
The 2nd International Workshop on Natural Language Processing for Digital Humanities (NLP4DH), pages 96–100
November 20, 2022. ©2022 Association for Computational Linguistics

96

Optimizing the weighted sequence alignment algorithm for large-scale text
similarity computation

Maciej Janicki
Department of Digital Humanities

University of Helsinki
Unioninkatu 40, 00170 Helsinki, Finland
maciej.janicki@helsinki.fi

Abstract

We present an optimized implementation of the
weighted sequence alignment algorithm (a.k.a.
weighted edit distance) in a scenario where
the items to align are numeric vectors and the
substitution weights are determined by their
cosine similarity. The optimization relies on
using vector and matrix operations provided
by numeric computation libraries (including
GPU acceleration) instead of loops. The re-
sulting algorithm provides an efficient way of
aligning large sets of texts represented as se-
quences of continuous-space numeric vectors
(embeddings). The optimization made it possi-
ble to compute alignment-based similarity for
all pairs of texts in a large corpus of Finnic oral
folk poetry for the purpose of studying intertex-
tuality in the oral tradition.

1 Introduction

Sequence alignment algorithms have a long his-
tory of usage in both bioinformatics and natural
language processing (NLP). The concept of ‘edit
distance’ dates back to Levenshtein (1966), while a
dynamic algorithm for its performant computation
was presented independently at least by Needle-
man and Wunsch (1970) and Wagner and Fischer
(1974).

With the popularization of the concept of embed-
dings in NLP, units of text (typically words) are
often represented as vectors in a high-dimensional
continuous space, with some similarity measure on
such vectors (typically cosine similarity) capturing
abstract similarity between those units (e.g. sim-
ilarity of words in meaning).1 This opens up the
possibility of non-exact sequential comparison of
texts using weighted alignment with cosine similar-
ities of embedding vectors as weights.

A concrete example of such computation was re-
cently presented by Janicki et al. (2022), who apply

1For a thorough introduction to the subject, see e.g. Pile-
hvar and Camacho-Collados (2020).

alignment to study intertextuality in Old Poems of
the Finnish People (Suomen Kansan Vanhat Runot,
SKVR) – a large collection of Finnic folk poetry
recorded from oral tradition. In Janicki et al.’s arti-
cle, texts are represented as sequences of lines and
the similarity measure for lines is defined based
on bag-of-bigrams vector representation. Although
this is a very simple kind of embedding, it was
proven useful in tackling the high linguistic varia-
tion that characterizes this corpus.

However, due to the size of the corpus (around
90,000 texts), the authors were only able to com-
pute the alignment-based similarity between pairs
of poems pre-selected based on certain criteria,
which might miss some interesting cases.2 In this
paper, we are going to present an optimization of
the alignment computation which allows one to
deal with large amounts of texts. It can be used to
compute an alignment between every single pair of
poems in SKVR using Janicki et al.’s embedding
method. More generally, it can be applied to find
similar passages in any large collection of texts
using an embedding representation of smaller text
units (e.g. words or lines) as basis for similarity.

As the present short paper is incremental work
focused on optimizing a particular well-known,
general-purpose algorithm, we limit the discussion
on its application in the study of Finnic folk po-
etry to a short example in section 4 showing the
benefit of the current improvements. For a broader
Digital Humanities context and a more thorough
discussion of using text similarity in the study of
oral tradition, the reader may be referred to Janicki
et al. (2022).

Existing approaches. Most available Python
packages for sequence alignment are either de-

2Janicki et al. (2022) first apply a clustering algorithm on
individual lines, and then find pairs of poems sharing lines
from same clusters as candidates for alignment. However, the
clustering is meant to group ‘equivalent lines’ with exactly the
same content, so it misses similarities of smaller degree.



97

signed specifically for biological sequences (like
e.g. Bio.Align3) or very simple pure-Python
implementations of the base algorithm (like e.g.
alignment4, edit-distance5). A notable
example of a library allowing for alignment of se-
quences of numeric vectors using a custom sim-
ilarity measure, as well as providing a fast C++
implementation, is pyalign6. However, as we
will see in sec. 3, it does not provide sufficient
performance to solve the problems addressed here.

Optimizations to the base algorithm are typi-
cally based on restricting the allowed edit distance
to a small number and pre-selecting or filtering
candidate pairs (e.g. Bocek et al., 2007; Soru and
Ngonga Ngomo, 2013). For handling large num-
bers of strings, also finite state automata have been
used (Schulz and Mihov, 2002). However, these
methods are only applicable to sequences of sym-
bols from a finite alphabet.

2 The Algorithm

2.1 The basic algorithm

We consider the case in which the weight of substi-
tution of a single unit of text is defined by the sim-
ilarity of units being substituted, with 1 meaning
complete similarity (identity) and 0 none. Also the
weight of insertions and deletions is 0. In this for-
mulation, we are looking for the maximum-weight
alignment, which detects as much overlap between
the two sequences as possible.

Let S denote the matrix of similarities between
individual units of both sequences. The alignment
matrix D can be computed using the following
recursive formula (cf. Wagner and Fischer, 1974):

di,j = max


di−1,j

di,j−1

di−1,j−1 + si,j

 (1)

where the considered values amount to the edit
operations of deletion, insertion and substitution,
respectively. After computing the matrix D, the
optimal alignment can be found by backtracing,
from which direction the optimal value was chosen
at each step.

3https://biopython.org/docs/1.75/api/
Bio.Align.html

4https://pypi.org/project/alignment/
5https://pypi.org/project/

edit-distance/
6https://pypi.org/project/pyalign/

Because in the application we are concerned
with computing the alignment-based similarity be-
tween sequences, i.e. the weight of the optimal
alignment (possibly with some further normaliza-
tion), rather than the alignment itself, we will skip
the part of alignment extraction and concentrate on
computing the matrix D efficiently.

2.2 Optimization

Our optimization is based on the idea that computa-
tion on vectors and matrices is faster than comput-
ing individual numbers iteratively, especially when
using a GPU. We will thus group the computations
in two ways:

1. Use vector operations to compute entire rows
of the alignment matrix.

2. Use matrix operations to compute the next row
of alignment matrices between one document
and all other documents at once.

Optimization 1. Because in the formula (1) every
cell of the matrix D depends on the cell to the left,
we cannot use it directly to compute entire rows.
However, we can break down this computation into
two stages:

d∗i,j = max {di−1,j ; di−1,j−1 + si,j} (2)

di,j = max
{
d∗i,j ; di,j−1

}
= max

k≤j
d∗i,k (3)

Now (2) depends only on the previous row, so it
can be computed row-wise, whereas (3) is a cumu-
lative maximum operation. Let fmax(·; ·) denote
the element-wise maximum of two vectors or matri-
ces and cummax(·) the cumulative maximum (row-
wise in case of matrices). Then we can rewrite (2,
3) in vector notation as:

d∗i,1:n = fmax
(

d(i−1),1:n

d(i−1),0:(n−1) + si,1:n

)
(4)

di,0:n = cummax
(
d∗i,0:n

)
(5)

Note that the latter step (cummax) relies on the fact
that the insertion weight is 0, and the optimization
could not be applied otherwise.

Optimization 2. Assuming that we are comput-
ing the alignment between a single target document
and multiple source documents, the next row for
each source document can be computed at once.
We will stack the matrices S and D vertically, so
that the columns correspond to the items of the

https://biopython.org/docs/1.75/api/Bio.Align.html
https://biopython.org/docs/1.75/api/Bio.Align.html
https://pypi.org/project/alignment/
https://pypi.org/project/edit-distance/
https://pypi.org/project/edit-distance/
https://pypi.org/project/pyalign/


98

target sequence and the rows to the items of all
source sequences concatenated.7 Let B denote a
set of sequence boundaries, i.e. row indices in the
stacked matrices, at which a new sequence begins.
Further, let m,n denote the (zero-based) indices of
the last row and column of the D and S matrices.

Algorithm 1 Alignment of a single document
against multiple others.

1: DB,0:n ← cummax(SB,0:n)
2: I ← (B + 1) \B
3: while I ̸= ∅ do
4: DI,0 ← fmax (DI−1,0, SI,0)

5: DI,1:n ← fmax
(

DI−1,1:n

DI−1,0:n−1 + SI,1:n

)
6: DI,0:n ← cummax(DI,0:n)
7: I ← (I + 1) \B \ {m+ 1}
8: end while

Algorithm 1 computes the stacked alignment
matrix D. Each iteration computes the next row
of the alignment matrix for each source sequence
simultaneously. The set I contains the indices of
currently computed rows. The notation like I + 1
for a set of indices is a shorthand for {i+1 : i ∈ I}.
Once an index reaches the start of a new sequence
or the end of the corpus, it is removed from the set
(line 7). The first row for each sequence (line 1) and
the first column (line 4) are processed separately
as they cannot refer to the previous row or column,
respectively.

3 Benchmarks

In order to test the optimizations, we compute pair-
wise maximum-weight alignment matrices for po-
ems from the SKVR collection, using the vector-
ization of verses as bags of character bigrams (fol-
lowing Janicki et al. 2022). We conduct the exper-
iments on subsets of the collection with different
sizes, comparing the following algorithm variants:

0 No optimizations – the alignment matrix is com-
puted for each pair of documents separately
using the standard dynamic programming al-
gorithm implemented as a Python loop.

0-PA Using the pyalign library for computing
alignment scores pair by pair. (The matrix

7Because the alignment is symmetric, assuming that the
goal is to compute alignment between all document pairs
and thus we will take every document in turn to be a target
document, it suffices if the source sequences are all documents
following the target document in the corpus (rather than the
entire rest of the corpus).

S is precomputed as a single dot product per
target document.)

1 Only optimization 1 – the alignment matrix is
computed for each pair of documents sepa-
rately, but using vectorized row-wise opera-
tions (NumPy library).

2-NP Optimizations 1 and 2, using the NumPy
library.

2-T-CPU Like above, but using the PyTorch li-
brary on a CPU.

2-T-GPU Like above, but using the PyTorch li-
brary on a GPU.8

In all the variants, we applied a threshold of
0.5 on the similarity of individual items and then
rescaled the values to the interval [0, 1]. This was
done to avoid false positives, but it should not influ-
ence the runtime of the algorithm. The benchmarks
were run on a mid-range desktop PC with an 8-
threaded Intel Core i7-6700 3.4 GHz CPU and a
GeForce GTX 1060 GPU.

The results are shown in Table 1. They indicate
a dramatic reduction in runtimes when using both
optimizations. For larger dataset sizes, the GPU
version is the most efficient, providing around 3x
speedup over the CPU. It can be projected from the
growth that the non-optimized variants (including
the one using pyalign)9 would take weeks to
compute the similarities for the entire SKVR, while
the GPU version does it in less than 9 hours, and
thus can be scaled up to even larger corpora.

4 Application

Using the optimized algorithm, we are able to com-
pute alignment-based similarity between every sin-
gle poem pair in the SKVR collection, and thus
get rid of the pre-selection criteria employed by
Janicki et al. (2022) (which required the poems to

8For memory-saving reasons, the GPU version uses 16-
bit floating point numbers, while the CPU versions use the
default 64-bit float. It might be that the difference in speed is
partly due to the different data type used. PyTorch on CPU
currently does not implement 16-bit floating point arithmetic,
but seems to be faster for 32-bit than 64-bit. This could be
studied in more detail if needed, but the purpose of the current
comparison is to show the benefit from the optimizations.

9It should be noted that pyalign is a very generic and
flexible library, providing much more functionality than what
is tested here. This comparison is intended to prove the need
for the optimizations in our case, but by no means to cast
doubt at the usefulness of pyalign in general.



99

#docs variant
0 0-PA 1 2-NP 2-T-CPU 2-T-GPU

100 85.8 18.4 6.7 5.5 5.8 13.4
200 282 53.2 20.3 10.5 9.9 19.8
500 1,109 186 88.6 32.3 27.1 48.3

1,000 3,261 525 283 86.0 69.6 113
2,000 10,400 1,897 1,168 266 204 247
5,000 – 6,287 4,543 888 668 781

10,000 – 24,232 21,963 3,340 2,319 1,800
20,000 – – – 10,623 7,047 3,341
50,000 – – – 33,165 26,291 9,387
88,078 – – – 78,720 92,850 32,036

Table 1: Execution times (in seconds) for the different algorithm variants and different dataset sizes (the last row is
entire SKVR). The experiments marked with ‘–’ were skipped because of long expected computation times and
when the lower performance of the respective variant has already been sufficiently demonstrated.

Ingrian-Finnish Estonian translation sim.
Lilla istu kamperissa, Lilla istus kammeris, The girl was sitting in a chamber, .79
Aik’ oli ikäv uottaa, Tal aeg oli igav oota. It was a sad time waiting. .46
Näki vennan reissivanna Ta nägi venda sõudema She saw a brother [travelling / rowing] .20
Pitkin mere rantaa. Seal üle mereranna. Along the sea coast. .45
“Rikas venna, rakas venna, “Kulla venda, rikas venda ‘Rich brother, [dear / golden] brother .64
Lunast minnuu täältä vällää!” Lunasta mu südant!” Ransom [me from here / my heart]!’ .31
“Millä mie lunassan, “Kellega ma lunastan, ‘With what do I ransom you, .41
Kui miull’ ei ole varraa?” Kui mul ei ole raha.” When I don’t have money?’ .73
“On siull’ koton kolme miekkaa, “Sul on kodu kolmi mõeka, ‘You’ve got three swords at home, .66
Pane niist’ yksi pantiks!” Pane üks neist pandiks.” Pawn one of them!’ .74
“Enne mie luovun siusta “Ennem mina lahkun õekesest, ‘I’d rather give up [you / a sister], .36
Kui omast’ kolmest’ miekast’.” Kui oma sõjamõegast.” Than my own [three / war] sword[s].’ .44

Table 2: Fragment of an Ingrian-Finnish and Estonian version of the song The maid to be ransomed, showing the
possibility of cross-lingual alignment.

have a couple of highly similar verses in common
to be considered for alignment).

The algorithm is scalable enough to be prac-
tically usable even if the SKVR collection is
combined with further corpora of similar size.
In our current research, we combine SKVR
with the Estonian Runosongs Database10 (Eesti
Regilaulude Andmebaas, ERAB), which contains
around 100,000 documents. This allows us to
search for cross-dataset and cross-lingual similari-
ties.

An example for this is given in Table 2. It shows
a fragment of a song The maid to be ransomed in an
Ingrian-Finnish and Estonian version (from SKVR
and ERAB, respectively). Cosine similarities of
verses (in a bag-of-character-bigrams representa-
tion) are given on the right. While the texts are built
in a very similar way, the string-level similarity is
low due to considerable linguistic differences.

10https://www.folklore.ee/regilaul/
andmebaas/

The threshold used by the current method is 0.5,
which allows us to align the verse pairs with sim-
ilarity scores marked in bold. Because there are
quite many alignable pairs, the poems will be eas-
ily recognized as similar. On the other hand, the
method described by Janicki et al. (2022) required
the poems to share verse pairs with similarity of at
least 0.8 in order to be considered for alignment.
Such pairs do not occur here, and thus this poem
pair would go unrecognized.

Furthermore, the runtime of the current method
does not depend on the threshold (unlike the for-
mer), so it could be adjusted to any lower value if
needed. The only limitation for that is that values
below 0.5 are increasingly common for completely
unrelated lines, so lowering the threshold increases
the number of false positives.

5 Conclusion

We have presented an optimized version of the
maximum-weight sequence alignment algorithm

https://www.folklore.ee/regilaul/andmebaas/
https://www.folklore.ee/regilaul/andmebaas/


100

(a variant of the weighted edit distance algorithm,
a.k.a. Needleman-Wunsch or Wagner-Fisher algo-
rithm). The optimization utilizes matrix operations
for efficient computation on a large number of se-
quences. The weighted alignment can be used for
non-exact comparison of texts, in which individual
text units (like words or poetry lines) are repre-
sented with embeddings. The presented optimiza-
tion made it possible to compute alignment-based
similarity scores for all pairs of poems within a
large collection of Finnic oral folk poetry, opening
possibilities for a large-scale quantitative study of
intertextuality in the Finnic oral tradition.

Funding

This work was funded by the Academy of Finland
research project no. 333138 ‘Formulaic intertextu-
ality, thematic networks and poetic variation across
regional cultures of Finnic oral poetry’.

References
Thomas Bocek, Ela Hunt, and Burkhard Stiller. 2007.

Fast similarity search in large dictionaries. Technical
report, University of Zurich.

Maciej Janicki, Kati Kallio, and Mari Sarv. 2022. Ex-
ploring Finnic oral folk poetry through string similar-
ity. Digital Scholarship in the Humanities.

Vladimir I. Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10(8):707–710.

Saul B. Needleman and Christian D. Wunsch. 1970.
A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48:443–453.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2020. Embeddings in natural language processing:
Theory and advances in vector representations of
meaning. Synthesis Lectures on Human Language
Technologies, 13(4):1–175.

Klaus Schulz and Stoyan Mihov. 2002. Fast string
correction with levenshtein-automata. International
Journal of Document Analysis and Recognition, 5:67–
85.

Tommaso Soru and Axel-Cyrille Ngonga Ngomo. 2013.
Rapid execution of weighted edit distances. In Pro-
ceedings of the 8th International Workshop on Ontol-
ogy Matching.

Robert A. Wagner and Michael J. Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM, 21(I):168–173.


	Introduction
	The Algorithm
	The basic algorithm
	Optimization

	Benchmarks
	Application
	Conclusion

