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Abstract

Large Transformer-based natural language un-
derstanding models have achieved state-of-the-
art performance in dialogue systems. However,
scarce labeled data for training, the large model
size, and low inference speed hinder their de-
ployment in low-resource scenarios. Few-shot
learning and knowledge distillation techniques
have been introduced to reduce the need for la-
beled data and computational resources, respec-
tively. However, these techniques are incom-
patible because few-shot learning trains models
using few data, whereas, knowledge distilla-
tion requires sufficient data to train smaller, yet
competitive models that run on limited compu-
tational resources. In this paper, we address
the problem of distilling generalizable small
models under the few-shot setting for the in-
tent classification task. Considering in-domain
and cross-domain few-shot learning scenarios,
we introduce an approach for distilling small
models that generalize to new intent classes
and domains using only a handful of labeled
examples. We conduct experiments on public
intent classification benchmarks, and observe
a slight performance gap between small mod-
els and large models. Overall, our results in
both few-shot scenarios confirm the generaliza-
tion ability of the small distilled models while
having lower computational costs.

1 Introduction

Transformer-based language models, such as BERT
(Devlin et al., 2019), contribute widely to the de-
velopment of dialogue systems. A key component
in the development of these systems is natural lan-
guage understanding (NLU), such as intent clas-
sification (IC). Intent classification refers to de-
termining the intent of the speaker’s utterance in a
given domain in dialogue systems. Recently, BERT-
based language models have achieved state-of-the-
art performance in intent classification through fine-
tuning on task-specific datasets (Chen et al., 2019).
However, there are two main challenges in the

development of BERT-based intent classification
models for task-oriented dialogue systems. First,
training such models across many domains needs
labeled training data from multiple domains. Due
to the lack of large amounts of multi-domain train-
ing data, few-shot learning (FSL) methods, such
as metric-based meta-learning techniques (Vinyals
et al., 2016; Snell et al., 2017), have been used to
adapt BERT-based intent classification models to
new domains (Li et al., 2021). In cross-domain
few-shot learning methods, the model learns trans-
ferable knowledge from large-scale source domain
data and generalizes to unseen target domains using
only a handful of training samples.

The second challenge is the large model size
and long inference time of Transformer-based mod-
els, which hinder the deployment of such models
when limited computational resources are avail-
able. Approaches to reduce the size of models, e.g.,
knowledge distillation (KD; Hinton et al. 2015),
have been introduced. It has been shown that the
new compressed models retain a high percentage of
the performance while having a shorter inference
time than the original models (Liu et al., 2019).
Task-specific knowledge distillation approaches re-
quire sufficiently large training datasets (Tang et al.,
2019), ideally with labels (Hinton et al., 2015), to
distill a powerful small model. However, to ob-
tain both generalized and small models, knowledge
distillation methods seem to be incompatible with
few-shot learning due to the large need of sufficient
training data. Therefore, an adaptation of knowl-
edge distillation to few-shot learning is necessary.
To the best of our knowledge, task-specific knowl-
edge distillation in cross-domain few-shot learning
has largely remained unexplored with a few excep-
tions in computer vision (Zhang et al., 2020b; Li
et al., 2020) and natural language processing (NLP;
Pan et al. 2021; Zhou et al. 2021).

In this paper, we propose a task-specific ap-
proach for distilling small models with generaliza-
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tion ability to new classes and domains in two few-
shot learning scenarios: 1) in-domain target class
generalization in single- and multi-domain intent
classification; 2) target domain adaptation in multi-
domain intent classification. To this end, we first
pretrain a Transformer-based prototypical teacher
network (Snell et al., 2017) on source classes and
domains using meta-learning. Then, we design a
prototypical student network and pass the trans-
ferable knowledge to the student using knowledge
distillation. During the distillation process, we con-
sider a prototype loss as a new component in the
standard distillation loss function. This loss mea-
sures how much each prototype that is produced by
the student model resembles the respective proto-
type produced by the teacher model. Moreover, as
opposed to standard batch training in knowledge
distillation, we introduce an episodic distillation
process. This way, we obtain a small student model
that is compatible with few-shot scenarios and gen-
eralizes to unseen target classes and domains.

Our contributions are summarized as follows:
1) We propose a new knowledge distillation ap-
proach compatible with few-shot learning by intro-
ducing an episodic distillation process and using
the prototype-based distillation loss. Our novel
approach combines advantages of few-shot learn-
ing with knowledge distillation. 2) We perform
extensive experiments on four public NLU bench-
marks and compare the distilled small model with
the large model in the few-shot intent classification
scenario. Results show a slight performance drop
for the small model while having lower memory
consumption and a slightly faster inference speed.
3) We show that the small model can effectively
generalize and adapt to target domains without the
teacher supervision in the few-shot target domain
adaptation. This is a more challenging and realistic
scenario for small student models.

2 Background and Related Work

2.1 Few-shot learning

Few-shot learning has received substantial interest
in NLP. One prominent technique in FSL is meta-
learning, such as metric-based meta-learning tech-
niques (Vinyals et al., 2016; Snell et al., 2017). In
these techniques, a model is trained on source train-
ing tasks with sufficient labeled instances, called
meta-training, and generalizes or adapts to new
tasks with only a handful of labeled examples,
called meta-testing. The meta-training step is per-

formed through episodes. In each episode, a set
of N classes (N-way) is chosen per task. For each
class, a support set, which contains K labeled ex-
amples, and a query set are created for training
and evaluating the performance of the classifier
for updating the model parameters. The learning
process is performed in the form of N-way K-shot
classification task. During meta-testing, an adapta-
tion to new tasks using a few labeled examples is
performed similarly to meta-training.

Recent attempts in few-shot intent classifica-
tion focus on both in-domain and cross-domain
generalization using different meta-learning tech-
niques. Some approaches introduce metric-based
meta-learning, such as Prototypical networks (Snell
et al., 2017) to train models on large-scale source
class or domain data and generalize to emerging
classes or domains using only a handful of training
samples (Geng et al., 2019; Nguyen et al., 2020;
Krone et al., 2020; Li et al., 2021). In metric-based
methods, a metric function is trained to classify
new examples by comparing them with labeled
examples. Other approaches propose to pretrain
models on different source tasks and transfer them
to the few-shot intent detection task (Casanueva
et al., 2020; Zhang et al., 2020a). Alternatively,
Xia et al. (2020) propose a novel model to augment
training data by generating utterances for unseen
intent class labels.

2.2 Knowledge distillation

Knowledge distillation approaches transfer the
knowledge and generalization ability of a large
trained model, called teacher, to a small model,
called student (Ba and Caruana, 2014; Hinton et al.,
2015). In the simplest case, the objective function
during distillation is to minimize the difference be-
tween the soft labels produced by the teacher and
the student predictions. As an alternative, the logits,
i.e., the inputs to the final softmax function, can be
used instead of the soft labels for training the stu-
dent (Bucila et al., 2006). Hinton et al. (2015) The
teacher and student models can have different ar-
chitectures. For instance, Liu et al. (2019) explore
Transformer-based teacher and both Transformer-
and LSTM-based student models for multi-task
knowledge distillation in NLP. KD has received
special attention in Transformer-based teacher mod-
els to train light-weight generic students (Sanh
et al., 2019; Sun et al., 2019; Jiao et al., 2020; Sun
et al., 2020; Wu et al., 2020) and task-specific stu-
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dents with practical applications (Tsai et al., 2019;
Liu et al., 2019; Clark et al., 2019) including intent
classification (Jiang et al., 2021).

2.3 Knowledge distillation and few-shot
learning

In NLP models, knowledge distillation for improv-
ing the overall efficiency and generalization abil-
ity to new classes and domains is not straightfor-
ward under the few-shot learning scenario. Recent
investigations suggest that larger models show a
better few-shot performance than smaller models
because of higher model capacity (Brown et al.,
2020).1 At the same time, knowledge distillation
needs sufficiently large training data, ideally with
labels (Hinton et al., 2015), to distill a small model
with small performance gap. Thus, employing few-
shot learning and knowledge distillation methods
jointly seems to be conflicting.

There have been only a few attempts to apply
knowledge distillation in the context of the few-
shot learning scenario in computer vision (Zhang
et al., 2020b; Li et al., 2020; Liu et al., 2020). To
the best of our knowledge, attempts in NLP are
restricted to the work by Pan et al. (2021) and Zhou
et al. (2021). In their work, Pan et al. (2021) train
a multi-domain Transformer-based meta-teacher
and introduce a meta-distillation approach to ob-
tain domain-specific student models. Similar to our
work, they consider in-domain generalization and
target domain adaptation scenarios during the distil-
lation process. However, we focus on a more chal-
lenging scenario where the student model does not
have access to the teacher for emerging domains.
That is, the student adapts to new target domains
using a handful of labeled examples independently
and without any distillation process. Thus, our
model architecture is different from that of Pan et al.
(2021) to preserve the model capacity for general-
ization and adaptation purposes. Zhou et al. (2021)
propose a meta-learning approach for knowledge
distillation in which both teacher and student are
trained through interacting with each other. The
teacher learns to improve its transfer ability by
receiving feedback about the performance of the
student on a new data split called quiz set. Alter-
native approaches to KD in a low-resource setting
consider data augmentation to generate unlabeled
data and distill small models using the augmented

1Although there has recently been a discussion around this
assumption (Schick and Schütze, 2021).

data (Melas-Kyriazi et al., 2019).

3 Approach

We first describe the teacher and student model ar-
chitectures, followed by our proposed model train-
ing procedure. We elaborate on details of the pro-
posed episodic distillation process and show how
our approach preserves the generalization ability
of the distilled models under few-shot learning sce-
narios.

3.1 Model architecture

Since we consider the few-shot learning scenario,
both teacher and student models are designed as a
prototypical network (Protonet; Snell et al. 2017),
which is a metric-based meta-learning approach.

A teacher Protonet T with trainable parameters
θT is composed of an encoding block, which is a
Transformer with L layers (L >= 2), followed by
two linear hidden layers. The objective of the net-
work is to learn a metric space by training model pa-
rameters θT . The input to the teacher is a sequence
x = t1 . . . tk with k tokens. The fixed-length en-
coded sequence is the mean pooling of the token
embeddings from the output of the last layer of the
Transformer e(x) = 1

k

∑k
i=1 h

L(ti). Then, e(x)
serves as the input to the hidden layers and the
output is an m-dimensional sequence representa-
tion. Given C classes, T computes m-dimensional
class representations rc ∈ Rm for c ∈ {1, . . . , C},
called prototype, as the mean aggregation of the m-
dimensional representations of support instances in
the respective class. For each new sequence, a clas-
sification is performed by computing the Euclidean
distance between the class prototypes and the cre-
ated m-dimensional sequence representation.

The student Protonet S with trainable parame-
ters θS consists of a Transformer with two layers in
the encoding block, followed by two linear hidden
layers. The Transformer layers are initialized from
the first two layers of the teacher’s encoding block.
Class prototypes are computed in the same way as
the teacher. In both architectures, all model param-
eters are trainable and shared across all domains in
multi-domain intent classification.

3.2 Model training and testing

Inspired by meta-learning, we implement meta-
training and meta-testing steps. Given two few-
shot scenarios in our work, we adjust these steps
accordingly. The first scenario is in-domain tar-

110



get class generalization and the second scenario is
target domain adaptation in multi-domain classifi-
cation. Due to the joint FSL and KD approach,
meta-training consists of two steps: 1) teacher
pretraining on source classes (domains), referred
to as episodic pretraining, 2) student pretrain-
ing on source classes (domains) using the pro-
posed episodic knowledge distillation, referred to
as episodic distillation. At meta-testing, we imple-
ment an additional target domain adaptation step
for the second scenario, called Mini-episodic adap-
tion. In the following, we explain the details of
(mini-)episode construction and the training steps.

3.2.1 Episode construction

Assume there are disjoint sets of source classes
Ctrain and target classes Ctest for meta-training
and meta-testing, respectively. These sets belong to
source and target domains splits, Dtrain and Dtest.
In the in-domain target class generalization sce-
nario, Dtrain = Dtest. To construct an episode, a
domain d is uniformly chosen from domains Dsplit

where split is either train or test. Then, we create
variable size episodes by sampling the number of
ways n, support shot ks, and query shot kq from the
selected domain d, following the work by Krone
et al. (2020) and Triantafillou et al. (2020). Then
the support set Sc and the query set Qc for each
class c are sampled from the domain splits. As
discussed in Krone et al. (2020)’s work, by setting
variable shots and ways per episode, our approach
is more compatible with real-world cases where
unbalanced classes are available in the datasets.
Please refer to Appendix A.1 for the details of
episode construction. Meta-training consists of
epochs and each epoch contains distinct episodes.
Therefore, in line with Krone et al. (2020), once
an episode is constructed, we remove the respec-
tive samples from the meta-training split until all
samples are seen in an epoch.

3.2.2 Episodic pretraining

To pretrain a teacher T on source classes (domains),
we implement the standard meta-learning approach.
At each step, an episode is created through the
described variable episode construction approach.
Then, class prototypes rc ∈ Rm are computed uti-
lizing the labeled support set of each class Sc:

rc =
1

|Sc|
∑

(xi,yi)∈Sc

Tθ(xi). (1)

Next, the model computes the negative of the
squared Euclidean distance between each query
example representation and the class prototypes,
denoted as logits. Finally, we use the cross-entropy
loss between the computed logits of the query set
and query labels y as the classification loss:

Lcls =
∑

c∈Ctrain

|Qc|∑

i=1

cross-entropy(logitsi, yi),

(2)
and update the model parameters θT using the
Adam optimizer.

3.2.3 Episodic distillation process
Our goal is to obtain efficient small student models
that generalize to unseen classes (domains). There-
fore, we combine the advantages of FSL and KD
and introduce episodic knowledge distillation as
the main component in our approach. It is per-
formed during the pretraining step of the student
on source classes (domains).

Given a pretrained teacher T on source classes
(domains), we distill a student S on the same
classes (domains). The distillation process consists
of epochs. At each distillation step in an epoch,
we create an episode. The support set is used to
compute the class prototypes in both T and S for
the classification of the query set. We define the
overall distillation loss function as follows:

Lkd = Lsoft + Lpt, (3)

where Lsoft is the Kullback-Leibler (KL) diver-
gence between the soft labels of the teacher and
student output layer on the query set, which is com-
puted as follows:

pT = softmax(logitsT )

pS = softmax(logitsS)

Lsoft(T ,S) = KL(pT , pS).

(4)

To transfer the generalization ability of the teacher,
we use a new term Lpt in the distillation loss func-
tion, which is specific to the few-shot learning set-
ting. Lpt computes the difference between the class
prototypes in T and S . It is computed as the Mean-
Squared Error (MSE) on the class prototypes in the
teacher and student:

Lpt(T ,S) =
Ctrain∑

c=1

MSE(rTc , r
S
c ). (5)
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After computing the loss, the student model param-
eters θS are updated. Note that the student does not
have access to the query set labels during distilla-
tion.

3.2.4 Mini-episodic adaptation

Both pretrained teacher and student models can
be adapted on target domains in multi-domain IC.
However, our assumption is that the models have
access to only a handful of labeled examples. For
this purpose, similar to the episodic pretraining
step, the standard meta-learning approach is ap-
plied for adapting the teacher or student on the
target domain. To simulate the few-shot assump-
tion, we create mini-episodes from episodes, de-
vised originally by Luo et al. (2017). At each
adaptation step, akin to the k-fold cross-validation
approach, the ks instances in the support set of
the created episode are repeatedly split into n-way
ks − 1 mini-support instances and one mini-query
instance. Model parameters are updated after each
mini-episode. The episode’s query set is left for
evaluation purposes at inference time. We adapt
the teacher using mini-episodic adaptation. The
student is also adapted using the same procedure
without the teacher supervision.

3.2.5 Meta-testing

Model performance is evaluated at meta-testing
time through random test episodes on the meta-
testing split Ctest following the experimental setup
in (Krone et al., 2020; Li et al., 2021). In the first
scenario, we use the support and query sets at each
random test episode for prototype computations
and performance evaluation, respectively. In the
second scenario, we adapt the model to target do-
mains using mini-episodic adaptation and use the
mini-support and mini-query sets for model param-
eters update. Then, the episode’s support set is
used for prototype computations while the query
set is used for performance evaluation. If the model
is evaluated on target domains without any adapta-
tions, we use the support and query sets for proto-
type computations and performance evaluation.

4 Experiments

We conduct extensive experiments to evaluate the
proposed approach on public intent classification
datasets. We simulate two scenarios: in-domain tar-
get class generalization and the more challenging
scenario, target domain adaptation in multi-domain

intent classification. Experiments have been im-
plemented in PyTorch and performed on a single
NVIDIA 8GB GPU in Ubuntu 16.04.6 LTS.

4.1 Experiment setup

4.1.1 Datasets and splits

We use four public NLU benchmarks in our ex-
periments: SNIPS (Coucke et al., 2018), ATIS
(Hemphill et al., 1990), TOP (Gupta et al., 2018),
and Clinc150 (Larson et al., 2019). To simulate
few-shot class generalization in intent classifica-
tion, we use the proposed splits by Krone et al.
(2020). They create a meta-training split (train
split) and a meta-testing split (test split) from the
classes in each dataset. To simulate few-shot do-
main adaptation, we use the proposed splits by Li
et al. (2021). The statistics on the datasets and splits
for both scenarios are provided in Tables 7 and 8 in
Appendix B.1, respectively. Intent classes of each
split can be found in (Krone et al., 2020). We only
remove the atis_day_name intent from the test split
of ATIS as it contains only two utterances. More-
over, we use Work, Banking, and Credit card do-
mains as the source domains and Home and Kitchen
and Dining as the target domains in the Clinc150
dataset for the second scenario. We choose this
split to minimize the overlap between the source
and target domains. Moreover, we do not utilize
any validation set for model parameters optimiza-
tion. In this way, we increased the difficulty level
for a meaningful comparison in few-shot scenar-
ios. Furthermore, SNIPS is in fact a multi-domain
dataset and contains cross-domain intent classes,
and ATIS and TOP are highly unbalanced resulting
in rather difficult datasets for comparison in the
few-shot setting. TOP also contains various intent
classes in the navigation and events domain.

4.1.2 Training and testing Settings

In all scenarios, we use the Adam optimizer during
pretraining and distillation with a learning rate of
1e−5. Following the experiments setup in (Krone
et al., 2020) and (Li et al., 2021), training epochs
for both teacher and student are set to 30. At test
time, we report the average accuracy and standard
deviation of the models over three random seeds
and 100 random test episodes on the test split. We
use BERTbase_uncased as the base language model
with hidden size of 768. All hidden layers and
output features m in the Protonet are set to 200
based on practical experiments.
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In the in-domain target class generalization, we
pretrain the teacher using episodic training with
two different maximum support set size (Kmax)
for episodes: 20 and 100. This way, we compare
our results directly with the results of Krone et al.
(2020). In the target domain adaptation scenario,
we report the results of the distilled student on tar-
get domains without adaptation and with 10 epochs
of mini-episodic adaptation. In line with Li et al.
(2021)’s work, the ways n is set to the number of
the intent classes in the target domain during the
target domain adaptation of the student. Moreover,
we fix both ks and kq to 10 during the adaptation.
Therefore, variable episode construction is not uti-
lized in this step. Pretraining and episodic distilla-
tion steps remain the same as before.

4.2 Results and discussions

4.2.1 In-domain target class generalization

We investigate the generalization ability of the
small student model on unseen classes and com-
pare with the proposed models in (Krone et al.,
2020). They study different encoding blocks
(GloVe, ELMo, BERT) and algorithms (Fine-tune,
foMAML, Proto) for joint IC and slot filling un-
der the few-shot learning scenario. We report
the results of the BERT+Proto model (Baseline
BERT+Proto), which is the BERTbase_uncased model
with a Protonet, and the best results obtained
among all models (Baseline best result). Note that
the reported Baseline BERT+Proto model is ap-
proximately as large as the teacher model in the
number of parameters. Table 1 shows the evalua-
tion results on the three benchmark datasets, con-
sidering two different values of Kmax. For each
domain dataset, we train a teacher model on the
train split via the episodic pretraining step, and
distill an in-domain student using the episodic dis-
tillation process. We then evaluate the performance
of the student on the unseen intent classes, i.e., the
test split, in the respective dataset without further
adaptation. Moreover, following the experiments
in (Krone et al., 2020), we train a multi-domain
teacher using the train splits of all datasets jointly.
We then evaluate two types of distilled students on
the test split of each dataset individually: 1) a multi-
domain student distilled on all datasets, and 2) a
domain-specific student. Table 2 shows the results
of the multi-domain intent class generalization.

As can be computed from Table 1, the domain-
specific student retains 95.7% of the domain-

specific teacher’s performance on average, which
confirms its generalization ability given the limited
capacity of small models. The student outperforms
the Baseline BERT+Proto model by 5.6 points in
Kmax = 20 and 1.75 points in Kmax = 100 on
average. Note that Krone et al. (2020) proposed
a joint few-shot learning approach for IC and slot
filling tasks, which results in a more challenging
final task. Therefore, for fairness, we refrain from
comparing our teacher results with their models.
The performance boost by larger Kmax in the stu-
dent is 2.4 points. Since there is a semantic overlap
between the train and test intent classes in ATIS,
the student shows competitive performance with
the teacher. SNIPS contains semantically distant
classes. Similarly, TOP contains diverse intent
classes besides being highly unbalanced, which
explains the performance gap between the student
and the teacher in these datasets.

Table 2 shows that the multi-domain and domain-
specific students distilled from the multi-domain
teacher, achieve 82.31% and 92.06% of the teacher
performance, respectively. As is expected, the
multi-domain student underperforms the domain-
specific student by 7.35 accuracy points on average
since its representational capacity is limited for
several domains. However, the multi-domain stu-
dent outperforms the Baseline BERT+Proto in the
ATIS domain. This demonstrates that multi-domain
training is beneficial when the test set is highly im-
balanced, like the ATIS dataset. Compared to the
Baseline BERT+Proto, the domain-specific student
achieves a higher performance in four out of six
experiments and falls behind in the other two exper-
iments by 1.79 points on average. Therefore, there
is a trade-off between less memory consumption
by deploying a multi-domain small model and a
higher accuracy performance by deploying several
distinct domain-specific models in an application.
Slight improvements with Kmax = 100 can be
observed in our model.

4.2.2 Target domain adaptation
In this experiment, a multi-domain teacher is pre-
trained on source domains (pretrained T ) and a
student is distilled on source domains using the
episodic knowledge distillation (pretrained S). To
evaluate the generalization ability of the student on
unseen domains, we adapt the student to a target
domain without teacher access (adapted S) using
mini-episodic adaptation. We compare its perfor-
mance with the teacher adapted to the respective
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Kmax = 20 Kmax = 100

Model SNIPS ATIS TOP SNIPS ATIS TOP

Baseline best result 85.53± 0.35 65.95± 2.29 52.76± 2.26 87.69± 1.05 70.25± 0.39 61.30± 0.32
Baseline BERT+Proto 81.39± 1.85 58.84± 1.33 52.76± 2.26 83.51± 0.88 66.89± 2.31 61.30± 0.32
Domain-specific teacher 87.66± 1.69 69.44± 1.21 63.08± 1.80 87.58± 1.95 72.98± 2.29 64.65± 2.74
Domain-specific student 82.83± 0.92 69.45± 3.21 57.49± 3.17 84.19± 0.83 71.57± 2.98 61.21± 1.46

Table 1: Average test accuracy on in-domain target class generalization. Models are trained and tested on each
domain (dataset) separately.

Kmax = 20 Kmax = 100

Model SNIPS ATIS TOP SNIPS ATIS TOP

Baseline best result 87.64± 0.73 65.19± 1.29 52.64± 2.58 88.90± 0.18 71.89± 1.45 62.51± 1.79
Baseline BERT+Proto 81.44± 2.91 58.82± 1.55 52.64± 2.58 86.29± 1.09 65.70± 2.31 62.51± 1.79
Multi-domain teacher 87.74± 0.48 79.65± 6.27 62.83± 2.00 86.91± 3.06 83.77± 0.89 65.72± 0.77
Multi-domain student 72.97± 0.62 72.03± 2.07 45.36± 0.94 75.57± 0.82 68.90± 2.02 51.82± 0.76
Domain-specific student 85.74± 0.49 72.08± 3.16 56.37± 3.60 85.58± 0.73 71.36± 2.16 59.64± 3.64

Table 2: Average test accuracy on in-domain target class generalization. Multi-domain models are trained on all
three datasets and tested on each dataset separately.

domain (adapted T ) using mini-episodic adapta-
tion. Train and test splits are reported in Table 8 in
Appendix B.1.

Table 3 shows the average results on three tar-
get domains. We also report the results of two
cross-domain models proposed by Li et al. (2021),
referred to as Base Protonet and Base best. The
Base Protonet utilizes BERT as the encoding block,
which is approximately in the same size as our
teacher model. The Base best is the best results
obtained among different models. As can be seen,
the adapted student without teacher supervision
shows a significant improvement over its pretrained
counterpart. It also achieves 95% of the adapted
teacher’s performance and even outperforms it on
SNIPS slightly. Moreover, the adapted student out-
performs the large baselines by 7.03 points on av-
erage. This leads to a conclusion that our proposed
approach brings benefits in the few-shot generaliza-
tion problem on small distilled models with limited
representational capacity. Note that Li et al. (2021)
proposed a joint meta-learning approach for cross-
domain IC and slot filling, which results in a more
challenging final task. Therefore, for fairness, we
refrain from comparing our teacher results with
their models.

We extend the experiments with the Clinc150
dataset, which is a balanced dataset. Table 4
presents evaluation results for the Clinc150 target
domain split. Following the same discussion, the
pretrained teacher outperforms the pretrained stu-

Model SNIPS ATIS TOP

Base best 90.9± 0.3 76.0± 0.8 61.9± 1.1
Base Protonet 90.9± 0.3 75.3± 0.7 61.9± 1.1

Pretrained T 79.11± 1.68 82.20± 1.56 62.97± 1.91
Pretrained S 75.24± 3.02 76.56± 2.28 57.16± 0.73

Adapted T 89.90± 0.13 94.70± 0.33 76.12± 0.90
Adapted S 90.41± 0.89 92.36± 0.73 66.78± 0.97

Table 3: Average test accuracy on target domain adapta-
tion in SNIPS, ATIS, and TOP

dent. The adapted student achieves higher accuracy
than its pretrained counterpart and retains 87% of
the adapted teacher, which is slightly lower than the
previously studied domains. We argue that it is due
to the more challenging target domains with larger
number of intent types (15 intents per domain)
and highly overlapping intents (e.g., todo_list
and todo_list_update, restaurant_suggestion and
restaurant_review), which should be handled by a
single student in the Clinc150 dataset. This lim-
its the application of our approach in such multi-
domain settings.

To compare the computational cost of the teacher
and student, we report the memory size and average
inference time of the models per episode on target
domains. The number of parameters (in millions)
for teacher and student is 109.68M and 38.80M.
The student consumes 64% less memory (2.8 times
fewer parameters) than the teacher. The average
inference speed of the student for one episode in-
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Model Home Kitchen_dining

Pretrained T 78.08± 0.70 79.39± 0.40
Pretrained S 63.74± 0.86 69.76± 0.94

Adapted T 91.91± 0.07 91.44± 0.44
Adapted S 76.60± 0.29 82.17± 0.78

Table 4: Average test accuracy on Clinc150 target do-
mains

Source\Target SNIPS ATIS TOP

SNIPS –
58.42± 3.65
89.45± 1.99

40.50± 0.71
62.58± 0.87

ATIS 75.92± 2.78
89.51± 1.17

–
53.88± 0.39
66.93± 0.54

TOP 65.59± 3.18
82.46± 1.18

70.08± 1.90
91.42± 0.28

–

Table 5: Average test accuracy of models trained on one
source domain. Upper rows report pretrained student
and lower rows report adapted student.

cluding prototype computations and query set pre-
dictions on the Clinc150 target domains (Home and
Kitchen) is 5.6 and 1.1 times faster than teacher on
CPU and GPU, respectively.2

4.2.3 Ablation Study
We analyze the impact of source domains on the
performance of the student model on target do-
mains in the target domain adaptation scenario. For
this purpose, we pretrain the teacher and student
on one source domain and evaluate the pretrained
and adapted student on the two other target do-
mains individually and compare with the results
in Table 3. Table 5 shows the results of the pre-
trained and adapted student in each target domain.
We observe a performance gap between one ver-
sus multiple source domains in pretrained students,
specially when we opt out the source ATIS; The
performance of the pretrained student on TOP is
40.50 with source SNIPS and 57.16 with source
ATIS and SNIPS. This demonstrates that the pre-
trained student takes an advantage of diverse source
domains for evaluation on target domains. More-
over, the average higher performance of the student
in the multiple source domain setting indicates that
the knowledge is transferred effectively through the
episodic distillation process. Small performance
gap between one versus multiple source domains
is also observed in the adapted student.

Lastly, we analyze how FSL and KD influence
2The CPU is a 3.1 GHz Quad-Core Intel Core i7.

Student -
Teacher Student Teacher

MSL 77.78± 0.59 62.59± 0.92 -15.19
FSL 69.56± 2, 94 52.96± 2.44 -16.60

FSL - MSL -8.22 -9.63 –

Table 6: Average test accuracy on the effect of FSL and
KD on Clin150-Home

the IC performance separately. For this, we mea-
sure the performance of the teacher and the dis-
tilled student, which are pretrained on the Clinc150
source domains and tested on the Clinc150-Home
target domain without adaptation. We test these
models with support shot ks = 10 and ks = 70,
called FSL and many-shot learning (MSL) sce-
nario, respectively. We use the first 10 and 70
instances of each class in the official train set of the
Home domain as the support set. The official test
set with 30 instances per class is also used as the
query set. Evaluation results are shown in Table
6. We observe an accuracy drop from teacher to
student in both scenarios (15.19 and 16.60 points),
however, with a negligible difference . Therefore,
the distilled student loses approximately the same
amount of teacher’s performance accuracy in few-
and many-shot learning settings. This indicates the
effectiveness of the proposed episodic distillation
process in knowledge transfer under the FSL set-
ting. Moreover, the difference in the performance
loss from MSL to FSL in both teacher and student
models is small (9.63− 8.22 = 1.41 point). This
implies the capability of the proposed approach for
obtaining generalizable small models. Note that
the discrepancy between the performance results
in this section and previous section is due to the
different support and query splits at meta-testing.

5 Conclusion

We address the nontrivial merging problem of meta-
learning and knowledge distillation. Our proposed
approach distills large Transformer-based models
into smaller student models, which are compatible
with few-shot learning scenarios in intent classifi-
cation. Through a multi-step meta-training with an
episodic knowledge distillation, we obtain a small
distilled model that is generalizable and adaptable
to new classes and domains using only a few la-
beled examples. Our results in target domain adap-
tation show that the small model can adapt effec-
tively to new domains without teacher supervision.
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This removes the need for a large teacher when
time and computational resources are limited. Com-
pared to the large model, we observe a slight per-
formance loss and less memory consumption in the
distilled model. In summary, our results provide
insights into the advantages and limitations of a
joint few-shot learning and knowledge distillation
approach to foster future research in this area.

Our primary findings suggest that it is worth-
while to explore different FSL techniques jointly
with KD for cross-domain few-shot performance
improvements. Overall, this topic still merits more
attention to aid the practical deployment of NLU
models in dialogue systems under low-resource
scenarios. As future research, we will study novel
joint methods for the cross-domain generalization
problem under low-resource scenarios. Moreover,
we will investigate the methods in joint NLU tasks,
specifically slot filling and IC.
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A Approach

A.1 Variable episode construction

Following the work by Krone et al. (2020) and
Triantafillou et al. (2020), to create an episode, first,
the way n is uniformly selected from the range
[3, |Csplit|] for each domain d ∈ Dsplit. Then, the

query shot kq is computed as follows:

kq = min(10, ( min
c∈Csplit

⌊0.5 ∗ |Uc|⌋)),

where Uc is the set of instances in class c in domain
d. Then, we compute the overall support set size:

|S| = min
{
Kmax,∑

c∈Csplit

⌈β min{20, |Uc| − kq}⌉
}
,

where β is sampled uniformly from (0, 1]. Kmax

is a constant value indicating the maximum size of
the support set as a whole. Finally, we calculate
the support shot ks for each class c:

ks = min{⌊Rc ∗ (|S| − |Csplit|)⌋+ 1, |Uc| − kq},

where Rc noisily approximates the ratio of in-
stances belonging to class c in domain d:

Rc =
exp(αc) ∗ |Uc|∑

c′∈Cd
exp(αc′) ∗ |Uc′ |

.

αc is uniformly sampled from the interval
[log(0.5), log(2)). Then, we construct distinct ran-
dom episodes by choosing the set of support and
query instances of each class, Sc and Qc, from the
corresponding split.

B Experiment setup

B.1 Datasets and splits
Following (Krone et al., 2020) and Li et al. (2021),
the statistics on the datasets and splits for in-
domain target class generalization and target do-
main adaptation in cross-domain intent classifica-
tion are provided in Table 7 and 8, respectively.

Split\Dataset SNIPS TOP ATIS

Train (8230,4) (20345,7) (4373,5)
Test (6254,3) (4426,6) (827,6)

Table 7: Statistics of train and test splits in NLU datasets
for in-domain class generalization with (number of ut-
terances in the split, number of intents in the split).
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Target domain\Split Train Test

SNIPS
(TOP,20345,7)
(ATIS,4373,5)

(SNIPS,6254,3)

TOP
(SNIPS, 8230,4)
(ATIS,4373,5)

(TOP,4426,6)

ATIS
(TOP,20345,7)

(SNIPS, 8230,4)
(ATIS,827,6)

Clinc150-Home
(Work,1500,15)

(Banking,1500,15)
(Credit-card,1500,15)

(Home,450,15)

Clinc150-Kitchen_dining
(Work,1500,15)

(Banking,1500,15)
(Credit-card,1500,15)

(Kitchen_dining,450,15)

Table 8: Statistics of train and test splits in NLU datasets for target domain adaptation with (domain, number of
utterances, number of intents)
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