
Integrating Label Attention into CRF-based Vietnamese Constituency
Parser

Duy Vu-Tran, Phu-Thinh Pham, Duc Do, An-Vinh Luong and Dien Dinh
University of Science, Ho Chi Minh city, Vietnam

Vietnam National University, Ho Chi Minh city, Vietnam
{vtduy18, phpthinh18}@apcs.fitus.edu.vn
{dotrananhduc, anvinhluong}@gmail.com

ddien@fit.hcmus.edu.vn

Abstract

Attention mechanisms and linear-chain con-
ditional random field (CRF) have been ap-
plied to constituency parsing, and the achieved
results are phenomenal. While self-attention
and label attention layers (LAL) have been
proven to be state-of-the-arts in English con-
stituency parsing for their improvement in the
encoding phase, the CRF two-stage technique
shows its effectiveness in lowering computa-
tional cost. Attention-based architectures al-
low a word (self-attention) or a label (label-
attention) to include its own viewpoint into ex-
tracted information. Our system is an extension
of the current CRF-based model with additional
attention-based methods to improve the quality
of the encoding phase. Another crucial factor in
our encoder is BERT as the pre-trained model
has gained recognition in various natural lan-
guage processing (NLP) tasks. Taking the ad-
vantage of different methods, we implement a
model that combines label attention, contextu-
alized encoding, and conditional random field.
Furthermore, we adopt the biaffine attention,
which is mainly used in the dependency pars-
ing task, in our scoring layer. The architecture
performs greatly on the Vietnamese treebank
as it gives an over-85 F1-score on the test set
and an over-82 F1-score on the dev set. On a
larger scale, our idea of integration could be
utilized in other language models.

1 Introduction

In the modern era, syntactical parsing has gained
remarkable results due to the rise of deep learn-
ing and neural networks (Mrini et al., 2020; Zhang
et al., 2020; Zhou and Zhao, 2019; Stern et al.,
2017; Wang and Tu, 2020; Yang and Deng, 2020).
Especially, constant improvements on English and
Chinese constituency parsing come from propos-
als of machine learning techniques (Mrini et al.,
2020; Zhang et al., 2020; Zhou and Zhao, 2019;
Stern et al., 2017), which encourages us to apply
such models to the same task of the Vietnamese

language. Since most of the existing constituency
parsers are encoder-decoder architectures, the main
approach to improving the performance is to up-
grade either encoder or decoder or both.

Encoders handle inputs and extract their signifi-
cance in vector forms so that the model can easily
understand them. Particularly, the inputs of a con-
stituency parser are sentences, and the encoders try
to learn the information of each word or span of the
sentences. Recurrent neural networks (RNN) and
Long short-term memory networks (LSTM) are the
main tools to extract such features from data for
their ability to learn the contextual characteristics,
and Zhang et al. (2020); Stern et al. (2017); Gaddy
et al. (2018) have benefited from these mecha-
nisms. PHAN et al. (2019), one of the pioneers in
Vietnamese constituency parsing, used BiLSTM in
their encoder. Despite RNNs and LSTMs’ ability to
capture contextual information, they are surpassed
by the works of self-attention.

In 2017, Vaswani et al. (2017) presented the
model of Transformer and the self-attention mech-
anism, which opened a new chapter for natural lan-
guage processing (NLP). Self-attention layers are
capable to understand the global context of a given
input and additionally, an attention-weighted view
of the input’s words to itself. With self-attention,
(Kitaev and Klein, 2018) improved the works of
(Stern et al., 2017; Gaddy et al., 2018). Later on,
Tran et al. (2020) adopted the model for Viet-
namese constituency parsing successfully, which
inspires us to combine the architecture with our
encoder.

After the emergence of Transformer, BERT (De-
vlin et al., 2019), which is a Transformer-based
model and pre-trained on a large corpus of a tar-
get language, was proposed. PHAN et al. (2019);
Tran et al. (2020) included PhoBERT (Nguyen and
Nguyen, 2020) in their models as PhoBERT is
specifically trained on Vietnamese, and impres-
sive results are achieved. Besides that, PhoBERT

also performed astonishingly in other Vietnamese
NLP tasks (Nguyen and Nguyen, 2021) which we
believe to enhance our encoder with the pre-trained
knowledge of Vietnamese.

In 2020, Mrini et al. (2020) further developed the
attention mechanism which resulted in Label At-
tention Layer (LAL). While self-attention (Vaswani
et al., 2017) refers to input’s views to itself, LAL
offers the view of a label to the given sentence.
Self-attention, BERT, and LAL are composed to
better the encoder. The impact of LAL is further
discussed in the Experiment section 3.

Besides dealing with the encoder, we adopt the
conditional random field (CRF) concepts and two-
stage decoding from Zhang et al. (2020) as they
have proposed an efficient inside algorithm and
proven the effectiveness of the methods. We also
consider the biaffine attention (Dozat and Man-
ning, 2017) for the scorer which is inspired by the
task dependency parsing.

In this paper, we make a combination of current
mechanisms into one single model: self-attention
layers, label attention layers, PhoBERT for en-
coder; Biaffine Attention for scoring; two-stage
CRF method for the decoder. We conduct examine
our model on Vietnamese treebank (Nguyen et al.,
2009) and achieve the results of over 85 on the test
set and over 82 on the dev set (all results are given
in F1-score). Section 2 re-describe our parser in
the order of encoder, scorer, decoder, loss function.
Section 3 presents the experiments’ settings and a
comparison between our model and other methods,
and finally, we give our conclusion in section 4.

2 Model Architecture

2.1 Overview

Our parser includes 3 main components: encoder,
scorer, decoder. Before being processed by the
parser, the input sentence is transformed into the
desired representations for the encoder. The en-
coder is a combination of the Attention mechanism
and BERT, both of which extract essential informa-
tion of the input sequence. On the Attention branch,
the word-level weighted views for the sentence
are extracted by k self-attention layers (Vaswani
et al., 2017), and the following dlal-head label at-
tention(Mrini et al., 2020) is responsible for en-
hancing these outcomes with label-level weighted
views. Additionally, the BERT(Devlin et al., 2019)
branch handles the input independently and pro-
vides the features that are learned from the pre-

training process. The results of two branches are
aggregated into one sentence representation, which
goes through the Biaffine scorer (Dozat and Man-
ning, 2017) to compute the span score matrix, and
the label score tensor. For the decoder, we apply the
theory of Conditional Random Field (CRF) (Zhang
et al., 2020) and lower the computational cost with
the two-phase strategy. The model is referred to
figure 1.

2.2 Encoder

Our encoder includes 2 parts: the Attention part
and the BERT part. A visualization of the Attention
part is given in figure 2. The idea of the encoder
is based on the hypothesis that a constituency tree
depends on the set of constituency labels and the
context of the given text. To realize the assumption,
we use:

• k self-attention layers to extract the informa-
tion of how each word of a sequence ‘see’ the
sequence’s context itself.

• dlal-head label-attention layer on the top of
the self-attention layers to retrieve the view-
point of the constituency labels to the input
sentence.

• BERT on the other branch to improve the en-
coder with pretrained contextual features.

Token representations For the Attention part,
we concatenate the content and the position embed-
ding following (Vaswani et al., 2017), where the
content is represented by the part-of-speech (POS)
embedding 1. We choose POS embedding instead
of the word embedding because we observe that the
POS one gives higher performance (which we will
discuss in the Experiment section (3)) and because
the information of words are extracted by the BERT
layer instead.
For the BERT part, we tokenize the sequence into
subword representations which are widely used for
BERT encoders.

Self-attention Mechanism We follow the en-
coder implementation of (Mrini et al., 2020) in
which the token representations are put through
several self-attention layers (Vaswani et al., 2017)
before being processed by the LAL.

Self-attention consists of a number of consecu-
tive layers, each of which has identical operations.

1The POS tags are in XPOS forms.

Figure 1: Model architecture. The main flow of the model for the sentence "Tôi đang nấu cơm". The sentence is
encoded by Label Attention Layer (Mrini et al., 2020) and Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019). Afterwards, it is moved through MLP to extract features before being scored by the
Biaffine (Dozat and Manning, 2017) mechanism and Conditional Random Field (CRF) (Zhang et al., 2020). The
score is decoded using Cocke–Kasami–Younger (CKY) algorithm.

Figure 2: The encoder of attention mechanism includes
2 parts. Firstly, The token representations go through k
self-attention layers to extract the attentive-weighted in-
formation. Subsequently, the data are fed into dlal-head
label attention. The output of each head is divided into
2 halves which act as forward and backward features of
the word. (The × operator refers to the matrix multipli-
cation operation, and the ⊕ implies the concatenation.
POS and PE stand for part-of-speech embedding and
positional embedding).

In a layer k of the self-attention, for a single head j
in the self-attention layers, given the input matrix

X(k):

c′j = softmax(
(W ′Q

j X(k))(W ′K
j X(k))

√
d′

)W ′V
j X(k)

(1)
where W ′Q

j ,W ′K
j ,W ′V

j are the learnt matrices of
the head j. We used ′ to distinguish notations be-
tween the label attention and the original self-
attention. Each attention head j learns from the
input individually as they have their own trainable
parameters. The chosen number of heads is 8 fol-
lowing (Vaswani et al., 2017).

To aggregate multiple heads of attention, we con-
catenate the outputs together:

output′ = Linear(c′1 ⊕ c′2 ⊕ ...⊕ c′8) (2)

where the Linear operation is used to transform
the output back to the input X ’s dimension.
Multihead is followed by a residual connection
and a Layer Normalization (Ba et al., 2016) which
results in the layer k’s output.

L(k) ≡ Layer(k)(X(k))

= LayerNorm(X(k) + output′)
(3)

Before being fed to the next layer k + 1, the
output goes through a position-wise feed-forward
which has the same form as in (Vaswani et al.,
2017) and a residual-LayerNorm again:

X(k+1) = LayerNorm(L(k) + PWFF (L(k)))
(4)

where PWFF is the position-wise feed-forward
function.

PWFF (X) = Linear(ReLU(Linear(X)))
(5)

where ReLU refers to the Rectified Linear Unit
function. The input and output of position-wise
feed-forward have the same dimensions (Kitaev
and Klein, 2018).

Label Attention Layer For English constituency
parsing, the authors of (Mrini et al., 2020) have
proposes the Label Attention Layer(LAL), and it
has produced a state-of-the-art result. As Label
Attention allows the labels to give their attention
views on a given sentence, we apply the mechanism
to our model as a part of encoder. A comparison
between models with and without LAL is made
and reported in the Experiment section (3).
The LAL takes a matrix X as input which consists
of embedded vectors of words of a given sentence.
The attention weight of each head j is represented
by an attention-weight vector aj which is calculated
from the query vector qj .

aj = softmax(
qj(W

K
j X)

√
d

) (6)

where W k
j is a learnt matrix of head j, and it is

used to learn the key factors of X . d is the length of
the query vector. Afterwards, the context vectors cj
are computed (Label Attention Layer uses vectors
instead of matrices).

cj = aj(W
V
j X) (7)

where W V
j is the learnt value matrix of head j.

The context vectors are projected to the dimen-
sion X’s vectors before being repeatedly added to
X.

cj = Linear(cj) (8)

outputj =


cj
cj
...
cj

+X (9)

The outputj is a matrix representing the la-
bel j view of the sequence X, and it is projected
to a smaller dimension dlal to prevent overfitting
as well as to optimize computational effective-
ness. The outcomes of all attention heads j (for
j ∈ [1; dlabel]), given that dlabel is the number of
heads), are concatenated into the final output of
LAL.

outputj = Linear(outputj) (10)

L = output1⊕output2⊕ ...⊕outputdlabel (11)

L ∈ Rn×(dlabel∗dlal) where n is the length of the
given sequence, and Li represents the vector of the
given sequence’s ith word.

Although the paper (Mrini et al., 2020) states
that we can choose as many attention heads as the
labels, they also show that the relation between the
number of attention heads and one of the labels is
not specifically one-to-one. This number is a hyper-
parameter that should be chosen via experiments
which we present in the Experiment section(3). The
LAL is put on top of the self-attention module to
provide the labels’ weighted views for the words’
attentions. In other words, the self-attention lay-
ers are not replaced by the LAL but instead, are
enhanced by it.

Inside the self-attention and label attention lay-
ers, we apply the partition for content embedding
and positional embedding as it is shown in (Kitaev
and Klein, 2018) to gain better performance.

BERT Fine-tuning BERT (Devlin et al., 2019)
is a context-aware embedding encoder, and it is
pretrained on a large corpus of the target language.
We decide to fine-tune the encoder further which
leads the pretrained model to fit the treebank. The
authors of (Nguyen and Nguyen, 2020) have intro-
duced a RoBERTA-based (Liu et al., 2019) model:
Phobert, and the model is pretrained on a large
Vietnamese corpus, which makes it more suitable
for the task. PhoBERT (Nguyen and Nguyen, 2020)
has shown impressive improvement in many Viet-
namese tasks such as dependency parsing, POS
tagging, named entity recognition (Nguyen and
Nguyen, 2021). Given a sequence of subwords
{sw1, sw2, ..., swn}, the output of BERT is de-
noted as:

Bi = BERT (swi) (12)

While the LAL provides the viewpoint of the la-
bels to a given delexical sequence, BERT supports
the contextual attention views of each word to the
input sentence.

Input Representation Following (Stern et al.,
2017), we combine the forward and backward rep-
resentations of the output. We split the composition
of BERT and LAL in two halves and treat them as
the forward and backward representations. For a n-
long sequence s, the process is shown in equations

13, 14, 15.

fori = Bi[0 : n/2]⊕ Li[0 : n/2] (13)

backi = Bi[n/2+1 : n]⊕Li[n/2+1 : n] (14)

Ei = fori ⊕ backi+1 (15)

2.3 Scorer
Inspired by the Biaffine Attention (Dozat and Man-
ning, 2017) used for the task of dependency pars-
ing, we apply the mechanism to our scoring archi-
tecture. The authors of (Zhang et al., 2020) made a
comparison between the Biaffine scoring method
with the previous one (Stern et al., 2017), and
the Biaffine one gave a consistently higher per-
formance.

Feature Extraction We extract the information
of the left and right boundaries using two separate
MLP layers as each word wi acts as either the left
boundary (the span endpoint is to the left of wi)
or the right boundary (the span endpoint is to the
right of wi) of a span. Another two MLP layers
are used for the labelling task.

spanl
i, span

r
i = MLP l

span(Ei),MLP r
span(Ei)

(16)

labelli, label
r
i = MLP l

label(Ei),MLP r
label(Ei)

(17)

Biaffine Scorer The Biaffine takes the outputs
from the feature extraction process as it inputs.
Particularly for a span (i, j), the Biaffine uses the
left boundary features of the ith word and the right
one of the jth to score the span. Similarly, we gain
the label scores of any span (i, j) and label l ∈ ℓ.

s(i, j) =

[
spanl

i

1

]T
D

[
spanr

j

]
(18)

where D is a trainable parameter, and D ∈ Rd×d.
d is the output dimension of MLP

l/r
span.

s(i, j, l) =

[
labelli

1

]T
Dl

[
labelrj

1

]
(19)

where Dl is a trainable parameter, and D ∈
Rd̂×|ℓ|×d̂. d̂ is the output dimension of MLP

l/r
label.

2.4 CRF Decoder

In (Zhang et al., 2020), the authors proposed a two-
stage framework for constituency parsing, which
they proved to have a lower computational cost.
Given a sentence x, our goal is to find an optimal
tree Ŷ. While the previous one-stage method (Stern
et al., 2017; Gaddy et al., 2018) tries to parse the
optimal tree directly, the two-stage method firstly
finds the optimal unlabelled tree.

S(x, y) =
∑

(i,j)∈y

s(i, j) (20)

where S(x, y) is the total score of the parsed tree
(given x) which is calculated by summing all edge’s
scores of a legal tree y. y is one of the candidate
constituency tree. We put the score under CRF to
calculate the conditional probability.

p(y|x) = eS(x,y)∑
y′∈Tr(x) e

S(x,y′)
(21)

where Tr(x) is the set of legal trees. Under CRF,
the constituency tree is optimized by the CKY al-
gorithm.

Ŷ = argmax
y

p(y|x) (22)

The next stage is to identify the label of the opti-
mal unlabelled tree. For each constituent (i, j) of
a given tree y and n-length sentence x, the label L̂
of (i, j) is:

L̂ = argmax
l∈ℓ

s(i, j, l) (23)

where ℓ is the set of all possible constituency labels.
According to (Zhang et al., 2020), the complex-

ity of the decoding phase is O(n3 + n|ℓ|) as the
CKY algorithm takes O(n3) time complexity and
the second stage takes O(|ℓ|) for each edge in y (a
constituency tree has 2n− 1 constituents).

2.5 Loss Function

The loss function of our model consists of 2 parts:
the span loss and the label loss. The span loss is
calculated by the CRF loss as we try to maximize
the conditional probability in equation 21. In other
words, given a sentence x and its target tree y, we
minimize the − log p(y|x):

Lspan(x, y) = −S(x, y) + log
∑

y′∈Tr(x)

eS(x,y
′)

(24)

The second term of equation 24 has an efficiency
batchified calculation which is detailed in (Zhang
et al., 2020). The label loss Llabel is computed us-
ing the cross entropy function, and the total loss of
the model is the sum of two parts:

Ltotal(x, y, l) = Lspan(x, y) + Llabel(x, y, l)
(25)

where l is the set of possible labels.

3 Experiment

3.1 Experiment Setup
Data We use the Vietnamese treebank (Nguyen
et al., 2009) to train and test our models. The
dataset is divided into 3 sets: train, dev, test with
8321, 692, 1388 sentences respectively. The data
are pre-processed using the code4 provided by (Ki-
taev and Klein, 2018). The root constituents are
included in the data, and the function tags are re-
moved due to the purpose of the task. The data
are biased as the numbers of ‘NP’ and ‘VP’ la-
bels dominate others, which results from the high
amount of Noun and Verb words in the treebank.
This is heavily affected by Vietnamese grammar,
where a simple clause is usually formed from a
noun phrase and a verb phrase. Figure 3 and 4 vi-
sualize the statistic of constituency labels and POS
tags in the dataset.

Parameter choice For the self-attention and la-
bel attention layers, we adopt directly the setting
of (Mrini et al., 2020) without any tuning except
for the number of label attention heads. Follow-
ing (Mrini et al., 2020), we choose the output
dimensions for the MLPs in 2.3 to be 1024 for
MLPspan’s and 250 MLPlabel’s. For other pa-
rameter settings, we directly follow the choice
of (Dozat and Manning, 2017). The token-batch
size is 1000, and the training process runs for 100
epochs. The model is evaluated on the performance
of the dev set.

Measurement We follow the standard measure-
ment precision (P), recall (R), F-score (F) for eval-
uation with the help of the EVALB tool2.

Models define Our baseline model is the original
CRF model using CharLSTM and BiLSTM-based
encoder of (Zhang et al., 2020)3 with the same set-
tings of the authors. Other models to be compared
are listed below:

2https://nlp.cs.nyu.edu/evalb/
3https://github.com/yzhangcs/parser

• CRF model using pre-trained PhoBERT and
BiLSTM encoder3: we examine the impact of
our encoder with the LSTM-based one.

• Berkeley Neural Parser (Benepar) using pre-
trained PhoBERT4: we compare our model
with the previous method used in (Tran et al.,
2020).

• Our model without using Label Attention Lay-
ers5: we consider the contribution of label
attention to the parser.

For models using PhoBERT, we re-train them on
both base and large versions of PhoBERT to evalu-
ate their influences. Furthermore, we try different
setups and use two types of token representations
for our LAL to find the optimal choice.

3.2 Results
Table 1 compares our model’s scores with other
models’ on the Vietnam treebank’s dev and test
set. Overall, our parser (using the large version of
PhoBERT) obtains the highest score in all scores
(precision, recall, F-score) on both dev and test set.
With PhoBERTbase, the model slightly drops by
0.45 in precision, 0.21 in recall, 0.33 in F-score on
the dev set while the numbers are 0.78, 0.48, 0.64
respectively on the test set.

3.3 Evaluation
Evaluation on dev set We conduct the experi-
ments on both versions of PhoBERT (Nguyen and
Nguyen, 2020), and we observe that the contribu-
tion of Phobertlarge is greater than PhoBERTbase.
The difference in F-score between the 2 versions
ranges from 0.3 to 0.48. When using Character-
level LSTM instead of PhoBERT, the scores fall
sharply, which proves the essence of the Viet-
namese pre-trained model.

With the rich information provided by the en-
coder and the effectiveness of the Biaffine scorer,
our model (w PhoBERTlarge) gives better results in
all precision, recall, and F-score on the Vietnamese
treebank (Nguyen et al., 2009) as it increases by
1.70% in F-score compared to the Benepar model
(w PhoBERTlarge) and 1.78% higher compared to
the CRF model (w PhoBERTlarge).

Evaluation on test set On the test set,
PhoBERTlarge continues to outperform

4https://github.com/nikitakit/self-attentive-parser
5Our model without LAL refers to removing the self-

attention → LAL block in our encoder.

Figure 3: Constituency labels statistic (removed labels
whose frequency is 1). Up down: train set, dev set, test
set

Figure 4: POS tags statistic(removed tags whose fre-
quency is 1). Up down: train set, dev set, test set

PhoBERTbase in the Benepar and our mod-
els, with 0.51 and 0.64 higher in F-score
respectively. However, CRF models give a con-
trasting result, one of whose explanations can be
that the LSTM encoder of the CRF models cannot
handle thoroughly massive features gained by
PhoBERTlarge.

Our model receives absolute higher results as it
achieves a consistent improvement of more than 1
F-score compared to other models. It is clear that
the components of our combination benefit from
each other and they reconcile to surpass the current
architectures.

Impact of Label Attention Layers We examine
the importance of the Label Attention mechanism
by removing it from the model, and the result drops
by 1.42 (the model w PhoBERTlarge) and 0.78 (the
model w PhoBERTbase). Without the LAL, the
result is still higher than other tested models.

We make a comparison between different num-
bers of attention heads in LAL, and table 2 gives
the details. In our model defined in 3.1, we use
64 heads for it gives the best F-score on the test
set. We test a lower number of heads (32) and sur-
prisingly, the obtained dev set’s F-score is better
(0.1 higher compared to the 64-head) while the test
set’s F-score is not significantly lower (0.04 lower
compared to the 64-head). Following (Mrini et al.,
2020), we choose the last model with 89 heads
as there are 89 label heads in Vietnamese treebank
and obtain the peak performance on the dev set. Al-
though the 89-head model gives peak performance
on the dev set, it requires much more time to train.
On the other hand, with the lowest computational
cost, the 32-head model still achieves a relatively
high F-score on both the dev and test set.

As mentioned in token representations in sec-
tion 2.2, we use POS embedding instead of word

embedding as the content for the self-attention →
LAL block. To make the decision, we trained our
model with either the POS or the word embedding
whose performances are shown in table 3. Using
the word embedding leads to a steep decrease, with
1.65 and 1.68 F-score drops on the dev and test
set respectively, which might result from a large
amount of the words in the dictionary (the size of
the POS’s dictionary is only 63).

4 Conclusion

While English and Chinese constituency parsing
has achieved significant improvement with dif-
ferent advanced techniques, the task of the Viet-
namese language still lacks approaches. We pro-
pose an extension of CRF-based model (Zhang
et al., 2020) with label attention mechanism (Mrini
et al., 2020) to enhance the performance of con-
stituency parsing. This paper takes the advantages
of each mechanism to gain a greater impact: pre-
trained PhoBERT provides knowledge of Viet-
namese; self-attention and label attention retrieve
the view of words and labels respectively; biaffine
attention enhances the scoring framework, and two-
stage decoding lowers computational cost. The out-
comes of the model are promising with a high F-
score, and the idea of combination can be general-
ized for other languages.

Acknowledgments

This research is supported by research funding
from Advanced Program in Computer Science,
University of Science, Vietnam National University
- Ho Chi Minh City.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 999–1010,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.

Khalil Mrini, Franck Dernoncourt, Quan Hung Tran,
Trung Bui, Walter Chang, and Ndapa Nakashole.
2020. Rethinking self-attention: Towards inter-
pretability in neural parsing. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 731–742, Online. Association for Computa-
tional Linguistics.

Dat Quoc Nguyen and Anh Tuan Nguyen. 2020.
Phobert: Pre-trained language models for vietnamese.

Linh The Nguyen and Dat Quoc Nguyen. 2021. Phonlp:
A joint multi-task learning model for vietnamese
part-of-speech tagging, named entity recognition and
dependency parsing.

Phuong-Thai Nguyen, Xuan-Luong Vu, Thi-Minh-
Huyen Nguyen, Van-Hiep Nguyen, and Hong-
Phuong Le. 2009. Building a large syntactically-
annotated corpus of Vietnamese. In Proceedings of
the Third Linguistic Annotation Workshop (LAW III),
pages 182–185, Suntec, Singapore. Association for
Computational Linguistics.

Thi-Phuong-Uyen PHAN, Ngoc-Thanh-Tung HUYNH,
Hung-Thinh TRUONG, Tuan-An DAO, and Dien
DINH. 2019. Vietnamese span-based constituency
parsing with bert embedding. In 2019 11th Interna-
tional Conference on Knowledge and Systems Engi-
neering (KSE), pages 1–7.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A minimal span-based neural constituency parser.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 818–827, Vancouver, Canada.
Association for Computational Linguistics.

Tuan-Vi Tran, Xuan-Thien Pham, Duc-Vu Nguyen,
Kiet Van Nguyen, and Ngan Luu-Thuy Nguyen.
2020. An empirical study for vietnamese con-
stituency parsing with pre-training.

http://arxiv.org/abs/1607.06450
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.findings-emnlp.65
https://doi.org/10.18653/v1/2020.findings-emnlp.65
http://arxiv.org/abs/2003.00744
http://arxiv.org/abs/2101.01476
http://arxiv.org/abs/2101.01476
http://arxiv.org/abs/2101.01476
http://arxiv.org/abs/2101.01476
https://aclanthology.org/W09-3035
https://aclanthology.org/W09-3035
https://doi.org/10.1109/KSE.2019.8919467
https://doi.org/10.1109/KSE.2019.8919467
https://doi.org/10.18653/v1/P17-1076
http://arxiv.org/abs/2010.09623
http://arxiv.org/abs/2010.09623

Dev set Test set
P R F P R F

CRF
w CharLSTM 72.41 73.70 73.05 75.78 78.01 76.88
w pre-trained PhoBERTlarge 80.50 82.10 81.29 82.90 85.19 84.03
w pre-trained PhoBERTbase 80.14 81.50 80.81 83.38 85.47 84.41

Benepar
w pre-trained PhoBERTlarge 81.68 81.07 81.37 84.03 85.02 84.52
w pre-trained PhoBERTbase 81.04 81.10 81.07 83.65 84.36 84.01

Ours
w PhoBERTlarge 82.32 83.84 83.07 84.80 87.16 85.97
w PhoBERTbase 81.87 83.63 82.74 84.02 86.68 85.33
w PhoBERTlarge w/o LAL 80.90 82.49 81.69 83.26 85.88 84.55

Table 1: Results table

Number of attention heads Dev set Test set
P R F P R F

32 82.67 83.70 83.18 84.79 87.09 85.93
64 82.32 83.84 83.08 84.80 87.16 85.97
89 82.85 83.65 83.25 85.09 86.60 85.84

Table 2: Comparison of different number of attention heads of Label Attention

Token representations Dev set Test set
P R F P R F

word embedding 80.46 82.44 81.43 83.07 85.55 84.29
POS embedding 82.32 83.84 83.08 84.80 87.16 85.97

Table 3: Comparison of different used content embedding

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Xinyu Wang and Kewei Tu. 2020. Second-order neu-
ral dependency parsing with message passing and
end-to-end training. In Proceedings of the 1st Con-
ference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th Interna-
tional Joint Conference on Natural Language Pro-
cessing, pages 93–99, Suzhou, China. Association
for Computational Linguistics.

Kaiyu Yang and Jia Deng. 2020. Strongly incremental
constituency parsing with graph neural networks.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020.
Fast and accurate neural crf constituency parsing.
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20,
pages 4046–4053. International Joint Conferences on
Artificial Intelligence Organization. Main track.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396–
2408, Florence, Italy. Association for Computational
Linguistics.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
https://aclanthology.org/2020.aacl-main.12
http://arxiv.org/abs/2010.14568
http://arxiv.org/abs/2010.14568
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

	Introduction
	Model Architecture
	Overview
	Encoder
	Scorer
	CRF Decoder
	Loss Function

	Experiment
	Experiment Setup
	Results
	Evaluation

	Conclusion

