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Abstract

In this paper, we present a novel graph-based
contextual and semantic learning approach for
detecting rumors on online social media. The
underlying hypothesis is that social media en-
tities are intertwined, and if an event unfolds
then similar narratives or user reactions with
common interests get circulated. The proposed
approach uses tweets and their reactions to un-
derstand the underlying interaction patterns
and exploits the textual and latent informa-
tion. Textual data is modeled as a words co-
occurrence graph, which produces two preva-
lent categories of words – substantial words
and bridge words. These words serve as build-
ing blocks for constructing contextual patterns
for rumor detection by computing node-level
statistical measures. The contextual patterns
are further enriched by identifying negative
emotions and inquisitive aspects in the reac-
tions. The patterns are finally ranked and only
top-k check-worthy patterns are used for fea-
ture generation. In order to preserve the se-
mantic relations, we use word-level GloVe
embedding trained over a Twitter dataset. The
proposed approach is evaluated over a publicly
available PHEME dataset, and compared with
various baselines and SOTA techniques. The
experimental results are promising and the pro-
posed approach seems useful for rumor detec-
tion on online social media.

1 Introduction

The increasing popularity of online social media has
motivated various actors to use them for spreading

misinformation to set their personal agendas. Mis-
information is dangerous, and it can stymie our ef-
forts to address global challenges as many issues
are being fuelled and distorted by it. Misinforma-
tion acts like a virus in the sense that it exploits our
weaknesses, biases, prejudice, and emotions. It has
deadly consequences, including polarizing debates,
creation or deepening of societal tensions, under-
mining truth, and manipulation of the electoral pro-
cesses. What we share online can have consequences
in the real-world. The world economic forum has
ranked massive digital misinformation as one of the
top global risks1. The United Nations urged social
media users to “pause- take care before you share”
on the world social media day to combat misinforma-
tion. The world health organization termed misinfor-
mation as an “infodemic” which is spreading faster
than COVID-19, disrupting public health efforts and
distorting the sound scientific guidance2.

Manual fact-checking sites like Snopes,
PolitiFact, and FactCheck are available
with some traditional media fact-checkers, such
as (i) Reality Check – a fact-checking arm of
the BBC which is reported in an article entitled
Coronavirus: the human cost of fake news in
India3, and found spam propagating life-threatening
consequences based on the false claims related
to coronavirus outbreak, Delhi riots, citizenship
amendment act, and claims about the minority com-

1https://www.weforum.org/reports/the-glo
bal-risks-report-2020

2https://www.who.int/health-topics/info
demic

3https://www.bbc.com/news/world-asia-i
ndia-53165436



munity, (ii) Verified, which is an United Nation’s
initiative providing facts and life-saving information
to the citizens of the world, (iii) Google News
Initiative, which provides funding to fight
misinformation during the COVID-19 pandemic, (iv)
NewsGuard, which is an internet tool for tracking
misinformation. It investigated and flagged several
Facebook pages as rumor spreaders. Apart from
these, social media firms are also concerned with the
identification of misinformation on their sites and
consequently employing experts and encouraging
users to flag or report posts that are not credible.

In the recent era of social media, a type of misin-
formation that spreads across the network in a short
time span is known as a rumor. Rumor consists
of controversial news, including factually incorrect
information about celebrities, politics, crises, and
social affairs. Information keeps circulating across
social media platforms with unchecked veracity. In
due course, the veracity of any information may be
determined as true or false, or the same may remain
unchecked (Zubiaga et al., 2018). Any kind of ru-
mor or false news disseminates faster than authentic
and true news. However, in the case of rumors on
political matters, the rapidity of spread and the nega-
tive consequences of rumors or fake news is exacer-
bated (Vosoughi et al., 2018).

The ruckus caused by the spread of misinformation
with nefarious motives distorts the truth and tarnishes
the spirit of social media platforms. Therefore it is
essential to curtail the spread of false rumors and
elevate trust in the whole ecosystem of social media.
Accordingly, it is becoming a challenge for social
media scientists and researchers to devise effective
algorithms for determining the veracity of any infor-
mation on the breeding ground of social media. How-
ever, the methods devised for identifying and deter-
mining the veracity of rumors on social media, espe-
cially on Twitter, are based on hand-crafted features
that come from two main aspects – content and users’
social context (Zubiaga et al., 2017). Researchers
are generally using traditional machine learning ap-
proaches for learned-representation of deep learning
techniques to classify rumorous messages. There are
recent works on determining the veracity of rumors,
but very few of them focus on the detection of rumors
based on the contextual representation learning using
a graph-based approach. When an event begins to

unfold, a similar type of user responses and a compa-
rable set of patterns are generated. The re-circulation
of the original post and showing skeptical or negative
responses create echo chambers, convincing us to
incorporate reactions and retweets while addressing
the truthfulness of a tweet.

In this paper, we present a graph-based contextual
learning representation for detecting rumors in Twit-
ter. The graph-based approach is exploited to capture
the contextual information from the tweets. Word
co-occurrence graphs are constructed using textual
data, and node metrics like eigenvalue centrality and
clustering coefficient are computed. The clustering
coefficient sets out the topical words that are gener-
ally clustered together, while eigenvalue centrality
lists the words that connect the topical words. These
two families of words are collaborated to create pat-
terns. The novelty of our approach is in incorporating
reactions with the source tweets to capture their in-
herent semantic affinity. Our approach is also unique
in its way of graph-based representation learning and
identifying two prevalent categories of words to ex-
tract the rumorous patterns. Moreover, the emotional
and inquisitive words are considered to make patterns
more generic. The ranking of patterns is performed
through tf-idf weight score and top-k check-worthy
patterns are extracted. For preserving the seman-
tic relations, word-level GloVe embeddings learned
from a Twitter dataset is applied. The tweets are
split into n-grams, and Cosine similarity is used to
generate the feature vectors by calculating the sim-
ilarity between the patterns and tweets. Different
classification models are trained over the original
and a balanced distribution of the publicly available
PHEME dataset. In comparison to the word-based
method, the pattern-based approach has the advan-
tage of being more representative and retaining the
syntactic sense.

2 Related Works

In recent years, rumor and fake news detection are
becoming one of the most explored areas of research.
Although the rumor is an old phrase, the implications
of such mis/disinformation on online social networks
become apparent when events unfold as breaking
news, prompting individuals to rely on social media
for news and information. It can be said that the term



fake news is also old, but got popularized after the
2016 presidential election in the USA. The very first
work tackling the detection of emerging rumors was
proposed in (Zhao et al., 2015), based on extracting
correction and verification signals using regular ex-
pressions. Alternately, the authors in Zubiaga et al.
(2017) leveraged the context using CRF with assump-
tions that context plays a crucial role in determining
the rumors.

Gradually, research on the subject of rumor identi-
fication progressed, with mechanisms ranging from
evaluating the rumorous nature of tweets to detecting
stances and establishing the truth value of social me-
dia posts (Mohammad et al., 2016; Kochkina et al.,
2017; Rosenfeld et al., 2020). The transformation of
approaches varies from traditional models like SVM
and Random Forest to probabilistic graphical mod-
els like Bayesian classifier and deep neural networks
like LSTM and GCN (Castillo et al., 2011; Bai et al.,
2021). Some researchers have explored behavioral,
emotional, and sentimental aspects for the detection
of rumors and fake news (Ajao et al., 2019). Abulaish
et al. (2019) proposed a graph-based approach for
rumor detection using POS tags to identify anxious
and doubtful terms present in microblogging posts.

In recent years, various deep learning approaches
are proposed for rumor detection. Some recent ap-
proaches are based on Graph Convolutional Neural
Net (GCN) Bai et al. (2021) using a relationship be-
tween source and reply, whereas Dong et al. (2019)
identified multiple rumor sources without knowing
the underlying propagation structure. In Tu et al.
(2021), the authors proposed a CNN-based model us-
ing text and propagation structure. Ma et al. (2019)
applied a Generative Adversarial Network (GAN)
based model to detect rumor-inductive patterns even
for a low-frequent rumor. Nguyen et al. (2020) dis-
cussed a graph learning framework for fake news
detection using the social structural engagements of
the users. Compared with traditional textual content
and social user features, the images and video-based
rumors have been researched less. Deep learning
has encouraged researchers to explore multimodal
features of rumors (Zhou et al., 2020). Related re-
search has looked into many elements of detecting
rumors and fake news on social media, but they are
less focused on inferring underlying information and
extracting patterns from tweets and reactions. More-

over, of all the strategies produced, only a few are cen-
tered on graph-based representation learning mecha-
nisms.

3 Proposed Approach

Following the existing state-of-the-art works, we con-
sider rumor detection as a binary classification prob-
lem. Given a tweet ti ∈ T of a Twitter dataset T ,
rumor detection problem aims to estimate a function
r which predicts the class level of ti as a rumor or
non-rumor. Mathematically, it can be defined as r: ti
→ {0, 1} such that,

r(ti) =

{
1 if ti is a rumor
0 otherwise.

(1)
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Figure 1: Work-flow of the proposed approach for
rumor detection

The work-flow of the proposed approach for rumor
detection is presented in figure 1. Different function-
alities of the proposed approach are explained in the
following sub-sections.

3.1 Data Pre-processing

In this step, several data pre-processing tasks such
as tokenization, cleaning and normalization are per-
formed on the Twitter dataset. All the tweets and
reactions are tokenized with white space. To normal-
ize the dataset and avoid any bias towards any events
or twitter-name, we replace the twitter-specific tokens
hashtags, urls, retweet and mentions with the tag
≺hashtags�, ≺urls�, ≺retweet� and ≺mentions�,
respectively. The punctuation and emoticons such
as ?, !, and :( are not removed because they play a



significant role in examining the writing style of ru-
mors. Stop-words and capital letters are significantly
important to understand the context of tweets. The
capital letters show emphasizing and stop-words in-
tact syntactic sense. Therefore, stop-words are also
retained to aid in forming rumor patterns.

3.2 Inferencing Tweet-Reactions Relationships
This section aims to identify closeness between the
source tweets and reactions. The reactions describe
the underlying latent information. Users show skep-
ticism, correction, and verification in their reactions
towards the truthfulness of a tweet. Some users
give opinions or clues regarding the factuality of
a tweet. Therefore, tweets and reactions are highly
correlated. The reactions provide supplements to the
source tweet that enhance and describe their quality
and are also helpful for identifying the underlying
patterns in rumorous tweets.

For making tweets explainable towards rumors, the
reactions are incorporated with them to get additional
knowledge. When combining of tweets and reactions,
the repetition of the same tweets in reactions should
be avoided to make them unique and descriptive. For
this purpose, the symmetric difference approach is
used at the sentence level on the tweets and their re-
actions. For any tweet ti and its set of reactionsRti =
{rti1 , r

ti
2 , ....., r

ti
n }, the repetitions are removed using

equation 2 by calculating the symmetric difference
of a tweet and all its reactions.

SDi = ti∆{rtin }n1 (2)

The symmetric differences between a tweet and
reactions can be formally defined as:

ti ⊕ {rtin }n1 (3)

To maintain the inclusiveness of a tweet and its re-
actions, a single input tweet is created by combining
a tweet and its deduplicated reactions by making a
union of all the symmetric differences SDi. We de-
fine this relation in equation 4, where X = (ti, Rti)
is the set of a tweet and the union of symmetric dif-
ferences SDi of a tweet ti ∈ T . This equation 4 rep-
resents an input tweet Xi in which the first sentence
is a tweet followed by all its deduplicated reactions.

Xi = ti +

n⋃
1

SDti
i (4)

3.3 Graph Generation
With minimum domain knowledge, the graph-based
method can effectively capture linguistic variation
and contextual information in textual data. The in-
put tweets are represented as a word co-occurrence
graph, G(V,E), where V is a finite set of nodes rep-
resenting words andE is the set of edges representing
the relationship between the nodes. To preserve the
underlying structure of the input tweets, edges are
defined as a sequence of words in an input tweet with
a window size of 2. The graph is used to model two
prevalent categories of the words – substantial words
and bridge words that are identified by computing
node-level statistical measures. The key objective is
to collect the words that are relevant to constructing
rumorous patterns. Two operations are performed
on the graph for computing node statistics; cluster-
ing coefficient and eigenvector centrality. Clustering
coefficient is used to identify substantial and topi-
cal words, whereas eigenvector centrality is used to
identify bridge words that provide connections to the
substantial words.

3.3.1 Substantial Words
When any event starts unfolding, a similar type

of tweets start posted on social media that contains
a similar set of responsive or reactive words. These
words can be psychological, sentimental, or skepti-
cal that are normally clustered together to impose
sentiments, feelings, or suspicions about the event.
These types of words are also connected with each
other through the same words that we recognize as
bridge words. Therefore, in order to trace the clus-
tering behavior of such topical words, the clustering
coefficient of each node vi ∈ V is calculated using
equation 5.

Cc(vi) =
2|ejk : vj , vk ∈ Ni, ejk ∈ E|

ki(ki − 1)
(5)

The average clustering coefficient of a node vi is de-
fined as Cc(vi)/|V | and the average clustering score
of the graph G is defined as

∑
v∈V Ccv/|V |. At the

end, the list of substantial words is compiled with the
words having a clustering coefficient value greater
than the threshold θCc , which is determined empiri-
cally as a value just greater than the average cluster-
ing score of the underlying graph.



3.3.2 Bridge Words
As the name suggests, this category of words

makes a bridge between two substantial words and
contributes to making rumorous patterns. It is used to
deliberate the meaning of the substantial words and
categorize the informal representation of the words
because people use to write in casual ways on so-
cial media. To consider the frequent as well as focal
nodes in the graph and based on the fact that a node
is important if its neighbors are important, we choose
the eigenvector centrality measure to identify bridge
words. The benefit of choosing eigenvector central-
ity is to avoid frequent but irrelevant words in the
graph. The eigenvector centrality of a node vi ∈ V
is calculated using equation 6, where Ni is the neigh-
bors of vi and A(i, j) is the adjacency matrix of the
graph G. In other words, the centrality of a node vi
is proportional to the combined centrality values of
its neighbors vj ∈ Ni.

Ce(vi) ∝
∑
vj∈Ni

A(i, j)Ce(vj) (6)

Now, it can be re-written in a matrix form as given
in equation 8, where λ is a proportionality constant.

x ∝ Ax (7)

λx = Ax (8)

This equation looks exactly like the eigenvector
equation. The centrality vector x is the eigenvector
of the adjacency matrix A(i, j) associated with the
eigenvalue λ. By virtue of the Perron-Frobenius
theorem, it takes the largest value of λ, and we find
the corresponding eigenvector that is positive and
unique, giving the eigenvector centrality of each node
vi ∈ V . The list of bridge words is compiled with
the words having a centrality value greater than the
empirically calculated threshold θCe value.

3.4 Pattern Extraction

The objective of this step is the extraction of the rich
rumorous patterns that are found more frequently
in rumors. The order of words in any language is
critical for delivering meaningful information. Peo-
ple communicate based on syntactic rules to convey
the proper meaning. The same syntactic rule is fol-
lowed in social media while writing posts. During

the extraction of check-worthy patterns, we have con-
sidered the syntactic rule as well as the emotion and
skeptical nature of social media users. We make the
patterns as a combination of above-mentioned two
categories of words. Keeping syntactic rules and
extracting meaningful patterns; first, the nodes that
satisfy the threshold condition are identified from
both categories and located in the graph. Thereafter,
we find the connections between the words of dif-
ferent categories. The connections are basically the
edges between a node vi and all its neighbor Ni.
Since we are interested in considering the patterns
that consists of maximum words to get more contex-
tual and syntactic meanings, we have taken 3-word
patterns that are created by combining a node with
its two neighbors in a way that not all three nodes
are from the same category. Finally, all possible n
patterns are collected and stored in the list P such
that P = {p1, p2, . . . , pn}.

3.4.1 Candidate Patterns Selection
The check-worthy patterns identified from list P

are named as candidate patterns. The following steps
explain the selection of the candidate patterns.

The first step is based on the assumption that the
rumor contents are related to a specific event, i.e.,
when an event unfolds, individuals begin to circulate
similar sets of responses and generate comparable
types of information without verifying their veracity.
Therefore, to incorporate event-specific patterns as
well as making patterns close to being rumorous, the
same set of procedures discussed above are applied to
that portion of training data which is labeled as rumor
only. Then this newly obtained list of patterns Pnew

is used to shorter the patterns list P . It is achieved
through matching the list P with a newly designed
list of patterns Pnew. The matching is performed as
described below:

N-gram matching: The n-gram matching works on
the word level, providing the collection of patterns
that match with rumor patterns. The matching is
done at the trigrams level, i.e., the patterns that match
all three words are collected in a list, PR, named as
rumor patterns list.

Similarity matching: In the above step, the exactly
matched patterns are captured, but some similar pat-
terns are left out that are extracted using a similarity
measure. We have used Cosine similarity for this



purpose. The Cosine similarity between a pair of
patterns is calculated using equation 9, where pi is
the ith pattern of list P and pnewj is the jth pattern
of list Pnew. The obtained patterns from this step are
appended to the rumor patterns list PR.

Cosine(pi, pnewj ) =
pi · pnewj

||pi|| · ||pnewj ||
(9)

The first step gives the rumor patterns that are
event-specific and about the content of the in-hand
dataset. To make patterns generic, we consider the
responsive behavior of social media users since the
writing style and user behavior are mostly the same
for any sort of unverified or rumorous social media
posts. Incorporating reactions with tweets are advan-
tageous to examining the emotional, correcting, and
verifying contents in the input tweets.

The second step incorporates the sentimental
and emotional words in the patterns list P . As
discussed in Vosoughi et al. (2018), the reac-
tions to rumors contain fear, surprise, and dis-
gust. People re-circulate the rumorous tweet
with negative sentiments. To consider the neg-
ative emotional words, NRC Word-Emotion
Association Lexicon is used, consisting of
words along with associative emotions (anger, fear,
anticipation, trust, surprise, sadness, joy, and dis-
gust) and (negative and positive) sentiments (Mo-
hammad and Turney, 2013). The patterns having neg-
ative emotional words are extracted from the pattern
list P and produced as a part of a list of emotional
patterns PE .

The third step considers the skeptical nature of
social media users. When a tweet gets posted,
people show skepticism and start questioning and
verifying them in the form of support and de-
nial. The correction and verification inquiry in
the replies are also observed in (Zhao et al.,
2015). Inspired by their work, the regular ex-
pressions such as (true|not|true), (real?|really?),
(rumor|debunk), and (false|fake) are constructed
and passed through the pattern list P . The patterns
containing the skeptical words are extracted and con-
sidered as a part of skeptical patterns list PS .

The above three steps extract the generic and spe-
cific patterns from the list P . Thus, candidate pat-
terns have consolidated three categories of pattern

lists – rumor patterns, emotional patterns, and skepti-
cal patterns.

3.5 Pattern Weighting and Ranking

In this step, the top-k check-worthy patterns are se-
lected from each list of candidate patterns. Since we
are interested in finding highly rumorous patterns,
a weight value is assigned to each pattern to define
its ranking. It is achieved through tf-idf weight scor-
ing, where each pattern of all three categories of the
candidate list is assigned a weight score through the
rumor training corpus tc. Furthermore, semantic vec-
torization is performed using embeddings to preserve
semantic richness.

We modified the standard formula of tf-idf for cal-
culating the weight score to map the patterns close
to being rumorous. For this purpose, we split the in-
put tweets of the rumor training corpus into n-grams
where n is equal to the number of words in a pattern
pi. The modified tf-idf is applied separately on rumor
patterns list PR, emotional patterns list PE , and skep-
tical patterns list PS to assign weight scores to every
pattern of the respective categories. For any of the
above lists, each pattern of that list is considered as a
term, and its frequency value is calculated, named as
pattern frequency PF . We pass a pattern through the
n-grams rumor corpus, and word co-occurrence is
counted. The pattern frequency of a pattern PFpi is
defined in equation 10, where, tc is the rumor training
corpus, f(pi, tc) is the frequency of a pattern pi in tc,
and f(p, tc) is the total number of patterns present in
tc.

PF(pi, tc) = log

(
1 +

f(pi, tc)

f(p, tc)

)
(10)

The inverse document frequency IDF for a pat-
tern pi is computed to provide the relevance of pattern
pi with the training corpus using equation 11, where
n(X) is the total number of input tweets in the rumor
training corpus tc and f(x, pi) represents the total
number of input tweets in which pattern pi occurs.

IDFpi = log

(
1 +

n(X) ∈ tc
f(x, pi)

)
(11)

Thus, the pattern frequency-inverse document fre-
quency PF − IDF is calculated by scalar multipli-
cation of equations 10 & 11, as shown in equation 12,



and it is considered as the final weight score for a
pattern pi.

PF − IDF(pi, tc) = PF(pi,tc) × IDFpi (12)

We arrange the patterns in each category of the
list in descending order of their weight score for
selecting top-k check-worthy patterns. Finally, the
top-k patterns from all three lists are combined to
make a hybrid patterns list that is useful in detecting
the rumor.

3.5.1 Semantic Vectorization
We have applied embedding on the input tweets

to preserve the semantic similarity with the patterns.
For each input tweet Xi of the training corpus, we
split it into n-grams and generate a semantic vector
of each n-gram using word embedding. For exam-
ple, if a tweet has m number of n-grams, then the
semantic vector of the tweet is represented as a ma-
trix of

[
[|n| × [d] |n| × [d] . . . |n| × [d]

]
1×m,

where |n| is number of words in n-grams and d is the
dimension of the word embedding vector.

The vectorization step is also applied over the iden-
tified patterns. It enriches patterns and provides se-
mantic information by using word embedding. For
preserving the semantic relations, we make a seman-
tic vector for a pattern using the same word embed-
ding. The semantic vector of a pattern is a matrix of
order |vi| × [d], where |vi| represents the number of
words in a pattern pi.

3.6 Feature Vector Generation

In this step, tweets are converted into a feature vec-
tor using Cosine similarity. The semantic vector of
both the patterns and n-grams of the input tweets
are matched, and the mean similarity score is calcu-
lated. For example, a list consists of top-k patterns;
for an ith pattern pi, the similarity score is obtained
by matching it with each n-gram. Furthermore, we
calculate the mean of the similarity score. This step
repeats until all the patterns from the list are matched
with n-grams of the input tweets. Since there are
total k patterns, the size of the final feature vector is
k. For a pattern pi, the numeric value for the feature
vector is denoted by χpi and calculated using equa-
tion 13, where m is the total number of n-grams in

input tweet Xi and Cosine(pi, Xim) is a similarity
score of a pattern pi and a n-gram of input tweet Xi.

χpi =

∑m
1 Cosine(pi, Xim)

m
(13)

4 Experimental Setup and Results

4.1 Dataset

We conduct our experiment on a publicly available
PHEME dataset described in (Zubiaga et al., 2017).
The dataset contains a collection of tweets with their
reactions (direct or nested) and metadata of five
breaking news events. There is a total of 5802 source
tweets in which 1972 are labeled as a rumor and 3830
as a non-rumor. This dataset contains less number
of rumors in comparison to non-rumors. Therefore,
another variant of a balanced dataset is created from
the original dataset, where both rumor and non-rumor
have an equal number of 1972 instances. We con-
duct our experiment on both variants of the datasets.
The detailed statistics of the dataset is presented in
Table 1.

Table 1: Statistics of the dataset

Events Name Source Tweets Reactions Rumors Non-Rumors Total

Charlie Hebdo 2079 36189 458 1621 38268

Sydney Siege 1221 22775 522 699 23996

Ferguson 1143 23032 284 859 24175

Ottawa Shooting 890 11394 470 420 12284

Germanwings Crash 469 4020 238 231 4489

Total 5802 97410 1972 3830 103212

4.2 Evaluation Metrics

This section discusses the formal description of per-
formance evaluation metrics for classification. The
three standard data mining evaluation metrics- Pre-
cision, Recall, and F1-Score are defined in the equa-
tion 14, 15, and 16, respectively. For defining the
evaluation metrics, we have used the concept of True-
Positive (TP), i.e., the number of rumorous tweets
identified correctly, False-Positive (FP), i.e., the num-
ber of non-rumor tweets identified as rumorous, and
False-Negative (FN), i.e., the number of rumorous
tweets identified as non-rumor. Precision evaluates
the correctness of the classifier, and Recall evaluates
the completeness of coverage of the classifier, while
F1-Score provides the way to combine the contri-
bution of both precision and recall evenly by using



harmonic mean.

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1− Score =
2× Precision×Recall
Precision+Recall

(16)

4.3 Evaluation Results and Comparative
Analysis

The experimental evaluation is performed using four
machine learning classification algorithms support
vector machine (SVM), gradient boosting (GB), con-
ditional random field (CRF), and logistic regression
(LR) over both the variants of benchmark dataset. The
proportion of train and test sets in the proposed ap-
proach is 8 : 2. We have implemented the above clas-
sification models using scikit-learn python
library.

Following pre-processing, the unigram frequency
matrix of graph words is generated. Those unigrams
with a frequency of less than ten are discarded. After
that, we applied clustering coefficient and eigenvec-
tor centrality on the graph to extract the two prevalent
categories of words. The graph generation and its op-
erations are implemented using the networkx pack-
age for the Python programming language. We
have considered different threshold values to extract
top words from both categories. Words of these two
categories are located in the graph and their imme-
diate connections i.e., eij ∈ E of a node vi with
neighbors Ni, where vj ∈ Ni, are retrieved. We used
the sliding window of size 2; therefore, patterns of
three words are created by combining a node with its
neighbor in a way that not all three words are from
the same category.

To make patterns generic, we incorporated nega-
tive emotional lexicons and skeptical words. As a
result, we curated three lists of patterns named rumor
patterns, emotional patterns, and skeptical patterns.
The word clouds in figure 2 present words of the
top-100 patterns for each category in which the font
size of a word is directly proportional to its relevance
score. It can be observed from these word clouds
that the words with larger font sizes are significantly

related and explain the context of the underlying cat-
egories. We ranked the patterns through tf-idf and
selected the top-k patterns empirically. We have used
100-dimensional word-level pre-trained GloVe em-
bedding trained over the Twitter dataset with 27
billion tokens. Those words that do not exist in the
pre-trained word vectors are ignored. We split each
input tweet into trigrams since each pattern has three
words. While splitting the input tweets, 2 rumors and
15 non-rumor are ignored since they have less than
three words, and trigrams can not be created. The
patterns and trigrams of tweets are represented in the
3 × 100 dimensions; we have taken their centroid
value and reduced it to the 1× 100 dimensions. At
last, the mean similarity value of a pattern with each
trigram of tweets is calculated. The top-k patterns
produce a k-dimensional feature vector.

The propose approach is compared with the follow-
ing baseline methods and state-of-the-art approaches.

Baseline 1: In this method, only the top-k rumor
patterns are incorporated to generate the feature
vector.

Baseline 2: In this method, the top-k patterns from
rumor as well as skeptical patterns are incorpo-
rated to generate the feature vector.

Baseline 3: In this method, the top-k patterns from
rumor as well as emotional patterns are incorpo-
rated to generate the feature vector.

Ajao et al. (2019): This approach considered the
relationship of rumors with the sentiments of the
social media post. It has used emotional words
to detect the sentiment-aware misinformation.

Abulaish et al. (2019): This approach used the
graph-based approach for rumor detection that
incorporated the sentimental aspects, such as
anxiety and doubtful terms from the social me-
dia post.

Zubiaga et al. (2017): This approach has learned
through the sequential dynamics of the social
media post. The content features and user social
features have experimented with conditional
random fields (CRF).

We have compared the proposed approach with
three baselines and three state-of-the-art approaches.



(a) Rumor patterns (b) Emotional patterns (c) Skeptical patterns

Figure 2: A word-cloud representing words of the top-100 patterns for each category

Table 2: Comparative performance evaluation results of our proposed approach with state-of-the-art
approaches and baseline methods over the original dataset

Approach
GB SVM CRF LR

P R F1 P R F1 P R F1 P R F1

Baseline1 82.48 72.44 77.13 82.07 62.61 71.03 79.81 65.68 72.04 76.09 52.35 62.03

Baseline2 79.38 76.35 77.83 81.20 63.32 71.15 82.32 72.34 77.00 80.00 53.71 64.27

Baseline3 85.80 87.82 86.80 87.53 91.45 89.45 86.34 82.56 84.40 83.84 76.50 80.00

Ajao et al. (2019) 84.80 85.12 84.96 86.68 85.82 86.24 86.43 84.64 85.52 83.83 85.11 84.46

Abulaish et al. (2019) 56.26 55.40 55.82 41.30 45.56 43.32 64.62 60.10 62.28 40.80 41.93 41.11

Zubiaga et al. (2017) 52.43 54.19 53.29 36.60 44.78 40.27 69.19 54.59 61.02 33.10 40.72 36.51

Proposed Approach 92.83 94.02 93.42 93.48 91.88 92.67 91.06 88.97 90.00 90.97 86.11 88.47

Table 2 summarizes the comparative results in terms
of precision, recall, and f1-score over the original
dataset. It can be observed that the proposed ap-
proach outperforms all other approaches for all four
classification algorithms. Our best result is obtained
through the gradient boosting. It can also be ob-
served that gradient boosting achieved highest recall
and f1-score, whereas SVM achieved highest preci-
sion. To assess the effect of class imbalance, we
repeated the same set of experiments with the variant
of a balanced dataset. As shown in table 3, gradient
boosting scored the highest value of precision and
f1-score, whereas CRF achieved the highest recall
value. It can also be observed that the recall and
f1-score values are better over the balanced dataset
for all four classification algorithms.

Figures 3 and 4 present a visualization of the
comparative analysis results of the proposed ap-

proach with three state-of-the-art techniques over
both original and balanced datasets, respectively. It
can be observed that the proposed approach per-
forms significantly better than all state-of-the-art ap-
proaches. The improvements of the proposed ap-
proach over the best state-of-the-art approach range
from 4.01−8.46% for the original distribution of the
dataset and 3.93 − 6.33% for the balanced dataset.
The out-performance consistency of our proposed ap-
proach is maintained for both variants of the dataset
with a difference of 1.03 − 3.85% in the f1-score
value. In contrast, the state-of-the-art approaches are
inconsistent; some methods improved 12.07% in the
f1-score value, whereas the performance of a few
decreases. The reason for the consistent performance
of the proposed approach is that the graph-based ap-
proach covers the topical words and the writing style
of the social media post, whereas the word embed-



Table 3: Comparative performance evaluation results of our proposed approach with state-of-the-art
approaches and baseline methods over the balanced dataset

Approach
GB SVM CRF LR

P R F1 P R F1 P R F1 P R F1

Baseline1 82.49 79.54 80.99 79.62 79.96 79.79 81.21 82.38 81.79 76.82 75.53 76.17

Baseline2 82.77 85.86 84.29 76.35 85.24 80.55 80.54 87.24 83.75 76.57 78.79 77.66

Baseline3 91.10 92.83 91.95 89.90 95.10 92.42 88.13 95.04 91.45 85.80 94.30 89.85

Ajao et al. (2019) 86.88 89.21 88.03 88.00 89.56 88.77 84.50 83.86 84.18 85.11 82.37 83.71

Abulaish et al. (2019) 61.22 59.46 60.32 52.41 50.86 51.62 82.04 67.98 74.35 63.56 60.02 61.74

Zubiaga et al. (2017) 58.63 60.40 59.50 51.13 50.75 50.94 80.00 62.53 70.19 52.43 45.66 48.81

Proposed Approach 95.36 95.36 95.36 91.72 95.78 93.70 91.18 95.88 93.47 90.82 93.88 92.32

Figure 3: Comparative performance evaluation analysis over the original dataset

ding covers the higher dimensional semantic space.

5 Conclusion and Future Work

In this paper, we have presented a rumor detection
framework that uses a graph-based approach to lever-
age tweets and reactions for extracting rumorous pat-
terns. A graph-based learning representation is used
to capture contextual information. The inquisitive,
skeptical, sentimental, and emotional natures of so-
cial media users are identified through their writing
styles in the reactions to a tweet. The semantic rela-
tions are preserved through semantic vectorization,
based on word embedding. The hybrid top-k patterns
are extracted from all three categories – rumor, emo-
tional, and skeptical that are used to train the rumor
detection model. The experimental results explained
that our proposed approach significantly improves
the rumor detection task and outperforms the state-
of-the-art methods. As a result, it is concluded that
utilizing emotional and skeptical words makes the de-
tection system more effective. It can also be said that

the pattern-based approaches result in more represen-
tative and smaller size models than the word-based
approaches. The patterns also retain the syntactic
sense. In this study, we have considered three-words
patterns because long patterns are infrequent. The
proposed work can be extended to improve the pat-
tern ranking mechanism to maximize the coverage of
patterns.
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