effect of inverse mapping: It can be observed 

from the table that the BLEU scores have 

noticeably improved after incorporating fuzzy-search 

based in- verse mapping for all the approaches 

(Section 3.2.2). Recall that the above mapping 

matches the candi- date transliterations to their 

existing source translit- erations using fuzzy 

searching on consonants. The values depict the 

merit of mapping the candidate transliterations as 

most often there are only minor differences between 

the candidate and the reference transliterations, 

evidenced by higher values in the metric 

Levenshtein distance. 

 

5.4.2 Effect of syllabified local attention 

To understand the advantages of using 

syllabified monotonic local attention as in the 

proposed ap- 



Sentence Reference transliter- 

ation 

Syll-S2S-W5 result Syll-S2S-W3 result 

My Birthday Song माय बथरे्ड संॉ ग माइ जॉबरटहर्डाय स गं माय बथरे्ड संॉ ग 

Happy Phirr Bhag 
Jayegi 

हैप्पी जॉफर भाग िायगी हापपय जॉफर भाग िायेगी हैप्पी जॉफर भाग िायगी 

Wo India Ka Shake- 
speare 

व  इं र˃्डया का शेक्सपीयर व  इं र˃्डया का शक् ॉेसे्ारे व  इं र˃्डया का शेक्सपीयर 

Yamla Pagla Dee- 
wana Phir Se 

यमला पगला दीवाना जॉफर से यमल पगला दीवानन 

जॉफर से 

यमल पगला दीवाना जॉफर से 

Kaashi in the search 

of Ganga 

काशी इन सचर् ऑफ़ गंगा काशी इन सचर् ऑफ गंगा काशी इन सचर् ऑफ़ गंगा 

Mausam Ikrar Ke Do 
Pal Pyar Ke 

मौसम इकरार के द  पल प्यार 

के 

मौसम इकरार के द  पाल प्यार 

के 

मौसम इकरार के द  पल प्यार 

के 

Jal bin machhli 

nritya bin bijli 

िल जॉबन मछली नृत्य जॉबन 

जॉब- िली 

िळ जॉबन मछली नृत्य 
जॉबन 

जॉबिली 

िाल जॉबन मछली नृत्य 
जॉबन 

जॉबिली 

Albert pinto ko gussa 

kyu aata hai 

अल्बटर् जॉॉंपट  क  गुस्सा 

क्  ं

आता है 

अल्बटर् जॉॉंपट  क  गुस्सा 

क् ं आता ही 

अलबटर् जॉॉंपट  क  गुस्सा 

क्  ं

आता है 
 

Table 2: Example Roman input sentences, their reference transliterations and the output transliterations from Syll- S2S-W5 and 

Syll-S2S-W3 methods. Results in red indicate exact match, in green indicate the results with edit distance=1 and in blue indicate 

the results with edit distance > 1 from the reference. 

 
 

 
 

Figure 3: Top-1 Accuracy of S2S and Syll-S2S-W3 meth- ods 

on varying training data size 

 

 
proach Syllabified Sequence-to-sequence (Syll-S2S) 

rather than global-attention as in conventional seq- 

to-seq (S2S) models, we compare Syll-S2S-W3 

model (the best performer, see table 1) with S2S 

model at varying training data-set sizes. i.e., we 

train the two models by using the training sizes of 

0.5,0.75 and 1 million before testing. Fig 3 shows 

the Top-1 accuracy vs training dataset-size results 

for the two approaches. As can be seen, with 

increasing size of training dataset, the rate of 

improvement for Syll-S2S-W3 is significantly 

greater w.r.t. S2S. This means that the proposed 

approach has a faster 

knowledge-acquisition rate than S2S model owing to 

the local attention in Syll-S2S from enforcing mono- 

tonic source-target syllable-wise attention. In con- 

clusion, we can deduce that the accuracy improve- 

ment for the proposed approach as more training 

data resources become available would be substantial 

when compared to conventional seq-to-seq models. 

 

5.4.3 Effect of attention window 

To demonstrate the importance of the size of at- 

tention window in the proposed approach, we com- 

pare Syll-S2S-W3 (window size=3) with Syll-S2S-

W5 (window size=5) (refer Figure 4.3(b)). Table 2 

shows a qualitative comparison of results from both 

the methods on few example input sentences of 

varying lengths. Results in red indicate exact match 

to ref- erence transliteration. Results highlighted in 

green indicate the results with edit distance equal to 1 

from reference and ones in blue indicate the results 

with edit distance greater than 1. 

As can be seen, between the two, Syll-S2S-W3 

is clearly the best performer as it has the most 

predic- tions in red and green as compared to Syll-

S2S-W5 which has more in blue. This is because 

of the re- duced attention window size in Syll-S2S-

W3 w.r.t. W=3 as in the former, only the 

immediate left and right syllables apart from the 

current syllables are fo- cused while computing the 

attention scores whereas in W=5, the left and the 

right window span increases by one more step 

leading to a more scattered atten- 



tion. This results in the two left and right syllables 

on both sides of the current syllable receiving around 

the same attention as the syllable to be decoded. 

5.4.4 Comparison with Google transliterate 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Input 1: Jack aur jill pani ki ek balti lene 

ke liye pahadhi par chad gaye 

Reference: िैक और जॉिल पानी कɃ एक बाल्टी लेने के जॉलए 

पहाड़ी पर चढ़ गए 

Syll-S2S-W3 result: िैक और जॉिल पानी कɃ 
एक बाल्टी लेने के जॉलए पहाड़ी पर चढ़ गए 

3-gram match score: 1 

Google result: िैक और जॉिल पाजॉन कɃ एक बाल्टी लेने 

कॉे  जॉलयॉे पहाड़ॉी पर चॉैर्ड गया 

3-gram match score: 0.92 

 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Input 2: Uppu kappurambu nokka polika nundu 

chooda chooda ruchulu jaada veru purushulandu 

punya purushulu veraya viswadhaabhiraama, vinura 

vema 

Reference: उपु्प कपू्परबु न क्का प जॉलका नन्दू चूर्ड चूर्ड 

रुचुलु िाद वेरय पुरुशूलंदु पुण्य पुरुशुलु वेरय जॉवस्ववा भ̋रामा 

Syll-S2S result: उपु्प कपू्परबु न क्क प जॉलक नन्द 

चूर्ड चूर्ड रुचुलु िाद वेरया पुरुशूलंदु पुण्य पुरुशुलु वेरया जॉवस्वद्य 

ॉा भ̋रामा जॉवनुर वेमा 

3-gram match score: 0.84 

Google result: उपू्प कपू्परबु न क्का प जॉलका नन्दू चूर्डा 

चूर्डा रुचुलु िादा वेरु पुरुशूलंदु पुण्य पुरुशुलु वेरय 

जॉवस्ववा भ̋रामा 

जॉवनुरा वेमा 

3-gram match score: 0.71 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

The above inputs depict two example sentences 

and their reference and Top-1 candidate translitera- 

tion from Syll-S2S-W3 (the best performer, see table 

1) and Google transliterate. We also show the 3- 

gram match score which is the the average number 

of word-level 3-grams which are correctly matched 

to their corresponding 3-grams from the reference 

text. 3-gram match scores act as a direct measure 

of a model’s strength when plugged in other cru- 

cial downstream tasks like Information retrieval, at- 

tribute linking etc and having a high 3-gram scores 

would be the ideal for all models. 

There is a clear distinction in the scores from the 

two approaches with Syll-S2S-W3 giving higher 

val- ues in comparison to Google transliterate. 

Observe how the difference in scores becomes more 

apparent 

with increase in the input-length. This shows that 

in applications involving more input complexity, 

the proposed approach is expected to produce the 

best result. 

6 Conclusions 

In this paper, we have proposed Syllabified sequence- 

to-sequence attention model for improving the 

transliteration quality with respect to the current 

works. For this, we present the Sonority syllab- 

ification principles for Devanagari and other Indic 

scripts. To handle the erroneous entry of user-given 

text and to further boost the performance, we incor- 

porate fuzzy-search based inverse mapping with con- 

sonants by employing Elastic Search stack. This 

fa- cilitates the mapping of output transliterations 

from the model to their existing reference 

transliterations. Experiments demonstrate the 

superiority of the pro- posed approach in comparison 

to the state-of-the-art techniques. 

As part of future work, we plan to investigate 

the end-to-end forward and backward transliteration 

tasks in a unified architecture. We also plan to im- 

prove the performance when transliterating words 

with varying pronunciation to their written forms 

and are currently working on populating the Elas- 

tic Search stack using the verified model predictions. 
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