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Abstract

Personal attributes represent structured infor-
mation about a person, such as their hobbies,
pets, family, likes and dislikes. We introduce
the tasks of extracting and inferring personal
attributes from human-human dialogue, and
analyze the linguistic demands of these tasks.
To meet these challenges, we introduce a sim-
ple and extensible model that combines an
autoregressive language model utilizing con-
strained attribute generation with a discrimina-
tive reranker. Our model outperforms strong
baselines on extracting personal attributes as
well as inferring personal attributes that are not
contained verbatim in utterances and instead
requires commonsense reasoning and lexical
inferences, which occur frequently in every-
day conversation. Finally, we demonstrate the
benefit of incorporating personal attributes in
social chit-chat and task-oriented dialogue set-
tings.

1 Introduction

Personal attributes are structured information about
a person, such as what they like, what they have,
and what their favorite things are. These attributes
are commonly revealed either explicitly or implic-
itly during social dialogue as shown in Figure 1,
allowing people to know more about one another.
These personal attributes, represented in the form
of knowledge graph triples (e.g. I, has_hobby, vol-
unteer), can represent large numbers of personal
attributes in an interpretable manner, facilitating
their usage by weakly-coupled downstream dia-
logue tasks (Li et al., 2014; Qian et al., 2018; Zheng
et al., 2020a,b; Hogan et al., 2021).

One such task is to ground open-domain chit-
chat dialogue agents to minimize inconsistencies
in their language use (e.g., I like cabbage →(next
turn) →Cabbage is disgusting) and make them
engaging to talk with (Li et al., 2016; Zhang et al.,
2018; Mazaré et al., 2018; Qian et al., 2018; Zheng
et al., 2020a,b; Li et al., 2020; Majumder et al.,

Figure 1: Overview of obtaining personal attribute
triple from utterances using our model GenRe. At-
tribute values are contained within the utterance in the
EXTRACTION task, but not the INFERENCE task.

2020). Thus far, personalization in chit-chat has
made use of dense embeddings and natural lan-
guage sentences. While KG triples have been
shown to be capable of grounding Natural Lan-
guage Generation (Moon et al., 2019; Koncel-
Kedziorski et al., 2019), they have yet to be used
to personalize chit-chat dialogue agents.

Personal attributes can also help task-oriented
dialogue agents to provide personalized recommen-
dations (Mo et al., 2017; Joshi et al., 2017; Luo
et al., 2019; Lu et al., 2019; Pei et al., 2021). Such
personalized recommendations have only been at-
tempted for single-domain tasks with a small set of
one-hot features (< 30). Personalization across a
wide range of tasks (recommending food, movies
and music by multi-task dialogue agents such as
Alexa, Siri and Assistant) however can require or-
ders of magnitude more personal attribute features.
This makes KG triples ideal for representing them,
given the advantages of this data structure for mod-
els to select and utilize pertinent features (Li et al.,
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2014; Hogan et al., 2021).
Based on these advantages, we investigate how

personal attributes can be predicted from dialogue.
An important bottleneck for this step lies in the poor
coverage of relevant personal attributes in existing
labeled datasets. Therefore, we introduce two new
tasks for identifying personal attributes in Section
2. As shown in Figure 1, the EXTRACTION task
requires determining which phrase in an utterance
indicate a personal attribute, while the INFERENCE

task adds further challenge by requiring models
to predict personal attributes that are not explic-
itly stated verbatim in utterances. This is common
in conversational settings, where people express
personal attributes using a variety of semantically
related words or imply them using commonsense
reasoning. We analyze how these factors allow
personal attributes to be linked to utterances that
express them.

To tackle these tasks, we propose a simple yet ex-
tensible model, GenRe, in Section 3. GenRe com-
bines a constrained attribute generation model (that
is flexible to accommodate attributes not found ver-
batim in utterances) with a discriminative reranker
(that can contrast between highly similar candi-
dates). Our experiments in Section 4 suggest that
such design allows our model to outperform strong
baseline models on both the EXTRACTION and
INFERENCE tasks. Subsequently in Section 5, de-
tailed ablation studies demonstrate the value of our
model components while further analysis identifies
future areas for improvement.

Finally in Section 6, we show how personal at-
tributes in the form of KG triples can improve the
personalization of open-domain social chit-chat
agents as well as task-oriented dialogue agents.
In the former case, personal attributes can be uti-
lized to improve chat-bot consistency on the Per-
sonaChat task (Zhang et al., 2018). In the latter
case, we suggest how our personal attributes can
support personalization in multi-task, task-oriented
dialogue settings.

2 Personal Attribute Tasks

Based on the usefulness of personal attributes for
dialogue personalization, we propose the task of
obtaining personal attributes from natural language
sentences. We first explain how we formulate two
complementary tasks from DialogNLI data and
then formally define our tasks. Finally, we ana-
lyze the task datasets to gather insights into the

linguistic phenomena that our tasks involve.

2.1 Source of Personal Attributes
DialogNLI (Welleck et al., 2019) contains samples
of PersonaChat utterances (Zhang et al., 2018) in
English, each paired with a manually annotated
personal attribute triple. Each triple consists of
a head entity, a relation, and a tail entity. These
triples were initially annotated to identify entail-
ing, contradicting and neutral statements within
the PersonaChat corpus. For instance, a statement
labelled with (I, [favorite_color], blue) will con-
tradict with another statement labelled with (I, [fa-
vorite_color], green). The three largest groups of
relations are: a. has_X (where X = hobby, vehi-
cle, pet) b. favourite_Y (where Y = activity, color,
music) c. like_Z (where Z = read, drink, movie).

2.2 Extraction and Inference Tasks
By re-purposing the DialogNLI dataset, our tasks
seek to extract these personal attribute triples from
their paired utterances. We first used a script that
obtains pairs of personal triples and utterances.
Next, we combined relations with similar mean-
ings such as like_food and favourite_food and re-
moved under-specified relations such as favourite,
have and others. Finally, we removed invalid sam-
ples with triples containing None or <blank> and
removed prefix numbers of tail entities (e.g. 11
dogs), since the quantity is not important for our
investigation.

We formulate two tasks by partitioning the Di-
alogNLI dataset into two non-overlapping subsets.
Here, each sample refers to a sentence paired with
an annotated triple. Train/dev/test splits follow Di-
alogNLI, with descriptive statistics shown in Table
1. The dataset for the EXTRACTION task contains
samples in which both the head and tail entities are
spans inside the paired sentence. An example is (I,
[has_profession], receptionist) from the sentence
“I work as a receptionist in my day job”. We for-
mulate the EXTRACTION task in a similar way to
existing Relation Extraction tasks such as ACE05
(Wadden et al., 2019) and NYT24 (Nayak and Ng,
2020). This allows us to apply modeling lessons
learned from Relation Extraction.

The complementary set is the dataset for the IN-
FERENCE task, for which the head entity and/or
the tail entity cannot be found as spans within the
paired sentence. This is important in real-world
conversations because people do not always ex-
press their personal attributes explicitly and instead
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EXTRACTION INFERENCE

Samples
train 22911 25328
dev. 2676 2658
test 2746 2452

Unique elements
head entities 88 109
relations 39 39
tail entities 2381 2522

Avg. words
head entities 1.03 1.08
relations 1.00 1.00
tail entities 1.20 1.28
sentences 12.9 12.2

Table 1: Statistics of the dataset for the two tasks.

use paraphrasing and commonsense reasoning to
do so. An example of a paraphrased triple is (I,
[physical_attribute], tall) from the sentence “I am
in the 99th height percentile”, while one based on
commonsense reasoning is (I, [want_job], umpire)
from the sentence “my ultimate goal would be call-
ing a ball game”.

The INFERENCE task is posed as a challeng-
ing version of the EXTRACTION task that tests
models’ ability to identify pertinent information
in sentences and then make commonsense infer-
ences/paraphrases based on such information. An
existing task has sought to predict personal at-
tributes that are not always explicitly found within
sentences (Wu et al., 2019). However, it did not
distinguish between personal attributes that can be
explicitly found within sentences (i.e. EXTRAC-
TION) from those that cannot (i.e. INFERENCE) .
We believe that, given that the inherent difficulty of
identifying the two types of personal attributes are
greatly different, it is helpful to pose them as two
separate tasks. In this way, the research commu-
nity can first aim for an adequate performance on
the simpler task before applying lessons to make
progress at the more challenging task. This is also
the first time that personal attributes that are not
explicitly contained in sentences are shown to be
derivable from words in the sentence using com-
monsense/lexical inferences.

2.3 Formal Task Definition
Given a sentence S, we want to obtain a personal-
attribute triple in the form of (head entity,

Figure 2: Bar plot for 10 most common dependency
role labels of tail entities within sentences

relation, tail entity). The relation
must belong to a set of 39 predefined relations.
In the EXTRACTION subset, the head entity and
tail entity are spans within S. Conversely, in the
INFERENCE subset, the head entity and/or the tail
entity cannot be found as spans within S.

2.4 Dataset Analysis
We analyze the datasets to obtain insights into how
the tasks can be approached. Because the majority
of head entities (93.3%) are simply the word “I”,
our analysis will focus on tail entities.

Dataset for the EXTRACTION task We use de-
pendency parses of sentences to understand the
relationship between words within tail entities and
the sentence ROOT. Dependency parsing was cho-
sen because it is a well-studied syntactic task (Nivre
et al., 2016) and previously used for the relation
extraction task (Zhang et al., 2017). Dependency
parses and labels associated with each dependent
word were identified using a pre-trained trans-
former model from spaCy.1 The parser was trained
on data annotated with the ClearNLP dependency
schema that is similar to Universal Dependencies
(Nivre et al., 2016).2

As shown in Figure 2, objects of prepositions
(pobj) and direct objects (dobj) each comprise
17.5% of tail entities, followed by compound words
(compound), attributes (attr) and adjectival com-
plements (acomp), plus 138 other long-tail labels.
The range of grammatical roles as well as the fact
that one third of tail entities do not involve nouns

1https://spacy.io/
2https://github.com/clir/clearnlp-

guidelines/blob/master/md/specifications/dependency_labels.md
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Transformation Example %
(sentence→tail entity)

ConceptNet_related mother →female 71.3
ConceptNet_connect wife →married 56.8
WordNet_synonym outside →outdoors 39.5
WordNet_hypernym drum →instrument 5.04
WordNet_hyponym felines →cats 4.17
Same_stem swimming →swim 43.3

Table 2: Proportion (%) of tail entities that can be re-
lated to sentence words after applying each transforma-
tion.

(see Figure in Section A.2) also suggest that the
tail entities in our dataset go beyond proper nouns,
which are what many Relation Extraction datasets
(e.g., ACE05 and NYT24) are mainly concerned
with. Such diversity in grammatical roles played by
tail entities means that approaches based on rule-
based extraction, parsing or named entity recog-
nition alone are unlikely to be successful in the
EXTRACTION task.

Dataset for the INFERENCE task A qualitative
inspection of the dataset showed that inferences can
be made on the basis of semantically-related words
and commonsense inferences, as shown in exam-
ples discussed in Section 2.2. To better understand
how tail entities can be inferred from the sentence
in the INFERENCE subset, we analyze the relation-
ship between words in the tail entity and words
in the sentence. 79.2% of tail entities cannot be
directly identified in the sentence. We performed
a few transformations to identify potential links
between the tail entity and the sentence. Concept-
Net_connect refers to words with highest-weighted
edges on ConceptNet to sentence words while Con-
ceptNet_related refers to words that have closest
embedding distances to sentence words. Details of
their preparation are in Appendix A.3. As in Table
2, our analysis shows that a model that can perform
well on the INFERENCE task requiring both Word-
Net semantic knowledge (Fellbaum, 1998) as well
as ConceptNet commonsense knowledge (Speer
et al., 2017).

3 GenRe

This section proposes GenRe, a model that uses a
unified architecture for both the EXTRACTION and
the INFERENCE tasks. We use a simple and exten-
sible generator-reranker framework to address the

needs of the two tasks. On one hand, a generative
model is necessary because head and/or tail entities
cannot be directly extracted from the sentence for
the INFERENCE dataset. On the other hand, prelim-
inary experiments using a Generator in isolation
showed that a large proportion of correct triples
are among the top-k - but not top-1 - outputs. A
Reranker can be used to select the most likely triple
among the top-k candidate triples, leading to a large
improvement in performance (see Table 4).

3.1 Generator

We use an autoregressive language model (GPT-2
small) as our Generator because its extensive pre-
training is useful in generating syntactically and
semantically coherent entities. The small model
was chosen to keep model size similar to baselines.
We finetune this model to predict a personal at-
tribute triple occurring in a given input sentence.
Specifically, we treat the flattened triples as targets
to be predicted using the original sentence as con-
text. The triple is formatted with control tokens to
distinguish the head entity, relation, and tail entity
as follows:
y = [HEAD], thead1:m , [RELN], treln, [TAIL], ttail1:k

where {[HEAD],[RELN], [TAIL]} are control to-
kens, thead1:m is the head entity (a sequence of length
m), treln is a relation, and ttail1:k is the tail entity.

During evaluation, we are given a sentence as
context and seek to generate a personal attribute
triple in the flattened format as above. To reduce
the search space, we adopt a constrained genera-
tion approach. Specifically, after the [RELN] to-
ken, only one of 39 predefined relations can be
generated, and so the output probability of all other
tokens is set to 0. After the [TAIL] token, all output
tokens not appearing in the input sentence will have
zeroed probabilities in the EXTRACTION task. Con-
versely for the INFERENCE task, the only allowed
output tokens after the [TAIL] token are those
which have appeared following the predicted re-
lation in the training data. For example, tail entities
that can be generated with a [physical_attribute] re-
lation include “short”, “skinny” or “wears glasses”,
as these examples occur in the training data. We
imposed this restriction to prevent the model from
hallucinating attributes that are not associated to
the predicted relation (such as “dog” with [physi-
cal_attribute]). Despite limiting the model’s ability
to generate novel but compatible tail entities (and
thereby upper-bounding maximum possible recall
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to 75.7%), this approach helped to improve model
performance overall. Implementation details are in
Appendix A.4.

3.2 Reranker

We use BERT-base as the Reranker because its bi-
directionality allows tail tokens to influence the
choice of relation tokens. Furthermore, BERT has
demonstrated the best commonsense understanding
among pre-trained language models (Petroni et al.,
2019; Zhou et al., 2020). These benefits have led
to many relation extraction models using BERT as
part of the pipeline (Wadden et al., 2019; Yu et al.,
2020; Ye et al., 2021).

For each S, we obtain the L most likely se-
quences using the Generator, including the con-
text sentence. Each sequence is labelled as correct
or incorrect based on whether the predicted triple
(head entity, relation, tail entity) matches exactly
the ground-truth triple. Incorrect sequences serve
as challenging negative samples for the Reranker
because they are extremely similar to the correct se-
quence since they were generated together. We fine-
tune a BERT model with a binary cross-entropy
loss function to classify whether sequences are cor-
rect. During inference, we select the sequence with
the highest likelihood of being correct as our pre-
dicted sequence. We set L to 10 in all experiments.
Implementation details are in Appendix A.5.

4 Experiments

We first explain the metrics used in the experiments.
Next, we introduce the baseline models. Finally,
we examine how GenRe compares to baseline mod-
els to understand its advantages.

4.1 Metrics

Micro-averaged Precision/Recall/F1 were calcu-
lated following Nayak and Ng (2020), in which a
sample is considered correct only when all three
elements (head_entity, relation and tail entity) are
resolved correctly. We chose these metrics because
we are interested in the proportion of all predicted
personal attributes that have been correctly iden-
tified (precision) and of all ground truth personal
attributes (recall). F1 is considered as an aggregate
metric for precision and recall.

4.2 Baseline Models

Generative models can be used for both the EX-
TRACTION and the INFERENCE tasks.

WDec is an encoder-decoder model that
achieved state-of-the-art performance in the
NYT24 and NYT29 tasks (Nayak and Ng, 2020).
The encoder is a Bi-LSTM, while the decoder is
an LSTM with attention over encoder states. An
optional copy mechanism can be used: when used,
the decoder will only generate tokens found in the
original sentence. The copy mechanism was used
on the EXTRACTION dataset but not on the INFER-
ENCE dataset (given their better empirical perfor-
mance).

GPT2 is an autoregressive language model that
we build GenRe on. We use the same configuration
as in GenRe.

Extractive models can be used only for the EX-
TRACTION task, because they select for head and
tail entities from the original sentence.

DyGIE++ is a RoBERTa-based model that
achieved state-of-the-art performance in multiple
relation extraction tasks including ACE05 (Wad-
den et al., 2019). It first extracts spans within the
original sentence as head and tail entities. Then,
it pairs up these entities with a relation and passes
them through a graph neural network, with the head
and tail entities as the nodes, and relations as the
edges. This allows information flow between re-
lated entities before passing the triple through a
classifier.

PNDec is an Encoder-Decoder model that
achieved close to SOTA performance in NYT24
and NYT29 (Nayak and Ng, 2020). It uses the
same encoder as WDec but uses a pointer network
to identify head and tail entities from the original
sentence, which it pairs with possible relation to-
kens to form a triple that is subsequently classified.

All baseline models were trained on our datasets
using their suggested hyper-parameters.

4.3 Model Results

The top-performing baseline models on the EX-
TRACTION dataset are the extractive models, which
select spans within the sentence and classify
whether an entire triple is likely to be correct. Be-
cause there are only a small number of spans within
the sentence, this approach can effectively limit its
search space. On the other hand, extractive models
cannot solve the INFERENCE task, because the un-
derlying assumption that head and tail entities must
be found within the sentence does not hold. Con-
versely, generative models perform more poorly on
the Extraction task but are capable on the INFER-
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EXTRACTION INFERENCE

P R F1 P R F1

GenRe 68.0 52.4 59.2 46.5 35.4 39.2
Generative
WDec 57.0 49.0 52.7 33.6 34.7 34.1
GPT2 50.9 31.1 38.6 31.3 17.3 22.3
Extractive
DyGIE++ 60.8 50.9 55.3
PNDec 63.1 49.5 55.5

Table 3: Performance on the test set. GenRe has signif-
icantly higher mean F1 than all baseline models with 5
runs based on a two-tailed t-test (p < 0.05).

ENCE task. This is because generation happens in
a left-to-right manner, meaning that some elements
of the triple have to be generated without know-
ing what the other elements are. Our approach
of linking a Generative model with a BERT-base
Reranker (akin to models used by Extractive ap-
proaches) combines the best of both worlds. Not
only does it perform well on the Extraction task (≥
3.7 F1 points over baselines), it also excels on the
Inference task (≥ 5.1 F1 points over baselines).

5 Analysis

We first conduct an ablation study to better under-
stand the contribution of constrained generation
and the Reranker, by measuring the performance
of our model when each component is removed.
Then, we seek to understand how errors are made
on predicted personal attribute relations to identify
future areas of improvement.

5.1 Ablation Study

Table 4 shows that both the Reranker and con-
strained generation contribute to the performance
of GenRe. In particular, the constrained generation
plays a larger role on the EXTRACTION dataset
while the Reranker plays a greater role on the IN-
FERENCE dataset.

Constrained generation has a large impact on
the EXTRACTION dataset (+13.0% F1), likely be-
cause it very much restricts the generation search
space to spans from the context sentence. On the
INFERENCE dataset, the original search space can-
not be effectively limited to tokens in the context
sentence. Therefore, applying the heuristic that
only tail entities associated with a particular rela-
tion (in the training set) can be decoded is useful,
even though it upper bounds maximum recall to

EXTRACTION INFERENCE

P R F1 P R F1

GenRe 68.0 52.4 59.2 46.5 35.4 39.2
- Constr. Gen 53.5 40.7 46.2 37.2 27.1 31.4
- Reranker 67.6 41.0 51.0 31.0 22.3 25.9

Table 4: Ablation study for Reranker and constrained
generation.

75.7%, which is much higher than the achieved
35.4%. Compared to the EXTRACTION dataset, the
improvement on the INFERENCE dataset is smaller
(+7.8% F1), since the range of tail entities that can
be decoded after imposing the constraint is greater.

The Reranker is needed because, many times,
the correct triple can be generated by the Genera-
tor but might not be the triple that is predicted to
have the highest likelihood. The maximum possi-
ble recall on the EXTRACTION and INFERENCE

tasks increases from 41.0% to 59.9% and 22.3%
to 41.0% respectively when considering top-10 in-
stead of only top-1 generated candidate. While the
achieved recall (52.4% and 35.4% respectively) are
still a distance from the maximum possible recall,
the achieved recall is much higher than using the
Generator alone.

5.2 Misclassification of Relations

Major sources of error on the EXTRACTION dataset
came from relation tokens that have close se-
mantic meanings. They either were related to
one another (e.g., [has_profession] vs [want_job])
or could be correlated with one another (e.g.,
[like_animal] vs [have_pet] or [like_music] vs [fa-
vorite_music_artist]) , as illustrated in Table 5.
Such errors likely arose due to the way that the
DialogNLI dataset (Welleck et al., 2019) was anno-
tated. Specifically, annotators were asked to label a
single possible triple given a sentence instead of all
applicable triples. Because of this, our evaluation
metrics are likely to over-penalize models when
they generate reasonable triples that did not match
the ground truth. Future work can avoid this prob-
lem by labelling all possible triples and framing the
task as multilabel learning.

6 Applications of Personal Attributes

Personal attributes can make social chit-chat agents
more consistent and engaging as well as enable
task-oriented agents to make personalized recom-
mendations. In this section, we use personal at-
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Top 3 Most Frequent (n)
Dataset True Relation (n) P R F1 Predicted Relations True Tail Entities Predicted Tail Entities

EXTRACTION [has_profession] (274) 83.8 62.0 71.3 [has_profession] (189) teacher (29) nurse (27)
[employed_by_general] (30) nurse (28) real estate (25)
[want_job] (17) real estate agent (25) teacher (19)

[have_pet] (149) 97.3 55.0 70.3 [have_pet] (88) dog (55) cat (32)
[have_family] (18) cat (45) pets (23)
[like_animal] (12) pets (22) dog (18)

INFERENCE [like_food] (77) 46.7 41.6 44.0 [like_food] (62) pizza (18) pizza (19)
[like_activity] (5) onion (9) italian cuisine (10)
[like_animal] (4) italian (7) onion (8)

[like_music] (71) 40.8 23.9 30.2 [like_music] (40) jazz (10) the story so far (12)
[favorite_music_artist] (9) country (9) country (8)
[like_activity] (7) rap (6) jazz (7)

Table 5: Some relations in EXTRACTION and INFERENCE datasets

tributes to improve chit-chat agent consistency and
provide information for personalizing task-oriented
dialogue agents.

6.1 Consistency in Chit-chat agents

PersonaChat (Zhang et al., 2018) was created to im-
prove the personality consistency of open-domain
chit-chat dialogue agents. PersonaChat was con-
structed by giving pairs of crowdworkers a set of
English personal attribute related sentences and
asking them to chat in a way that is congruent with
those sentences. Models were then trained to gen-
erate dialogue responses that are in line with those
expressed by crowdworkers using the provided per-
sona information as context.

Methods We fine-tune the generative version of
Blender 90M (a transformer-based model trained
on multiple related tasks) on PersonaChat, which
is currently the state-of-the-art generative model
on this task (Roller et al., 2020) and uses personal
attribute sentences to ground dialogue response
generation. Building on Blender, we prepend a
corresponding DialogNLI personal attribute before
each utterance (i.e. +Per. Attr.), in order to better
direct the model in generating a suitable response
that is consistent with the set persona. This mod-
ification is relatively minimal to demonstrate the
informativeness of personal attribute KG triples,
while keeping the model architecture and hyper-
parameter fine-tuning the same as in the original
work (details in Appendix A.1).

Metrics We follow Roller et al. (2020) and Di-
nan et al. (2019). Metrics for +Per. Attr. setting
consider both personal attributes and utterances.
Hits@1 uses the hidden states of the generated out-
put to select the most likely utterance amongst 20
candidates (the correct utterance and 19 randomly

chosen utterances from the corpus). Perplexity re-
flects the quality of the trained language model. F1
demonstrates the extent of the overlap between the
generated sequence and the ground truth sequence.

Hits@1 ↑ Perplexity ↓ F1 ↑
Blender 32.3 11.3 20.4
+ Per. Attr. 35.2* 10.4* 20.6*

Table 6: Effects of using personal attributes to augment
Blender on Personachat. Higher is better for Hits@1
and F1; lower is better for perplexity. *Significantly dif-
ferent from Blender with 5 runs based on a two-tailed
t-test (p<0.05).

Fact 1 I love cats and have two cats
Fact 2 I’ve a hat collection of over 1000 hats.
Blender My cats names are all the hats i have
+ Per. Attr. My cats are called kitties

Fact 1 I am a doctor.
Fact 2 My daughter is a child prodigy.
Blender My daughter is prodigy so she gets a lot of accidents.
+ Per. Attr. I’ve seen a lot of accidents.

Table 7: Examples of incorrect utterances generated by
Blender by mixing up two facts, which are avoided by
our Blender + Per. Attr. model

Results As shown in Table 6, including personal
attributes can improve performance on the Per-
sonaChat task. An inspection of the generated ut-
terances suggests that including personal attributes
into Blender can more effectively inform the model
which persona statement to focus on during gen-
eration. This can prevent Blender from including
information in irrelevant persona statements (e.g.
by mixing up facts from two unrelated persona
statements), as in Table 7.
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Dataset Domains #Unique
features

Ours Restaurants, Movies, 5583
Music, Sports,
Recreation, Shopping

Ours Restaurants only 206
Joshi et al. (2017) Restaurants 30
Mo et al. (2017) Restaurants 10
Lu et al. (2019) Shopping 7

Table 8: Domains covered by various datasets for per-
sonalizing task-oriented dialogue. #Uniques features
refers to the number of unique attribute-values (e.g. the
specific food people like) that can be used for personal-
ization.

6.2 Personalization in Task-oriented dialogue

While personalization has been incorporated into
single-task settings (Joshi et al., 2017; Mo et al.,
2017; Luo et al., 2019; Lu et al., 2019; Pei et al.,
2021), there has been no attempt for personaliza-
tion in multi-task settings. This is against the back-
ground in which multi-task dialogue is rapidly be-
coming the standard in task-oriented dialogue eval-
uation (Byrne et al., 2019; Rastogi et al., 2019;
Zang et al., 2020; Shalyminov et al., 2020). To
overcome this gap, we show how our dataset can
lay a foundational building block for personaliza-
tion in multi-task dialogue.

Methods We used several popular datasets on
multi-task task-oriented dialogue (Zang et al., 2020;
Shalyminov et al., 2020; Byrne et al., 2019; Ras-
togi et al., 2019). From each dataset, we manually
observed its tasks and categorized them into sev-
eral overarching domains, as shown in Table 8.
We then created a mapping between the various
domains and datasets available for personalizing
task-oriented dialogue (including ours). Domains
that are not supported by any dataset are omitted.

Results Compared to existing datasets in Table
8, our dataset is capable of personalizing recom-
mendations in a much larger number of domains.
These domains include restaurants and shopping,
which have been explored by existing datasets, as
well as movies, music, sports and recreation, which
have thus far been overlooked. For domains that
have been previously explored, such as restaurants,
our dataset contains a more diverse set of possi-
ble personal attribute values (e.g. the foods people
like), which can support it to personalize recom-
mendations in more realistic manners.

7 Related Work

Personal Attribute Extraction: Most work on ex-
tracting personal attributes from natural language
(Pappu and Rudnicky, 2014; Mazaré et al., 2018;
Wu et al., 2019; Tigunova et al., 2019, 2020) em-
ployed distant supervision approaches using heuris-
tics and hand-crafted templates, which have poor
recall. In contrast, we use a strong supervision ap-
proach in which triples were manually annotated.
Li et al. (2014) and Yu et al. (2020) attempted to
extract personal information from dialogue using
a strongly supervised paradigm. However, they fo-
cused on demographic attributes as well as interper-
sonal relationships, which contrast with our focus
on what people own and like. Li et al. (2014) used
SVMs to classify relations and CRFs to perform
slot filling of entities while Yu et al. (2020) used
BERT to identify relations between given entities.
Generating KG triple using Language Models:
Autoregressive language models have been applied
to a wide range of tasks involving the genera-
tion of data with similar structures as personal at-
tribute KG triples, including dialogue state tracking
(Hosseini-Asl et al., 2020) and commonsense KG
completion (Bosselut et al., 2019). The most sim-
ilar application is Alt et al. (2019), which used
the original GPT model (Radford and Narasimhan,
2018) for relation classification. Their task formu-
lation involves identifying a specific relation (out
of around 30 possible options) for two given enti-
ties. On the other hand, our tasks seek to identify
not only the relation, but also the head and tail
entities, which have potentially open vocabulary
requirements, which makes them much harder.

8 Conclusion

In conclusion, we propose the novel tasks of ex-
tracting and inferring personal attributes from dia-
logue and carefully analyze the linguistic demands
of these tasks. To meet the challenges of our tasks,
we present GenRe, a model which combines con-
strained attribute generation and re-ranking on top
of pre-trained language models. GenRe achieves
the best performance vs. established Relation Ex-
traction baselines on the Extraction task (≥ 3.7
F1 points) as well as the more challenging INFER-
ENCE task that involves lexical and commonsense
inferences (≥ 5.1 F1 points). Together, our work
contributes an important step towards realizing the
potential of personal attributes in personalization of
social chit-chat and task-oriented dialogue agents.
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A Appendix

A.1 Blender Fine-tuning Details

Finetuning hyperparameters are taken from
https://parl.ai/projects/recipes/, with the exception
of validation metric changed to Hits@1. Each fine-
tuning epoch takes 1.5 hours on a Nvidia V100
GPU. We only prepend personal attributes before
system utterances but not user utterances. Metrics
are for the validation set because test set was not
available. All experiments were conducted using
ParlAI (Miller et al., 2017).

A.2 Task Analysis Details

Figure 3: Bar plot for 10 most common POS tags of
tail entities.

A.3 Details of Transformations to Link Tail
Entity to Sentence

ConceptNet_related: All words in the tail entity
can be found in the 100 most related words to each
sentence word based on embedding distance on
ConceptNet

ConceptNet_connect: All words in the tail en-
tity can be found in the 100 words that have the
highest-weighted edge with each sentence word on
ConceptNet.

WordNet_synonym: All words in the tail entity
can be found in the synonyms of every synset of
each sentence word on WordNet.

WordNet_hypernym: All words in the tail en-
tity can be found in the hypernyms of every synset
of each sentence word on WordNet

WordNet_hyponym: All words in the tail entity
can be found in the hyponyms of every synset of
each sentence word on WordNet

Same_stem: All words in the sentence and tail
entity are stemmed using a Porter Stemmer (Porter,
1980) before searching for the tail entity in the
sentence

A.4 Generator Details
GPT-2-small was used. Additional special tokens
including the control tokens ([HEAD], [RELN],
[TAIL]) as well as relation tokens were added into
the tokenizer. Beam search decoding (beam size
= 10) was used at inference time. GPT2-small
was accessed from HuggingFace Transformers li-
brary with 125M parameters, context window 1024,
768-hidden, 768-hidden, 12-heads, dropout = 0.1.
AdamW optimizer was used with α = 7.5 ∗ 10−4

for the EXTRACTION dataset and α = 2.5 ∗ 10−3

for the INFERENCE dataset, following a uniform
search using F1 as the criterion at intervals of
{2.5, 5, 7.5, 10} ∗ 10n;−5 ≤ n ≤ −3. Learning
rate was linearly decayed (over a max epoch of 8)
with 100 warm-up steps. Each training epoch took
around 0.5 hour on an Nvidia V100 GPU with a
batch size of 16. Validation was done every 0.25
epochs during training. 5 different seeds (40-44)
were set for 5 separate runs.

A.5 Reranker Details
BERT-base-uncased was used. Additional spe-
cial tokens including the control tokens ([HEAD],
[RELN], [TAIL]) as well as relation tokens were
added into the tokenizer. BERT-base-uncased was
accessed from HuggingFace Transformers library
(with 12-layer, 768-hidden, 12-heads, 110M param-
eters, dropout = 0.1). The choice of the base model
was made to have fairness of comparison with base-
line models in terms of model size. AdamW op-
timizer was used with α = 5 ∗ 10−6, following a
uniform search using F1 as the criterion at intervals
of {2.5, 5, 7.5, 10} ∗ 10n;−6 ≤ n ≤ −3. Learn-
ing rate was linearly decayed (over a max epoch of
8) with 100 warm-up steps. Each training epoch
took around 1 hour on an Nvidia V100 GPU with
a batch size of 10.Validation was done every 0.25
epochs during training. 5 different seeds (40-44)
were set for 5 separate runs.
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