
Syllabified Sequence-to-sequence attention for transliteration

G.Vyshnavi

vgutta7@gatech.edu
G.Sridevi

dr1sridevi@vrsiddhartha.ac.in

M.Ritesh

ritesh.s.m@ril.com
P. Krishna Reddy

pkreddy@iiit.ac.in

Abstract

The problem of transliteration deals with the

phonetic transcription of text from a source

writing system into a target writing system.

With the inception of neural net models like

Sequence-to-sequence networks, transliteration

has seen significant progress in the last

decade. However, the accuracy of such

systems is still far from ideal. This is made

more appar- ent when the source text to be

transliterated itself is entered incorrectly by

intermediary users, further degrading the

performance. In this paper, we propose

Syllabified Sequence- to-Sequence network

(Syll-S2S) towards im- proving the

transliteration quality from Roman script to

low-resource Indic scripts like Devana- gari.

As part of this, we present the rules of

Sonority sequencing principle to Devanagari

and other Indic scripts. In addition, the pro-

posed framework incorporates Elastic Search

stack which maps incorrect transliterations to

their existing reference transliterations for han-

dling erroneous entries of source texts.

Experi- ments demonstrate significant

performance im- provement of the proposed

framework with re- spect to the existing

schemes.

1 Introduction

English is one of the most widespread foreign lan-

guages in India, a home to 22 official languages

and more than 1000 dialects written in more than

14 different scripts. With the rapid advancements

in worldwideweb and mobile devices, people in

India create, share, tag and search multifaceted data

multi- lingually but mostly using the Roman or

Latin script (Chanda et al., 2010) across different

mediums. The text written in a native language, but

using a non- native script like Roman, mostly does

not follow any standard spelling rule, but uses the

orthography of

the script based on pronunciation of the words. This

process of phonetically transcribing a word or text

from one writing system into the another writing sys-

tem such that the pronunciation of the word remains

same is called Transliteration.

Transliteration is a part of Natural Language Pro-

cessing (NLP) and has several useful applications;

Cross language information retrieval, Machine trans-

lation etc. It has wide ramifications in low-resource

languages in general, where web presence is limited,

specifically for Indian languages. A substantial

por- tion of textual data being generated and

queried upon the web belongs to the transliteration

domain, thus containing a good amount of

information and therefore needs to be studied.

In this paper, we focus on transliteration from the

most commonly used Roman script to native Indian

scripts. Most of the major Indian language scripts

are derived from the ancient Brahmi script and con-

sequently are highly phonetic in nature. Hence, we

primarily focus on the task of transliteration from

Roman to Hindi. Hindi, an Indo-Aryan language,

written in Devanagari, is the lingua-franca of In-

dia. We therefore consider Hindi as the primary link

for Roman to native Indian script transliteration, as

the quantity of Hindi literature (especially online) is

more than twice as in any other Indian language.

For the Roman-Hindi transliteration task, the ear-

liest methods are rule based approaches (Goyal and

Lehal, 2009; Kang and Kim, 2000; Jia et al., 2009)

which involved character, phoneme and grapheme

matching between the parallel transliteration cor-

pora. But the rule based approaches fall short due

to the several exceptions possible. Another popular

method is Anoop et al.’s Indic-nlp (Kunchukuttan

et al., 2020), which is a statistical machine trans-

lation based approach relying on language model

training. Recently, Sequence-to-sequence attention

mailto:vgutta7@gatech.edu
mailto:dr1sridevi@vrsiddhartha.ac.in
mailto:ritesh.s.m@ril.com
mailto:pkreddy@iiit.ac.in

based networks (seq-to-seq) proposed in (Sutskever

et al., 2014), have garnered wide attention for ma-

chine translation (Bahdanau et al., 2014; Luong et

al., 2015; Vaswani et al., 2017) and works (ud Din,

2019; Ameur et al., 2017; Mandal and Nanmaran,

2018) extended the same for the transliteration task.

However, the existing seq-to-seq models too have

failed in producing desirable results.

In this paper, we develop a Syllabified

Sequence- to-sequence net (Syll-S2S) for improving

the quality of Roman to Devanagari transliteration

w.r.t. the state-of-the-art works. The proposed

approach uses Sonority Sequencing Principle (SSP)

to get the syl- lables of the source (and target data

during training) thus enabling the enforcement of

syllable-syllable at- tention. This way, the model

would be able to learn the target data with a greater

precision and would also enable faster knowledge

acquisition than con- ventional seq-to-seq models.

Additionally, we consider an important practical

aspect with regards to transliteration which is the

user input. In several applications, the primary

source of the input text in Roman is derived from an

intermediary user. In such scenarios, the user given

input word may have slight variation from its correct

form in the supposed cases of well-established words

like dictionary-based-words or named entities. For

handling such cases, we incorporate Elastic Search

stack (ES stack); a distributed, open source search

and analytics engine (Gormley and Tong, 2015). In

the case where reference transliterations are avail-

able, we use fuzzy search query (Gu et al., 2018)

on ES stack with added constraints on consonant

match for mapping the model output

transliterations and the reference transliteration.

The main contributions of this paper are 3-fold.

1. We develop a novel Syllabified Sequence-to-

sequence model (Syll-S2S) for improving the

transliteration quality from Roman to Devana-

gari in comparison to the state-of-the-art.

2. In the case where true transliterations in De-

vanagari are available, we incorporate fuzzy

searching on user-given Roman input for accu-

rate matching to its indexed reference translit-

eration with Elastic Search stack.

3. We have demonstrated the superiority of the

proposed approach with extensive performance

evaluation.

The remainder of this paper is organized as fol-

lows. In Section 2, we present the related work.

We present the background of seq-to-seq net, ES

stack

and inverse mapping in Section 3 followed by pro-

posed approach in Section 4. Experimental results

and conclusions are presented in Section 5 and Sec-

tion 6 respectively.

2 Related work

In this section, we briefly describe few of the existing

works which do transliteration.

Methods in (Goyal and Lehal, 2009; Kang and

Kim, 2000; Jia et al., 2009) incorporate rule-based

transliteration which can again be divided into 3

categories. (1) Character mapping approach (Goyal

and Lehal, 2009) uses character mapping for doing

transliteration. Under this approach, the characters

of source script are mapped to those of the target

script on the basis of pronunciation. Character map-

ping does not give very good results as the pronunci-

ation of characters and the total number of character

varies from script to script. (Kang and Kim, 2000)

uses (2) Phoneme Based Approach which defines the

relation and correspondence between the phonemes

of the source and target script. An alignment of the

phoneme for the characters of source script to the

phoneme of the target script is done using methods

like language modeling (Chelba and Jelinek, 2000).

(Jia et al., 2009) uses Phoneme Based Approach by

defining the relation and correspondence between the

(3) graphemes of the source and target scripts.

The second class of works is based on

statisti- cal machine translation (SMT). Anoop

kunchkuttan et al. propose Indic-NLP in

(Kunchukuttan et al., 2020) and develop a SMT

approach with a Moses de- coder for transliteration.

Moses (Koehn et al., 2007) allows us to

automatically train translation models for any

language pair. It uses phrase based transla- tion

Models and word alignments.

With the recent advancements of Sequence-to-

sequence models (seq-to-seq), transliteration quality

has improved greatly. Proposed in (Sutskever et

al., 2014), these networks are used for translation of

an input text from one language to another. Works

(ud Din, 2019; Ameur et al., 2017; Mandal and

Nan- maran, 2018) have later extended seq-to-seq

mod- els for transliteration as well and various

attention- based seq-to-seq models have been

subsequently been proposed (Bahdanau et al., 2014;

Luong et al., 2015; Vaswani et al., 2017). Attention

based seq-to-seq models (Bahdanau (Bahdanau et

al., 2014)) work by using an encoder to learn

representations of the input sequence and a decoder

to produce the out- put sequence from the hidden

representations the encoder created. Few attention

variants in seq-to- seq architectures include (Luong

et al., 2015) by Lu-

ong et al. and self-attention (Vaswani et al., 2017).

Luong attention differs from Bahdanau in the align-

ment calculation and the position at which the atten-

tion mechanism is introduced in the decoder. Self-

attention introduced in (Vaswani et al., 2017), is an

attention mechanism relating different positions of a

single sequence in order to compute a representation

of the same sequence.

3 Background

In this section, we explain the sequence-to-sequence

networks and present the details of our employed

Elastic Search stack.

3.1 Sequence-to-sequence network

Figure 1: Sequence-to-sequence network

Sequence-to-sequence network (seq-to-seq)

(Sutskever et al., 2014) is used for converting one

sequence into another, particularly when the input

and the output sequence lengths vary. They use

encoder-decoder networks (Figure 1). Their details

are presented below.

1. Encoder: The encoder has sequential recurrent

layers which learn to encode the input data

accurately and produce a set of hidden states

which are passed to the decoder.

2. Decoder: The decoder takes the states from en-

coder and uses it to generate context vector at

every time-step t. Context vector holds the

weighted cumulative information from all of en-

coder hidden states and varies across the time-

steps. At every time-step, the previous decoder

hidden state along with the corresponding con-

text vector is passed as input to the recurrent

layer at t. The joint output from all time-steps

gives us the output text sequences.

The above network employs attention so that the

decoder learns to focus on relevant encoder hidden

states. It mainly employs two kinds of attention,

• Global attention: considers all the hidden states

in creating the context vector.

• Local attention: considers only a subset of the

hidden states in creating the context vector.

We train all our seq-to-seq methods using Adam op-

timiser. The encoder and decoder have bi-directional

GRU cells (Deng et al., 2019).

3.2 Elastic Search stack

Consider cross language information retrieval, a well

known user-driven application. Such an applica-

tion consists of transliterating and matching a user-

given input in Roman to its already indexed refer-

ence transliteration in the target domain (Eg: De-

vanagari). In such cases, the transliteration frame-

work’s output should have to match accurately to

the source, regardless of the slight variations in the

user-given input in Roman script from its originally

intended form. To handle this, we have built an end-

to-end framework which incorporates Elastic Search

stack into the proposed framework for precise match-

ing to the reference after transliteration. Elastic

Search stack (ES stack) (Gormley and Tong,

2015), is a distributed, open source search and an

analytics engine. It can also easily map rogue

model predic- tions to their references.

3.2.1 Terms

• Index: Adding ‘data’ to ES stack is known as

“indexing.” In our case, we can either index

the true scripts of native words to Devanagari or

the known transliterations of non-native words.

• Mapping: It is the process of defining how a

document, and the fields it contains, are stored

and indexed.

• Fields: Fields are properties in a mapping. Ev-

ery mapping contains a list of fields or properties

pertinent to the document. In our case we use

mappings to define the properties of the words

being indexed. There are 2 types of fields:

Key- word and text. Keyword fields are only

search- able by their exact value. Text field

allows search for individual words within each

full text field.

• Analyzer: The analyzer parameter specifies

the analyzer used for text analysis when indexing

or searching a text field. The default analyzer

for Keyword type is standard and is

immutable.

• Match and Multi-match query: A match query

returns documents that match a provided text

which is further analyzed before matching.

The multi-match query builds on the match

query to allow multi-field queries. We can

influence scoring as needed by prioritizing more

important fields.

• Fuzziness parameter: Adding fuzziness param-

eter 1 to a multi-match query turns a plain

multi-match query into a fuzzy one. It gener-

ates matching terms that are within the max-

imum edit distance specified in the parameter

and then checks the term dictionary to find out

which of those generated terms actually exist

in the index.

3.2.2 Inverse mapping with fuzzy search

We have used 3 fields in the mapping we have

built. Their details are presented below.

1. Devanagari_script_field, denotes the script of a

word being indexed in Devanagari. The field

type is keyword, so the search on this field hap-

pens full-text.

2. Roman_script_field, denotes the script of the

word being indexed in Roman. The field type

is keyword.

3. Consonants_field, denotes the sequence of just

the consonants of the word being indexed. The

field type is text, so the search on this field

hap- pens consonant wise. For this, we use an icu

an- alyzer 2 with icu tokenizer 3 and a custom

char filter which converts all the vowels in the

text being analyzed to NULL using the

predefined unicode mappings of vowels in

Devanagari.

The search works as follows. The transliterated

can- didates are queried against the ES stack

consisting of the indexed reference transliterations.

This is done using a multi-match query which jointly

queries on the fields Devanagari_script_field and

Conso- nants_field with a fuzziness score of 0.7.

Those can- didates which are mapped to a reference

transliter- ation are updated to be the same as the

reference before being returned.

1https://www.elastic.co/guide/en/elasticsearch/
reference/current/query-dsl-fuzzy-query.html

2https://www.elastic.co/guide/en/elasticsearch/
plugins/current/analysis-icu.html

3https://www.elastic.co/guide/en/elasticsearch/
plugins/current/analysis-icu-tokenizer.html

4 Proposed framework: Syll-S2S

In this section, we propose a novel Syllabified

Sequence-to-sequence model for improving the per-

formance of Roman to Devanagari transliteration to

that in the existing approaches. We first present the

basic idea of the proposed approach. Next, we ex-

plain the proposed approach in detail.

4.1 Basic idea

Local attention based sequence-to-sequence models

have been under-explored for the task of translitera-

tion and could dramatically improve the knowledge

gain with respect to global attention based sequence-

to-sequence models. Leveraging this, the idea is to

segment both the input Roman text and its par-

allel counterpart Devanagari text into syllables be-

fore building the attention based seq-to-seq model.

Syllable is a unit of spoken language consisting

of a single uninterrupted sound formed generally by

a vowel (Eg: a,e,i,o,u) and preceded or followed by

one or more consonants (Eg: b,c,d,..). By reducing

the sequences into their constituent syllables offline,

we can employ a teacher forcing method and force

the model to attend to a fixed window length of

sylla- bles at each decoding step in the attention

part of decoder in seq-to-seq networks. At each

decoding time-step, a window centered around the

source po- sition based on the syllable alignment is

used to com- pute the context vector for the syllable

corresponding to the target position. Thus, the

attention weights at each time-step are distributed

and limited to the corresponding syllables of the

positions in the win- dow which allows effective

knowledge building by the model.

4.2 Sonority Syllabification

The process of splitting a text into its constituent syl-

lables is referred to as Syllabification (Treiman and

Zukowski, 1990). Since it is derived directly from

pronunciation, syllables are script-agnostic and are

vital information pillars for machine translation and

transliteration tasks. For doing syllabification, we

utilise Sonority syllabification principles (SSP) avail-

able for Roman script (Henke et al., 2012). The

Sonority Sequencing Principle (SSP) or Sonority

se- quencing constraint is a phonetic principle that

aims to outline the structure of a syllable in terms

of sonority. Basing on the SSP rules for Roman,

we present the SSP rules for Devanagari and other

In- dic scripts. We are the first to present SSP rules

for Indic scripts.

http://www.elastic.co/guide/en/elasticsearch/
http://www.elastic.co/guide/en/elasticsearch/
http://www.elastic.co/guide/en/elasticsearch/

4.3 Syllabified local attention with

seq-to-seq net

Consider the Roman text ‘Hajagiree’ and its refer-
ence transliteration `हजिगरी'. Observe the one-to-one
mapping between the source (Roman) and the target
(Devanagari) text syllables (Figure 4.3(a)). More-
over, this mapping is both static and sequential.
Based on this, we propose Syllabified Sequence-to-
sequence model using local attention. Recall from
Section 3.1 that in a local attention based seq-to-
seq, at a given time-step, the decoder is fed only a
part of encoder context information. This informa-
tion is generally limited to the corresponding input
part.

With syllabification, the decoder needs to attend

(a)

(b)

Figure 2: (a) shows the syllable-syllable

correspondence between an example’s input and

output texts. (b) shows the attention windows

W={1,3} focused by the decoder when at tth

time-step

only on the select parts of the encoded input data

specified by us at each time-step. This way, the

model can learn to decode more accurately when

it focuses on just the needed input syllables rather

than the parts which it does not depend on. Thus,

the attention scope is limited to just the input sylla-

ble/s corresponding to the present decoder time-step.

However, considering an x-length window towards

left and right could prove beneficial as syllabification

is not always perfect (Figure 4.3(b)).

The pseudo-code of the test process is as follows.

1. Input text in Roman script is cleaned and syl-

labified using SSP principles.

2. The preprocessed input text is sent to the

trained Syll-S2S for transliteration to one of the

Indic scripts. Outputs Top-N (N=3) candidate

transliterations.

3. The transliterations are queried using inverse

mapping described in Section 3.2.2 and the

mapped candidate transliterations are updated to

their references.

4. Returns the final candidate transliterations.

5 Experimental setup

All the experiments are conducted on an Intel i5 pro-

cessor with 8GB RAM running Ubuntu Linux

oper- ating system.

5.1 Dataset

It is to be noted that the parallel transliteration cor-

pus i.e, the text in Roman and its counter translit-

eration in Devanagari is very limited and had to be

scraped from several existing open sourced works.

We have 1.5 million parallel words worth of data

in Roman and Devanagari after scraping. The

words in the resulting data are diverse ranging from

named entities to native words from Roman and

Devana- gari. We use a train-val-test split of 4:1:1

and train all the neural net models for 100 epochs.

5.2 Data preprocessing

Data cleaning and preprocessing was done on both

the corpus before model building. This includes

stripping unwanted characters like tags, HTML en-

tities, UNK tokens, special characters etc and

lower- casing the Roman data corpus. We use UTF-

8 en- coding on both the source and target corpus.

Once cleaning is done, for implementing the pro-

posed approach, we pass the input text to the Sonor-

ity syllabification module (Section 4.2) for splitting

into syllables. The syllabified text is then passed as

input to Syll-S2S model.

5.3 Methods and metrics

We have considered the following methods for per-

formance evaluation.

• Rule-based (RL): Rule based transliteration sys-

tem based on predefined character-to-character

mapping.

• Google Transliterate (Google): Google’s

official open API for transliteration 4.

• Indic-NLP (Indic) (Kunchukuttan et al., 2020).

• Seq-to-seq (S2S): A sequence-to-sequence model

incorporating Luong’s attention based scoring

(Luong et al., 2015).

• Self attention (SA): A self attention model based

on transformers (Vaswani et al., 2017).

4https://inputtools.google.com/request?itc=
hi-t-i0-und&num=4&cp=0&cs=0&ie=utf-8&oe=utf-8&app=
demopage&text=''

Scores RL Indic S2S SA Google Syll-S2S-W{1,3,5}

 W1 W3 W5

Top-1 Accuracy 0.45 0.57 0.72 0.79 0.83 0.82 0.86 0.85

Top-2 Accuracy 0.52 0.66 0.75 0.81 0.84 0.84 0.87 0.87

Top-3 Accuracy 0.58 0.71 0.77 0.83 0.84 0.84 0.87 0.87

Levenshtein distance 0.63 0.77 0.85 0.90 0.92 0.92 0.94 0.94

BLEU before inverse mapping 0.39 0.48 0.63 0.71 0.74 0.76 0.77 0.75

BLEU after inverse mapping 0.46 0.59 0.75 0.82 0.85 0.85 0.87 0.87

Table 1: Performance comparison of the considered methods in all the metrics. The top scores are highlighted in red and the

second best are highlighted in green.

• Syllabified monotonic Sequence-to-Sequence

(Syll-S2S): The proposed approach involving

monotonic attention from source to target

syllables using S2S model. We also vary the

syllables’ window-size W={1,3,5} and the

vari- ants are named as Syll-S2S-W1, Syll-

S2S-W3, Syll-S2S-W5 respectively.

A beam size of 3 (means 3 candidate transliterations

for every input) is employed for all the neural net

methods (Freitag and Al-Onaizan, 2017).

The following performance metrics have been em-

ployed.

• Top-N accuracy: The average number of

correct transliterations within the Top-N (N=

{1,2,3}) beam-search candidate

transliterations of the source text.

• Levenshtein distance: The number of single-

character edits required to change predicted

transliteration into the correct reference.

• 3-gram match: The average number of word-

level 3-grams with matches to their correspond-

ing 3-grams from the reference text.

• BLEU scores before inverse mapping: The

sim- ilarity of transliterated text to its reference

be- fore inverse mapping.

• BLEU scores post inverse mapping: Fuzzy-

search based inverse mapping (Section 3.2.2)

is used to map the candidate transliterations

to the existing reference transliterations in the

Elastic Search stack (Section 3.2) before com-

puting BLEU scores.

5.4 Results

5.4.1 Performance comparison

Table 1 shows the performance of all the imple-

mented methods in various score metrics (leftmost

column). The best scores highlighted in red are

by

the proposed approach Syll-S2S. Note the perfor-

mance improvement from S2S to Syll-S2S. This is

because of the monotonic local attention employed

in the latter by enforcing syllable-syllable corre-

spondence between the source and the target texts.

In particular, Syll-S2S-W3 which is Syll-S2S with

window-size 3 is performing the best overall with

re- spect to the second best method Syll-S2S-W5

(win- dow size=5) highlighted in green. This is

because of the reduced attention window size in

Syll-S2S- W3 w.r.t. W=5 as in the former, only the

imme- diate left and right syllables apart from the

current syllables are focused while computing the

attention scores whereas in W=5, the left and the right

window span increases by a step more leading to

distributed attention. Between Syll-S2S-W1 and

Syll-S2S-W3, the latter does well as vowels might

be split between the current and the next/before

syllables making the learning process more reliable

when the attention window covers them beside just

the current syllable. The model closely following

the Syll-S2S-W{1,3,5} variants is the Google

transliterate. Even the model with the best

architecture, SA is still behind the pro- posed

approach because of over-fitting due to limited data.

Effect of inverse mapping: It can be observed

from the table that the BLEU scores have

noticeably improved after incorporating fuzzy-search

based in- verse mapping for all the approaches

(Section 3.2.2). Recall that the above mapping

matches the candi- date transliterations to their

existing source translit- erations using fuzzy

searching on consonants. The values depict the

merit of mapping the candidate transliterations as

most often there are only minor differences between

the candidate and the reference transliterations,

evidenced by higher values in the metric

Levenshtein distance.

5.4.2 Effect of syllabified local attention

To understand the advantages of using

syllabified monotonic local attention as in the

proposed ap-

Sentence Reference transliter-

ation

Syll-S2S-W5 result Syll-S2S-W3 result

My Birthday Song माय बथरे्ड संॉ ग माइ जॉबरटहर्डाय स गं माय बथरे्ड संॉ ग

Happy Phirr Bhag
Jayegi

हैप्पी जॉफर भाग िायगी हापपय जॉफर भाग िायेगी हैप्पी जॉफर भाग िायगी

Wo India Ka Shake-
speare

व इं र˃्डया का शेक्सपीयर व इं र˃्डया का शक् ॉेसे्ारे व इं र˃्डया का शेक्सपीयर

Yamla Pagla Dee-
wana Phir Se

यमला पगला दीवाना जॉफर से यमल पगला दीवानन

जॉफर से

यमल पगला दीवाना जॉफर से

Kaashi in the search

of Ganga

काशी इन सचर् ऑफ़ गंगा काशी इन सचर् ऑफ गंगा काशी इन सचर् ऑफ़ गंगा

Mausam Ikrar Ke Do
Pal Pyar Ke

मौसम इकरार के द पल प्यार

के

मौसम इकरार के द पाल प्यार

के

मौसम इकरार के द पल प्यार

के

Jal bin machhli

nritya bin bijli

िल जॉबन मछली नृत्य जॉबन

जॉब- िली

िळ जॉबन मछली नृत्य
जॉबन

जॉबिली

िाल जॉबन मछली नृत्य
जॉबन

जॉबिली

Albert pinto ko gussa

kyu aata hai

अल्बटर् जॉॉंपट क गुस्सा

क् ं

आता है

अल्बटर् जॉॉंपट क गुस्सा

क् ं आता ही

अलबटर् जॉॉंपट क गुस्सा

क् ं

आता है

Table 2: Example Roman input sentences, their reference transliterations and the output transliterations from Syll- S2S-W5 and

Syll-S2S-W3 methods. Results in red indicate exact match, in green indicate the results with edit distance=1 and in blue indicate

the results with edit distance > 1 from the reference.

Figure 3: Top-1 Accuracy of S2S and Syll-S2S-W3 meth- ods

on varying training data size

proach Syllabified Sequence-to-sequence (Syll-S2S)

rather than global-attention as in conventional seq-

to-seq (S2S) models, we compare Syll-S2S-W3

model (the best performer, see table 1) with S2S

model at varying training data-set sizes. i.e., we

train the two models by using the training sizes of

0.5,0.75 and 1 million before testing. Fig 3 shows

the Top-1 accuracy vs training dataset-size results

for the two approaches. As can be seen, with

increasing size of training dataset, the rate of

improvement for Syll-S2S-W3 is significantly

greater w.r.t. S2S. This means that the proposed

approach has a faster

knowledge-acquisition rate than S2S model owing to

the local attention in Syll-S2S from enforcing mono-

tonic source-target syllable-wise attention. In con-

clusion, we can deduce that the accuracy improve-

ment for the proposed approach as more training

data resources become available would be substantial

when compared to conventional seq-to-seq models.

5.4.3 Effect of attention window

To demonstrate the importance of the size of at-

tention window in the proposed approach, we com-

pare Syll-S2S-W3 (window size=3) with Syll-S2S-

W5 (window size=5) (refer Figure 4.3(b)). Table 2

shows a qualitative comparison of results from both

the methods on few example input sentences of

varying lengths. Results in red indicate exact match

to ref- erence transliteration. Results highlighted in

green indicate the results with edit distance equal to 1

from reference and ones in blue indicate the results

with edit distance greater than 1.

As can be seen, between the two, Syll-S2S-W3

is clearly the best performer as it has the most

predic- tions in red and green as compared to Syll-

S2S-W5 which has more in blue. This is because

of the re- duced attention window size in Syll-S2S-

W3 w.r.t. W=3 as in the former, only the

immediate left and right syllables apart from the

current syllables are fo- cused while computing the

attention scores whereas in W=5, the left and the

right window span increases by one more step

leading to a more scattered atten-

tion. This results in the two left and right syllables

on both sides of the current syllable receiving around

the same attention as the syllable to be decoded.

5.4.4 Comparison with Google transliterate

-

Input 1: Jack aur jill pani ki ek balti lene

ke liye pahadhi par chad gaye

Reference: िैक और जॉिल पानी कɃ एक बाल्टी लेने के जॉलए

पहाड़ी पर चढ़ गए

Syll-S2S-W3 result: िैक और जॉिल पानी कɃ
एक बाल्टी लेने के जॉलए पहाड़ी पर चढ़ गए

3-gram match score: 1

Google result: िैक और जॉिल पाजॉन कɃ एक बाल्टी लेने

कॉे जॉलयॉे पहाड़ॉी पर चॉैर्ड गया

3-gram match score: 0.92

-

Input 2: Uppu kappurambu nokka polika nundu

chooda chooda ruchulu jaada veru purushulandu

punya purushulu veraya viswadhaabhiraama, vinura

vema

Reference: उपु्प कपू्परबु न क्का प जॉलका नन्दू चूर्ड चूर्ड

रुचुलु िाद वेरय पुरुशूलंदु पुण्य पुरुशुलु वेरय जॉवस्ववा भ̋रामा

Syll-S2S result: उपु्प कपू्परबु न क्क प जॉलक नन्द

चूर्ड चूर्ड रुचुलु िाद वेरया पुरुशूलंदु पुण्य पुरुशुलु वेरया जॉवस्वद्य

ॉा भ̋रामा जॉवनुर वेमा

3-gram match score: 0.84

Google result: उपू्प कपू्परबु न क्का प जॉलका नन्दू चूर्डा

चूर्डा रुचुलु िादा वेरु पुरुशूलंदु पुण्य पुरुशुलु वेरय

जॉवस्ववा भ̋रामा

जॉवनुरा वेमा

3-gram match score: 0.71
-

The above inputs depict two example sentences

and their reference and Top-1 candidate translitera-

tion from Syll-S2S-W3 (the best performer, see table

1) and Google transliterate. We also show the 3-

gram match score which is the the average number

of word-level 3-grams which are correctly matched

to their corresponding 3-grams from the reference

text. 3-gram match scores act as a direct measure

of a model’s strength when plugged in other cru-

cial downstream tasks like Information retrieval, at-

tribute linking etc and having a high 3-gram scores

would be the ideal for all models.

There is a clear distinction in the scores from the

two approaches with Syll-S2S-W3 giving higher

val- ues in comparison to Google transliterate.

Observe how the difference in scores becomes more

apparent

with increase in the input-length. This shows that

in applications involving more input complexity,

the proposed approach is expected to produce the

best result.

6 Conclusions

In this paper, we have proposed Syllabified sequence-

to-sequence attention model for improving the

transliteration quality with respect to the current

works. For this, we present the Sonority syllab-

ification principles for Devanagari and other Indic

scripts. To handle the erroneous entry of user-given

text and to further boost the performance, we incor-

porate fuzzy-search based inverse mapping with con-

sonants by employing Elastic Search stack. This

fa- cilitates the mapping of output transliterations

from the model to their existing reference

transliterations. Experiments demonstrate the

superiority of the pro- posed approach in comparison

to the state-of-the-art techniques.

As part of future work, we plan to investigate

the end-to-end forward and backward transliteration

tasks in a unified architecture. We also plan to im-

prove the performance when transliterating words

with varying pronunciation to their written forms

and are currently working on populating the Elas-

tic Search stack using the verified model predictions.

References

Mohamed Seghir Hadj Ameur, Farid Meziane, and

Ahmed Guessoum. 2017. Arabic machine translitera-

tion using an attention-based encoder-decoder model.

Procedia Computer Science, 117:287–297.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly

learning to align and translate. arXiv preprint

arXiv:1409.0473.

Sukalpa Chanda, Umapada Pal, Katrin Franke, and Fu-

mitaka Kimura. 2010. Script identification–a han and

roman script perspective. In 2010 20th international

conference on pattern recognition, pages 2708–2711.

IEEE.

Ciprian Chelba and Frederick Jelinek. 2000. Structured

language modeling. Computer Speech & Language,

14(4):283–332.

Yaping Deng, Lu Wang, Hao Jia, Xiangqian Tong, and

Feng Li. 2019. A sequence-to-sequence deep learning

architecture based on bidirectional gru for type recog-

nition and time location of combined power quality

disturbance. IEEE Transactions on Industrial Infor-

matics, 15(8):4481–4493.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam

search strategies for neural machine translation. arXiv

preprint arXiv:1702.01806.

Clinton Gormley and Zachary Tong. 2015.

Elasticsearch: the definitive guide: a distributed real-

time search and analytics engine. ” O’Reilly Media,

Inc.”.

Vishal Goyal and Gurpreet Singh Lehal. 2009. Hindi-

punjabi machine transliteration system (for machine

translation system). George Ronchi Foundation Jour-

nal, Italy, 64(1):2009.

Jiatao Gu, Yong Wang, Kyunghyun Cho, and Victor

OK Li. 2018. Search engine guided neural machine

trans- lation. In Proceedings of the AAAI Conference

on Ar- tificial Intelligence, volume 32.

Eric Henke, Ellen M Kaisse, and Richard Wright.

2012. Is the sonority sequencing principle an epiphe-

nomenon. The sonority controversy, 18:65–100.

Yuxiang Jia, Danqing Zhu, and Shiwen Yu.

2009. A noisy channel model for grapheme-based

machine transliteration. In Proceedings of the 2009

Named Entities Workshop: Shared Task on

Transliteration (NEWS 2009), pages 88–91.

In-Ho Kang and Gil Chang Kim. 2000. English-to-

korean transliteration using multiple unbounded over-

lapping phoneme chunks. In COLING 2000 Volume

1: The 18th International Conference on

Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris

Callison-Burch, Marcello Federico, Nicola Bertoldi,

Brooke Cowan, Wade Shen, Christine Moran,

Richard Zens, et al. 2007. Moses: Open source toolkit

for statistical machine translation. In Proceedings of

the 45th annual meeting of the association for

computa- tional linguistics companion volume

proceedings of the demo and poster sessions, pages

177–180.

Anoop Kunchukuttan, Divyanshu Kakwani, Satish

Golla, Avik Bhattacharyya, Mitesh M Khapra,

Pratyush Kumar, et al. 2020. Ai4bharat-indicnlp cor-

pus: Monolingual corpora and word embeddings for

indic languages. arXiv preprint arXiv:2005.00085.

Minh-Thang Luong, Hieu Pham, and Christopher D

Manning. 2015. Effective approaches to attention-

based neural machine translation. arXiv preprint

arXiv:1508.04025.

Soumil Mandal and Karthick Nanmaran. 2018. Nor-

malization of transliterated words in code-mixed data

using seq2seq model & levenshtein distance. arXiv

preprint arXiv:1805.08701.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.

Sequence to sequence learning with neural networks.

Advances in neural information processing systems, 27.

Rebecca Treiman and Andrea Zukowski. 1990. Toward

an understanding of english syllabification. Journal of

Memory and Language, 29(1):66–85.

Usman Mohy ud Din. 2019. Urdu-english machine

transliteration using neural networks.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob

Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz

Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing

systems, 30.

	G.Vyshnavi
	G.Sridevi
	M.Ritesh
	P. Krishna Reddy
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Sequence-to-sequence network
	3.2 Elastic Search stack
	3.2.1 Terms
	3.2.2 Inverse mapping with fuzzy search

	4 Proposed framework: Syll-S2S
	4.1 Basic idea
	4.2 Sonority Syllabification
	4.3 Syllabified local attention with seq-to-seq net

	5 Experimental setup
	5.1 Dataset
	5.2 Data preprocessing
	5.3 Methods and metrics
	5.4 Results
	5.4.2 Effect of syllabified local attention
	5.4.3 Effect of attention window
	5.4.4 Comparison with Google transliterate
	3-gram match score: 1
	3-gram match score: 0.92
	3-gram match score: 0.84
	3-gram match score: 0.71

	References

