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Abstract

Motivated by recent findings on the proba-
bilistic modeling of the acceptability judg-
ments, several metrics have been proposed for
its automatic evaluation. Frequently used met-
rics such as syntactic log odds ratio (SLOR)
and its variants are based on utilizing proba-
bility from language model (LM) as a proxy
for automatic acceptability evaluation of the
generated text from an LM. Since one can-
not use probability directly as a measure of
acceptability, these metrics take steps to re-
move the confounding effects of noise from
sentence length and lexical frequency to en-
able the usage of probability for acceptability
evaluation. In this work, we argue that even
though the effects are reduced, they still ex-
ist. We propose a data transformation strategy,
Replace Named Entity (RNE), to get a coarse
representation of a sentence to mitigate the re-
maining problems from lexical frequency. In
RNE, we identify all proper nouns (i.e., NEs)
in a sentence and classify them into one of
eighteen types. Later RNE replaces all occur-
rences of NEs in a sentence with their identi-
fied type. We later trained three LMs (2, 3, 4-
grams) and assessed their performance of five
acceptability measures on four test datasets.
We found that LMs trained on datasets pre-
processed by RNE yield a significantly higher
correlation (upto 52% on some datasets) with
human acceptability judgment.

1 Introduction

Language Models (LMs) are often used to gener-
ate natural language text for NLP tasks — Machine
Translation, Summarization, Question Answering,

and many others. Moreover, intrinsic evaluation of
the LMs often includes at least two characteristics
(Mutton et al., 2007). First, how well the generated
text represents the source data, whether it be the text
in another language for machine translation, text to
represent a summary of a document, or text to rep-
resent answers for a question, etc. Second, how well
it conforms to regular human language use, a prop-
erty we will refer to as acceptability of the sentence.
Acceptability evaluation of a sentence is an essen-
tial task for automatically evaluating the quality of
the text (to help filter unacceptable sentences) gen-
erated by the LMs.

Before moving forward, it is also essential to un-
derstand the difference between the usage of related
words, i.e., fluency, readability, and grammaticality.
Both fluency and readability are alternate words for
acceptability, but the exact definition of these terms
varies across the literature (Lau et al., 2017; Mut-
ton et al., 2007; Kann et al., 2018; Storch, 2009;
Pitler and Nenkova, 2008; Vadlapudi and Katra-
gadda, 2010). However, we would like to differ-
entiate acceptability from grammaticality. When a
human evaluates the acceptability of a text, gram-
maticality is one of the possible factors, among oth-
ers like semantic plausibility, processing difficul-
ties, etc., that can also influence the acceptability
of a given text. Though both ‘acceptability’ and
‘grammaticality’ have been used interchangeably, a
sentence can be grammatical yet unacceptable and
vice versa. A famous example is Chomsky’s phrase,
“Colorless green ideas sleep furiously.” (Chomsky,
1957). Vice versa, acceptable sentences can be un-
grammatical, e.g., in an informal context such as po-
ems.



Sentence Type Sentence

Original Apple is set to hold its first event on Tuesday.
NER Result [ORG Apple] is set to hold its [ORDINAL first] event of

[DATE the year] on [DATE Tuesday].
Transformed ORG is set to hold its ORDINAL event of DATE on

DATE.

Table 1: Example sentence for motivation

Whether humans represent text acceptability eval-
uation as a binary classification (Warstadt et al.,
2020) of acceptable vs. unacceptable class of sen-
tence or as a probabilistic property (Lau et al., 2017)
has been a subject of lengthy debate among cogni-
tive scientists and linguists (Chomsky, 1957; Man-
ning, 2002; Sprouse, 2007). Both of the above views
have their strengths and weaknesses. On the one
hand, binary classification models do not have the
flexibility to distinguish text between varying de-
grees of acceptability. On the other hand, the accept-
ability of a sentence is not the same as the likelihood
of its occurrence as determined by the probabilistic
model, which depends on sentence length and lexi-
cal frequency. However, Lau et al. (2017) demon-
strated it is possible to augment the probabilistic
model to predict the acceptability of a sentence if
one can normalize probability values from the LM
to eradicate the confounding effects of noise intro-
duced by length and lexical frequency, e.g., SLOR
(Lau et al., 2017) and WP-SLOR (Kann et al., 2018).

In this article, we lean towards the view that ac-
ceptability is a probabilistic property. We depict that
probability-based acceptability metrics SLOR and
other variants, though they reduce the confounding
effect of lexical frequency, do not resolve the prob-
lem entirely in Section 2. We later provide evidence
that one reason for this problem is a granular-level
representation of the sentence since LM has to pre-
dict the probabilities for all words in the sentence,
including words for which LM has low confidence
(i.e., rare words or out of vocabulary words). This
work is motivated by how humans visualize the sen-
tence (coarse-level representation) for acceptability
evaluation. Our goal is to find how to generate such
a sentence representation to enable LMs better cor-
relate with human acceptability judgment for the ex-
isting metrics.

Table 1 presents a concrete example of our in-

tuition and data transformation strategy. Origi-
nal refers to the unprocessed sentence (granular-
level representation). We consider replacing proper
nouns, i.e., NEs, in a sentence to generate a coarse-
level representation. We propose a two-step ap-
proach i.e., Replace Named Entity (RNE) (Section
3) to construct such a coarse-level representation.
First, we employ Named Entity Recognition (NER),
a task to identify the spans of text that constitute
proper nouns in a sentence and classify each iden-
tified span into one of the NE types (i.e., subscript
in the prefix) as shown in NER Result. Second, we
replace each occurrence of a NE with its classified
type within a sentence to generate the coarse-level
representation (i.e., Transformed). We argue that the
coarse-level representation closely resembles how
humans will judge the Original sentence’s accept-
ability. Therefore, it should be used as an input to
train and test LMs. Our contributions are summa-
rized as follows:

• We provide evidence that a popular probability-
based acceptability evaluation metric SLOR
has limitations since it is based on the lexical
frequency of words in the training corpus.

• We demonstrate that the original sentence is
not the best representation for training LM and
propose RNE, a data transformation strategy to
transform the sentences to a coarse-level repre-
sentation.

• We present empirical evidence from our exper-
iments that SLOR and other probability-based
acceptability metrics correlate better with hu-
man judgment when LMs are trained on data
processed with RNE.

To the best of our knowledge, ours is the first suc-
cessful attempt to use NEs to find a coarse-level rep-
resentation of a sentence that better resembles how
humans evaluate acceptability to improve the corre-
lation between existing automatic acceptability met-
rics and human acceptability judgment. In this pa-
per, our target language is English. However, we
believe the ideas and methods apply to other lan-
guages. Additionally, our proposed data transfor-
mation strategy is independent of both LM and the
metric used to measure the acceptability.



2 The Problem

2.1 Problem Definition
Formally, a sentence S comprises of n words w1,
w2, w3, .. wn. Each word wi occurs with lexical fre-
quency (count) fi in the training corpus. The goal
here is to find the acceptability y ∈ R≥0 of the sen-
tence S.

2.2 Background
One might suggest treating the likelihood (probabil-
ity) of a sentence S as its measure of acceptability,
with 1 indicating completely acceptable and 0 means
unacceptable sentence. Although, the idea seems
enticing but will be an incorrect usage of the val-
ues in a probability distribution. The probability of
a sentence, S, from an LM is the probability that
a randomly selected sentence will be S and not a
measure of its acceptability. Based on this observa-
tion, Lau et al. (2017) proposed several sentence and
word level metrics to augment the probabilistic LM
with an acceptability measure.

Among all proposed metrics, syntactic log odds
ratio (SLOR) in Equation 1 has shown a good cor-
relation with human acceptability judgment. SLOR
is a function that normalizes the sentence probabil-
ity and believed to eliminate the confounding fac-
tors of sentence length by dividing with the sentence
length, i.e., |S| and lexical frequency by subtracting
the unigram probability of words comprising S. In
Equation 1, pm(S) refers to the sentence probability
of S, i.e., a product of probabilities assigned to each
n-gram by the LM. pu(S) is the unigram probability
for sentence S, i.e., a product of the unigram proba-
bilities of the words comprised in the sentence.

SLOR(S) =
log pm(S)− log pu(S)

|S|
(1)

Against the expectation, we have observed that is-
sues related to lexical frequency still persist in the
formulation of SLOR. Essentially words lexical fre-
quency in the training corpus can severely impact
both sentence probability pm(S) and unigram prob-
ability pu(S), and therefore impairing the usage of
SLOR for acceptability prediction.

To understand the impact of lexical frequency on
SLOR, let’s refer to three sentences, i.e., s1, s2, s3

Index Sentence

s1 He is a citizen of France.
s2 He is a citizen of Tuvalu.
s3 He is a citizen of Kiribati.

Table 2: Three sentences of equal length and equally ac-
ceptable

in Table 2 with words France, Tuvalu, and Kiribati,
referring to the names of three nations respectively.
For our convenience, we will override the notation of
pu(w) to refer to the unigram probability of the word
w. To explain the issue, we have made two assump-
tions; first, let’s assume that France occurs often and
Tuvalu is a rare word in the training corpus. Second,
let’s assume the word ‘Kiribati’ never appears in the
training corpus and is an out-of-vocabulary (OOV)
word for the LM.

2.3 Unigram Probability
Based on our assumption about the frequencies of
the word ‘France’ and ‘Tuvalu’, it will be safe to
expect unigram probability pu(France) to be higher
than pu(Tuvalu). In practice, to avoid the problem
of 0 unigram probabilities with OOV words (‘Kiri-
bati’), it is common to replace them with UNK to-
kens in both training and test corpus and add UNK
to the vocabulary. This will assign a tiny non zero
unigram probability and therefore pu(Kiribati) ≈ 0.
This tiny unigram probability for ‘Kiribati’ at first
appears to do no harm, but voids the sole purpose of
using unigram probabilities to counteract the higher
sentence probability pm(s1) and pm(s2) in SLOR
as we will show in the next section.

2.4 Sentence Probability
Now let us consider the sentence probability pm
from a 3-gram LM. Sentence probability is prod-
uct of individual n-gram probabilities as described
in Equation 2. Notice that all three sentences, s1,
s2, and s3, in Table2 have a common prefix phrase
‘He is a citizen of ’ and differ only on the last
word i.e., ‘France’, ‘Tuvalu’ and ‘Kiribati’. The
3-gram LM will assign equal probabilities to all 3-
grams (p(a | He, is), p(citizen | is, a), p(of |
a, citizen)) within common prefix. Furthermore,
based on our first assumption about words ‘France’
(i.e., high frequency) and ‘Tuvalu’ (i.e., rare) in



the training corpus we should expect 3-gram prob-
ability p(France | citizen, of) to be higher than
p(Tuvalu | citizen, of).

pm (S) = pm (wn
1 ) =

n∏
t=1

p (wt | wt−2, wt−1) (2)

2.5 Incompetence of SLOR

In the ideal world, pm(s1) should be equal to
pm(s2) since both are equally acceptable sentences.
However, due to the above two observed outcomes,
first, equal 3-gram probabilities for the common pre-
fix on both s1 and s2; second, a higher 3-gram prob-
ability for the word ‘France’ will result in pm(s1)
higher than pm(s2). This observation motivated Lau
et al. (2017) to propose SLOR, where they coun-
teracted this behavior by subtracting the unigram
probabilities from sentence probabilities to get sim-
ilar acceptability scores for equally acceptable sen-
tences.

However, subtracting unigram probabilities does
not solve problems for all different cases. Why?
Recall in section 2.3, we discovered that for an
OOV word ‘Kiribati’ unigram probability is tiny,
i.e. pu(Kiribati) ≈ 0. This tiny unigram prob-
ability for s3 will result in significantly different
SLOR score for s3, therefore evaluating it as more
acceptable sentence compared to s1 and s2. Hence
SLOR(s1) ≈ SLOR(s2) ̸≈ SLOR(s3) which
is undesirable because the word choice (‘France’,
‘Tuvalu’ or ‘Kiribati’) should not lead to a different
measure of acceptability.

3 Proposed Method

This observation that the lexical frequency of a word
should not lead to a different measure of accept-
ability led us to think about how humans judge the
acceptability of a sentence. We assert that human
judgment of acceptability is only slightly influenced
by word choice and is highly influenced by sentence
structure.

Let us take an example from Table 3 to measure
the acceptability of sentences s1 and s2. s1 and s2
are two original sentences with similar lengths and
are equally acceptable. s3 and s4 represent sentences
s1 and s2 with all identified NE spans and classified

Index Sentence

s1 Apple is set to hold its first event of the year on Tuesday.
s2 NEC is set to hold its second event of 2022 on Wednesday.
s3 [ORG Apple] is set to hold its [ORDINAL first] event of [DATE the

year] on [DATE Tuesday].
s4 [ORG NEC] is set to hold its [ORDINAL second] event of [DATE

2022] on [DATE Wednesday].
s5 ORG is set to hold its ORDINAL event of DATE on DATE.

Table 3: Example sentences to explain the motivation and
our proposed preprocessing data transformation strategy.

type as a subscript in prefix. s5 is the final trans-
formed sentence (coarse-level representation) after
replacing all identified NEs with the classified type
for s1 and s2.

In Table 3 notice that sentences s1 and s2 are very
similar in structure with few variations in the word
choice, i.e. ‘Apple’ vs ‘NEC’, ‘first’ vs ‘second’,
‘the year’ vs ‘2022’ and ‘Tuesday’ vs ‘Wednesday’.
Nonetheless, when it comes to a human judgment
of acceptability for s1 and s2, one would rate both
the sentences equally irrespective of different word
type choices in a sentence. We argue that neither
word choice nor lexical frequency should influence
sentence acceptability. Therefore it does not mat-
ter if the word in the sentence is ‘Apple’ or ‘NEC’;
instead, the critical information is the fact that both
the words refer to a single NE type, i.e., ORGANI-
ZATION (ORG). Broadly we can think of any other
ORG NE such as ‘Microsoft’, ‘United Nations’ etc,
and it should not affect the measure of acceptability
for the sentence. Similarly, the lexical frequency of
phrases ‘first’ over ‘second’, ‘the year’ over ‘2022’,
and ‘Tuesday’ over ‘Wednesday’ is less critical than
phrases referring to NE type ORDINAL, DATE, and
DATE, respectively.

In a nutshell, to humans, the sentence’s broad
structure and transitions between POS (Lapata and
Barzilay, 2005) are more critical than the lexical
frequency of the words to determine the accept-
ability. Based on this motivation, if we were to
replace phrases with their corresponding NE type,
we can transform original (granular-level represen-
tation) sentences s1 and s2 to a standard (coarse-
level representation) sentence s5. This transforma-
tion should help LMs overcome the issue of word
choice and their lexical frequencies to influence sen-
tences’ measure of acceptability. If coarse-level rep-



resentation is helpful, why not replace the complete
sentence with the corresponding POS instead of only
replacing proper nouns? The reason is that replacing
proper nouns with their NE Type generates an ad-
vantageous representation. On the one hand, it ab-
stracts away details that are not critical for determin-
ing acceptability; on the other hand, it retains orig-
inal words and sentence structure that highly influ-
ence acceptability i.e., rest of the POS classes (verb,
adjective, adverb, preposition, conjunction, and in-
terjection). Now we propose our two-step (Step I
and Step II) solution Replace Named Entities (RNE)
for data transformation.

3.1 Step I: Named Entity Identification

First, we segmented a sentence into words using
spacy’s (Honnibal and Montani, 2017) NLP English
word segmenter. After completing the segmentation
process, we scan the segmented sentence sequen-
tially to find the consecutive words that constitute
a NE. We used spacy’s statistical entity recognition
system with a default trained pipeline to assign one
out of eighteen types (e.g., companies, locations, or-
ganizations, and products.) to an identified NE.

3.2 Step II: Replacing words with Named
Entity Types

After identifying both NEs and their respective types
over segmented input sentences, we then start the
replacement process. In this step, we replace one
or more consecutive words in a sentence previously
identified as a NE in step I with its corresponding
identified NE type both for training and test corpus.

3.3 Complete Pipeline

After transforming all the sentences in the training
and test corpus with RNE, we train n-gram LM over
the transformed training corpus. Such a sentence
transformation (both independent of LM and the ac-
ceptability metric) will provide a coarse-level rep-
resentation of a sentence to help LM focus on the
transitions of POS without worrying about the words
chosen for NEs. Furthermore, we believe this will
enable a LM to generalize better into new domains
with different vocabulary. Moreover, this abstract
representation of a sentence will help all probability-
based metrics, including SLOR as shown in section
5.

Description Size Avg. Words Avg. NE’s Avg. UNK’s

BNC 5250 17.81 1.07 0.96
ENWIKI 2500 17.21 2.07 0.23
ADGER 300 7.30 0.53 0.04
ADGER-FILTERED 133 8.02 0.68 0.00

Table 4: Details of the test corpus. Description and Size
represents name of dataset and total number of sentences
in the dataset. Followed by average number of words,
NEs, and UNK tokens per sentence respectively

4 Experiment Setup

4.1 Dataset

We adopt the BNC corpus (BNC Consortium, 2007)
that comprises 6.07M sentences for training LM.
Moreover, to show the effectiveness of our proposed
data transformation strategy, i.e., RNE, we evaluated
the trained LMs on sentences that exhibited varying
degrees of acceptability. Based on previous work of
(Lau et al., 2017), we evaluated LMs on four English
language datasets (BNC, ENWIKI, ADGER, and
ADGER-FILTERED) within the Statistical Model
of Grammaticality (SMOG) (The Center for Lin-
guistic Theory and Studies in Probability, 2015) test
corpus. Table 4 shares the detailed statistics on test
datasets. Each sentence in the test dataset is asso-
ciated with a human judgement of acceptability for
further details on collection of the human ratings re-
fer to Appendix A.1.

4.2 Baselines

We first preprocessed the training corpus following
Standard Preprocess (SP) protocol as described in
(Lau et al., 2017). SP comprises of three steps,
first is to segment the sentences, second, filter out
sentences with fewer then threshold (seven) words,
third, replace rare words (i.e. with frequency less
than threshold of four) with an unknown (UNK) to-
ken.

4.3 Language Models

We trained three n-gram i.e., 2-gram, 3-gram, and
4-gram LMs on BNC corpus though preprocessed
differently for baseline (only SP with a vocabulary
of 104,950) and our proposed work (i.e., SP + RNE
with a vocabulary of 100,688). Each LM (for both
SP and SP + RNE) was trained with Kneser-Key
(Kneser and Ney, 1995) smoothing method.



Figure 1: Percentage (Y axis in log scaled) of eighteen NE types (X axis) per sentence across four test datasets BNC,
ENWIKI, ADGER and ADGER FILTERED. Graph is sorted by the percentage of NE type on ADGER FILTERED
Dataset.

4.4 Metrics

To compare our results with previous work of Lau et
al. (2017) we used pearson correlation between hu-
man judgement of acceptability and different prob-
ability scores (LogProb, Mean LP, Norm LP (DIV),
Norm LP (SUB), SLOR) predicted to evaluate the
performance of LMs. Due to the space limitation,
we have only included the formula for SLOR in Sec-
tion 2 for the formulation of rest of the metrics; refer
to Appendix A.2.

Pearson Correlation We evaluated the performance
of the LMs capability to predict the acceptability
(X) by calculating it’s pearson correlation with hu-
man judgement of acceptability (Y ). In Equation 3
cov is the covariance. σX and σY is the standard
deviation of X and Y respectively.

ρX,Y =
cov(X,Y )

σXσY
(3)

5 Results and Discussion

We now discuss the experimental results, findings
and their implications on acceptability evaluation.

Performance Comparison: Table 5, 6, 7, and
8 shows the performance on BNC, ENWIKI,
ADGER, and ADGER FILTERED test datasets re-
spectively. As the test datasets were already pro-
cessed via SP, we only preprocessed test datasets
with RNE to evaluate LMs trained via SP + RNE.

We observed that LMs trained via SP + RNE have
a higher or equal correlation with human judgments
on all the measures for BNC, ENWIKI, and ADGER
test datasets compared to LMs trained only via SP.
The only exception is 2-gram LM for the BNC test

Measure 2-Gram 3-Gram 4-Gram

SP SP+RNE SP SP + RNE SP SP + RNE

LogProb 0.33 0.35 0.40 0.50 0.42 0.65
Mean LP 0.46 0.36 0.52 0.55 0.55 0.67
Norm LP (Div) 0.53 0.43 0.57 0.62 0.60 0.73
Norm LP (Sub) 0.23 0.13 0.29 0.30 0.33 0.44
SLOR 0.53 0.44 0.55 0.61 0.57 0.69

Table 5: Pearson’s r of acceptability measure and mean
sentence rating for BNC. For BNC all the metrics are
multiplied by factor of 10.

Measure 2-Gram 3-Gram 4-Gram

SP SP+RNE SP SP + RNE SP SP + RNE

LogProb 0.22 0.28 0.24 0.32 0.24 0.33
Mean LP 0.14 0.22 0.19 0.28 0.20 0.30
Norm LP (Div) 0.19 0.27 0.24 0.33 0.25 0.35
Norm LP (Sub) 0.01 0.01 0.07 0.07 0.08 0.10
SLOR 0.20 0.27 0.24 0.33 0.24 0.34

Table 6: Pearson’s r of acceptability measure and mean
sentence rating for ENWIKI

Measure 2-Gram 3-Gram 4-Gram

SP SP+RNE SP SP + RNE SP SP + RNE

LogProb 0.06 0.07 0.07 0.08 0.08 0.08
Mean LP 0.07 0.07 0.09 0.09 0.09 0.10
Norm LP (Div) 0.11 0.11 0.13 0.13 0.13 0.14
Norm LP (Sub) 0.09 0.10 0.12 0.12 0.12 0.12
SLOR 0.12 0.12 0.14 0.14 0.14 0.14

Table 7: Pearson’s r of acceptability measure and mean
sentence rating for ADGER



Measure 2-Gram 3-Gram 4-Gram

SP SP+RNE SP SP + RNE SP SP + RNE

LogProb 0.30 0.31 0.32 0.33 0.33 0.35
Mean LP 0.23 0.22 0.25 0.26 0.26 0.28
Norm LP (Div) 0.32 0.30 0.35 0.34 0.36 0.36
Norm LP (Sub) 0.16 0.10 0.20 0.15 0.23 0.18
SLOR 0.34 0.30 0.36 0.33 0.36 0.34

Table 8: Pearson’s r of acceptability measure and mean
sentence rating for ADGER FILTERED

dataset. Furthermore, we got mixed improvement
results on the ADGER FILTERED dataset.

Quantitatively we observed an improvement in
the range of 3% (LogProb) to 52% (LogProb) for
2-gram and 4-gram LM, respectively. For EN-
WIKI, we observed an improvement in the range of
2% (Norm LP Sub) to 50% (Mean LP) for the 2-
gram LM. For ADGER, we observed an improve-
ment in the range of 1% (SLOR) to 13% (Mean
LP) for 3-gram and 2-gram LM, respectively. For
ADGER FILTERED, we observed an improvement
of 2% (Norm LP Div) to 11% (Log Prob) for 4-gram
LM.

RNE’s impact on probability metrics other than
SLOR: We verified our hypothesis that neither word
choice nor lexical frequency for NEs is critical in de-
termining the acceptability of the sentence as we saw
consistent improvement in correlation for all proba-
bility related measures in addition to SLOR.

Impact of NE count on correlation: We inves-
tigated the impact of NE count on the correla-
tion improvement. All four test datasets exhib-
ited different sentence characteristics. On the one
hand, BNC and ENWIKI comprised 1.07 and 2.07
NEs per sentence; on the other hand, ADGER and
ADGER FILTERED only comprised 0.53 and 0.68
NEs per sentence. In other words, only half of the
sentences in the test corpus have one NE. This obser-
vation indicates that the higher the number of NEs in
the sentence bigger the improvement in correlation
with human acceptability judgment. E.g., ENWIKI
enjoyed the maximum number of NEs (2.07) per
sentence, resulting in the maximum gain (50% for
Mean LP) in correlation. The above result is aligned
with our hypothesis since the higher the number of
NEs in a sentence, the more abstract the sentence

representation, resulting in less dependency on word
choice and their lexical frequencies for acceptability
evaluation.

Impact of NE Type on Performance: Fig. 1
shows the distribution of different NE types across
four test datasets. BNC and ENWIKI displayed
different sentence characteristics from ADGER and
ADGER FILTERED. Y-axis (log scaled) is the per-
centage of NE types over all NE count from the
dataset for eighteen NE types (X-axis) across four
test datasets. We observed that NE type PERSON
was the most prominent, i.e., ≈ 80% for ADGER
and ADGER FILTERED vs. ≈ 20% for BNC
and ENWIKI. Furthermore, not a single sentence
in ADGER and ADGER FILTERED possessed the
following eleven NE types starting from QUAN-
TITY, to EVENT, WORK OF ART as shown in Fig.
1 leading to different performance across four test
datasets.

6 Qualitative Analysis

To give an intuition for our proposed methodology,
we present one example, sentence s.157, from the
ENWIKI test dataset in Table 9. With the full range
of values, we apply a Z-score transformation to each
of the values in Y (acceptability score) by subtract-
ing the mean of Y from each of the values and divid-
ing them by the standard deviation of Y. We applied
the Z-score transformation on human acceptability
ratings for the original sentence. Furthermore, for
sentences preprocessed via SP and SP + RNE, we
applied the Z-score to the SLOR scores predicted
from 4-gram LM.

In the first sentence, there exist three NEs ‘Myrtle
Beach’, ‘Coast RTA’, and ‘Pee Dee Regional Trans-
portation Authority’. SP + RNE replaces NE ‘Myr-
tle Beach’ with GPE, and ‘Coast RTA’, ‘Pee Dee
Regional Transportation Authority’ with ORG. Con-
sequently generating a coarse representation of the
sentence, allowing LM to focus on the POS transi-
tion rather than being swamped by the long-phrase
corresponding to NEs. Z-score of 1.025 from LM
trained via SP + RNE is comparable to 1.033 for
human ratings (with + sign signifying acceptable
sentence), unlike the Z-score of -1.070 from LM
trained on SP (with - sign signifying unacceptable
sentence), which further supports our above claim.



Preprocessing Sentence Z-score

- (Original) Myrtle Beach is served by the Coast RTA and the Pee Dee Regional Trans-
portation Authority .

1.033

SP myrtle beach is served by the coast UNK and the pee dee regional trans-
portation authority .

-1.070

SP + RNE (Our’s) GPE is served by ORG and ORG . 1.025

Table 9: Sentence s.157 from ENWIKI dataset with unprocessed, standard and NE replacement preprocessing meth-
ods and it’s corresponding Z-score. UP, SP and RNE corresponds to UnProcessed, Standard Preprossed, and our’s
proposed NE Replaced data preprocessing methodologies. UNK (i.e., Unknown) corresponds to word ‘RTA’ as OOV
word.

7 Related Work

A series of recent successes of LMs on several NLP
tasks have raised the critical question of automatic
acceptability tests. Although, there have been sev-
eral studies to access the acceptability automatically.
However, there has not been enough effort to evalu-
ate the impact of sentence representation’s on differ-
ent levels (i.e., granular vs. coarse) on acceptability.

Wan et al. (2005) was the first work to evalu-
ate sentence acceptability independent of the source
content. The authors suggested using grammatical
judgments of a parser to assess the sentence accept-
ability. The motivation behind the idea was that if
the parser is trained on the appropriate corpus, the
poor performance of the parser on one sentence rel-
ative to the other sentence will suggest the presence
of ungrammaticality and unacceptability. (Mutton et
al., 2007) later extended the idea by training the ma-
chine learners on top of several parser outputs and
showing its correlation with the human judgment of
acceptability test. Unlike this line of work, we do
not rely on the grammatical assessments from the
parser but instead rely on the probabilities assigned
by the LM for acceptability test.

Lau et al. (2017) proposed the first work to hold
a probabilistic view on linguistic knowledge. They
proposed and experimented on a comprehensive list
of different probability-based metrics at the sentence
level and word level. Taking this work forward
(Kann et al., 2018) further introduced WPSLOR, a
WordPiece-based version of SLOR, to reduce the
LM size. Complementary to this work of explor-
ing different probability-based metrics, we focused
on varying levels of sentence representation (gran-
ular vs. coarse). Furthermore, we demonstrate that
our data transformation strategy can lead to an ad-

ditional gain in PCC measure between the metrics
proposed by (Lau et al., 2017) and human accept-
ability judgments.

Motivated by centering theory (Grosz et al.,
1995), Lapata and Barzilay (2005) argue that pat-
terns of local entity transitions specify how the fo-
cus of discourse changes from sentence to sentence.
To expose the entity transition patterns of readable
texts, they represented a text by an entity grid and
showed coherent texts exhibits certain regularities
reflected in the topology of grid columns (i.e., dis-
course entities). This work inspires our idea to
use NEs transition, but with few differences. First,
our job is to evaluate the acceptability at the intra-
sentence level, whereas their goal was to assess the
coherence at the inter-sentence level. Second, they
created a new representation of the input text in the
form of the grid and trained ML learners on top of
the grid to evaluate the coherence. However, we re-
placed the entities with their respective class in the
sentence, used this coarse abstract representation,
and relied on the LM to learn the acceptability mea-
sure from sentence structure.

Brown et al. (1992) presented a statistical al-
gorithm for assigning words to classes (clusters)
based on their frequency of co-occurrence with other
words. Their method extracted classes with syn-
tactic or semantic-based groupings of words and
later proposed class-based n-gram LMs. Though our
work is a specific instance of their approach, it an-
swers two crucial questions for sentence transfor-
mation required for acceptability evaluation. First,
which type of words to replace? Second, what
should a word be replaced with? As we explained
in section 2 only replacing proper nouns with NE
Types generates required coarse-level representation



without affecting the acceptability evaluation of the
sentence. E.g., in the sentence “He sees the world
from his eyes” randomly replacing the word ‘eyes’
with the other word ‘mouth’ from the same class or
logical class name ‘body parts’ will drastically im-
pact the acceptability measure of the sentence.

Pitler and Nenkova (2008) combined lexical, syn-
tactic, and discourse features to produce a model
to predict the human reader’s judgments of text ac-
ceptability. They presented that discourse relations
are strongly associated with the perceived quality
of a text. Similarly, Vadlapudi and Katragadda
(2010) proposed surface features like n-gram proba-
bilities, 3-gram based class n-grams, hybrid model
using both n-gram and class model on the POS-
tag sequences and POS-chunk-tag sequences. They
showed that their proposed models, especially the
hybrid approach on the POS-chunk-tag sequence,
can highly correlate with the human judgment of ac-
ceptability. Unlike this line of work, we kept the
focus on NEs and proposed a data transformation
methodology independent of both the LM and the
metric used to measure the correlation with human
acceptability judgment.

8 Conclusion

Several probability metrics have been proposed to
conduct the reference less acceptability evaluation
of a sentence automatically. SLOR in particular, has
gained popularity given it removes the impact from
the confounding factors of noise like sentence length
and lexical frequency. We assert that the issues re-
lated to word choice and its lexical frequency persist
for SLOR. We proposed a data preprocessing strat-
egy motivated by humans who evaluate the sentence
based on sentence structure and transitions between
POS at a coarser sentence representation. RNE, our
proposed method, identifies all NEs in a sentence
and replaces it with the classified type of NE. Based
on the results of the experiments, we found a correla-
tion between NEs count in a sentence and improve-
ment in LMs acceptability score. We observed an
improvement (up to 52%) or equal performance for
three (i.e., BNC, ENWIKI, and ADGER) out of four
English datasets. In this work, we only focused on
one class of POS, i.e., NE. In the future, we would
like to find an optimal dynamic representation of a

sentence based on its content to help LM predict ac-
ceptability scores better.
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A Metrics

A.1 Test Dataset Details

Humans annotated SMOG on three modes of pre-
sentation. (a) binary (MOP2), where annotators
choose between two options: unacceptable and ac-
ceptable (b) four-category (MOP4), where annota-
tors choose between four options: highly unaccept-
able, somewhat unacceptable, somewhat acceptable,
and highly acceptable. (c) a sliding scale (MOP100)
with two extremes, highly unacceptable and highly
acceptable.

BNC test corpus comprised of 500 random sen-
tences (in English) from the BNC training corpus
with a length of 8-25 words. These 500 sentences
were machine-translated (using Google Translate) to
four target languages, i.e., Norwegian, Spanish, Chi-
nese, and Japanese, and then back to English. This
led to 2500 sentences, i.e. 500 en original and 500
each from back translation of original en to four tar-
get languages i.e, es, no, zh, ja and then back to
en. BNC test corpus comprised 5250 annotated sen-
tences, 2500 on MOP2, 2500 on MOP4, and 250

(10% randomly selected from 2500) on MOP100.
To keep the training and test corpus distinct, we
removed 500 English test sentences from the BNC
training corpus.

Furthermore, SMOG comprised of linguistic sen-
tences adopted from (Adger, 2003)’s syntax text-
book. Lau et al. (2017) selected 100 random sen-
tences from (Adger, 2003) where half of them were
good (grammatical on author’s judgment), and half
of them starred (ungrammatical on author’s judg-
ment). To focus on syntactic violations, authors cre-
ated another dataset, ADGER-FILTERED, after fil-
tering out all sentences from (Adger, 2003) that were
semantically or pragmatically anomalous. So that
the left sentences only consisted of sentences that
are either syntactic well-formed or syntactic viola-
tions.

A.2 Sentence Level Metrics Formulations
Log Probability In Equation 4 LogProb relates to
the log of the sentence probability assigned by the
LM.

LogProb = log pm(S) (4)

Mean Log Probability In Equation 5 Mean LP re-
lates to mean (i.e. average) log of the sentence prob-
ability. Which is calculated by dividing the log of
the sentence probability with the length of the sen-
tence.

Mean LP =
log pm(S)

|S|
(5)

Normalized Log Probability Division In Equation
6 Norm LP (Div) relates to the normalized log prob-
ability which is calculated by diving the log of sen-
tence probability with log of the sentence unigram
probability.

Norm LP (Div) = − log pm(S)

log pu(S)
(6)

Normalized Log Probability Subtraction In Equa-
tion 7 Norm LP (Sub) relates to the normalized log
probability which is calculated by subtracting the
log of the sentence probability with log of sentence
unigram probability. Which is also same as log of
the division of the sentence probability with the sen-
tence unigram probability.

Norm LP ( Sub ) = log pm(S)− log pu(S)

= log
pm(S)

pu(S)

(7)


