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Abstract

Summarization of doctor-patient conversations
into clinical notes by medical scribes is an es-
sential process for effective clinical care. Pre-
trained transformer models have shown a great
amount of success in this area, but the domain
shift from standard NLP tasks to the medical
domain continues to present challenges. We
build upon several recent works to show that
additional pre-training with in-domain medi-
cal conversations leads to performance gains
for clinical summarization. In addition to con-
ventional evaluation metrics, we also explore
a clinical named entity recognition model for
concept-based evaluation. Finally, we contrast
long-sequence transformers with a common
transformer model, BART. Overall, our find-
ings corroborate research in non-medical do-
mains and suggest that in-domain pre-training
combined with transformers for long sequences
are effective strategies for summarizing clinical
encounters.

1 Introduction

Necessitated by electronic health records (EHR),
physicians spend a large amount of time on docu-
mentation work (Sinsky et al., 2016), which con-
tributes significantly to burnout (Wright and Katz,
2018; Kumar and Mezoff, 2020), may result in
lower job satisfaction (Shanafelt et al., 2016), and
can even increase the likelihood of errors and re-
duce the quality of patient care (Panagioti et al.,
2017). To alleviate some of the burden on physi-
cians, medical scribes are often used to summarize
recordings or transcriptions of doctor-patient con-
versations into clinical notes. While this essential,
yet tedious process may enable more effective clin-
ical care, it shifts the burden onto medical scribes.
Furthermore, the continued reliance on human ex-
perts is expensive and only scalable to a limited
degree.

Natural language generation models, such as the
ones developed in this paper, have the potential to

significantly reduce the documentation burden by
providing suggested clinical notes to physicians or
scribes nearly instantaneously. While still some-
what error-prone and not yet fully automated, these
models are able to focus on much of the relevant
information in doctor-patient conversations and dis-
till it into a human-readable format for further re-
view by trained medical professionals.

Pre-trained transformer models have revolution-
ized the field of natural language processing (Rad-
ford et al., 2019; Devlin et al., 2019; Lewis et al.,
2020) and have already been applied to various
medical tasks (Lee et al., 2019; Li et al., 2020;
Zhang et al., 2021; Yalunin et al., 2022). Nonethe-
less, medical conversation summarization contin-
ues to present challenges due to its idiosyncrasies,
foremost of which is the requirement to contain all
relevant medical information rather than summa-
rizing every part of a conversation. Additionally,
specialized medical vocabulary renders the use of
conventional pre-trained models difficult.

Additional phases of in-domain pre-training
have shown to be useful across a wide variety of do-
mains and tasks (Gururangan et al., 2020), but lim-
ited work has been done on in-domain pre-training
using unlabeled doctor-patient conversations. To
address this, we leverage a doctor-patient conver-
sation dataset described in Section 3 to investi-
gate two different pre-training methodologies using
BART, LED, and DialogLED transformer models
(Section 4). We fine-tune all models on a sub-
set of medical conversations with human-written
summaries (Section 4.2) and contrast them with a
baseline of models that are not pre-trained in the
medical domain using several different evaluation
methods, including a transformer-based model for
clinical concept extraction (Sections 4.3 and 5). We
show that our methods improve the performance on
the medical summarization task and also evaluate
the additional benefit of using models designed to
work with long sequences (Section 6).
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2 Related Work

Medical summarization Recent research has de-
voted significant attention to the problem of sum-
marizing medical encounters and documents in an
automated fashion. Finley et al. (2018) describe a
fully automated medical scribe using a combina-
tion of RNN and rule-based approaches to automat-
ically recognize speech, convert it into a transcript,
extract the relevant information, and convert it to
a report. However, they omit any examples and
results and mention that the scribe is still limited in
its utility.

Since then, several deep learning approaches
have been developed to summarize doctor-patient
conversations. Joshi et al. (2020) develop a mod-
ified pointer-generator (PG) network to summa-
rize local snippets. Furthermore, they explicitly
model negation, which can cause difficulties for
automatic approaches. Interestingly, they report
that transformer models did not work well, which
is contrary to the findings in a lot of subsequent
research. Yim and Yetisgen (2021) also use a PG
model to perform the similar task of sentence align-
ment and snippet summarization. Notably, they
achieve good results using only a very small dataset.
Krishna et al. (2021) take on the challenging task
of generating complete clinical summaries (SOAP
notes) using various LSTM, PG, and transformer
models. They extract important utterances, clus-
ter them, and then generate single-sentence sum-
maries of each cluster. Enarvi et al. (2020) use a
large dataset of doctor-patient conversations gen-
erated using automatic speech recognition to train
a combined transformer-PG model from scratch.
They are able to handle somewhat longer input be-
cause they do not rely on pre-trained transformer
models. As an alternative approach to handle long
conversations, Zhang et al. (2021) use a pre-trained
BART model with a two-stage chunking approach
to generate summaries for a section of the clinical
notes.

Related to the summarization of doctor-patient
conversations, other research has explored the sum-
marization of clinical notes and clinical history.
Zhang et al. (2018) use a PG network to summa-
rize radiology findings and found that incorporating
additional information in the form of background
information about the patient improves the results.
Yalunin et al. (2022) construct a model using a
Longformer encoder with a BERT decoder to gen-
erate parts of discharge notes from the patient his-

tory. They pre-train BERT and Longformer on
domain-specific data and create a custom tokenizer,
which yields strong results.

Domain shift An intrinsic problem with using
pre-trained models is that the domain of the pre-
training data is often significantly different from
that of the target medical domain. PG networks
during fine-tuning can be helpful because they are
able to copy words from the new vocabulary, but
starting from a model in a domain that is closely
related to that of the fine-tuning task would provide
additional benefit. Gururangan et al. (2020) show
that a second round of pre-training in a domain re-
lated to the fine-tuning task can provide significant
benefit even if the continued pre-training only uses
the unlabeled training set for a given task. They
investigate this across a broad range of domains
and classification tasks. Similarly, Hsu et al. (2021)
find that in-domain pre-training improves learning
speech representations. Zhong et al. (2021) show
that improved summarization results are possible
by continuing pre-training in the (non-medical)
conversation domain. As already mentioned pre-
viously, Yalunin et al. (2022) use in-domain pre-
training very successfully for generating discharge
notes from patient histories.

Instead of pre-training all model parameters
in the new domain, there has been some investi-
gation into learning small extension modules in-
stead, which can be helpful if there are limited
pre-training data or if complete model training is
too costly. Tai et al. (2020) adapt BERT to the med-
ical domain by creating an additional vocabulary
and adding a corresponding embedding layer. They
compose their extension module as a weighted sum-
mation of the embedding vectors from the original
and the extension layers and demonstrate that this
method is very effective at adapting to the new
domain.

3 Dataset

The dataset we use has already been described by
Zhang et al. (2021) and is composed of 83 605
clinical encounters involving doctors from many
different specialties, patients, and potentially other
speakers, e.g., nurses and caregivers. For each
encounter, we use the de-identified doctor-patient
conversation transcribed by a human. The median
number of tokens in a conversation is 2040 (using
the BART byte-pair encoding from Lewis et al.,
2020), and there are a total of 203M tokens in the
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entire dataset.
Annotations are available for a subset of 1342

conversations in the form of medical summaries
across internal medicine and primary care special-
ties. Each conversation was summarized by mul-
tiple professional medical scribes into several sec-
tions, of which we only use the History of Present
Illness (HPI) section for this paper due to its com-
plexity and because it is usually written in complete
sentences. There are an average of 17 reference
summaries per doctor-patient conversation. The
median conversation length in the summarization
subset is 1334 tokens for a total of 2.5M tokens.
The 95th percentile corresponds to approximately
5120 tokens, which is the length limit we use for
our long-sequence models.

For pre-training, we exclude the entire subset of
data that we have summaries for in order to avoid
any data leakage and potentially biased results. In
addition, we split off a random 5% of the remaining
conversations as the validation dataset to monitor
during pre-training.

For fine-tuning, we attempt to remove poor sum-
maries for a given conversation using an in-house
rule-based system to extract medical concepts from
the training summaries and only keeping the sum-
mary with the most concepts. Even though this
results in fewer labeled data, we have not observed
a significant drop in performance. Nonetheless, we
keep all reference summaries for the test data. Af-
ter splitting and removing extraneous summaries
from training and validation data, we end up with
939, 201, and 202 conversations; and 939, 201, and
3450 summaries in the training, validation, and test
sets, respectively.

4 Methods

All methods are based on pre-training and/or fine-
tuning of BART (Lewis et al., 2020), Longformer-
Encoder-Decoder (LED) (Beltagy et al., 2020),
and DialogLED (Zhong et al., 2021). BART is a
pre-trained encoder-decoder transformer model de-
signed for fine-tuning on text generation tasks, such
as summarization. However, it can only encode up
to 1024 tokens in both its encoder and decoder,
which is less than the median sequence length in
our fine-tuning dataset. LED and DialogLED can
handle significantly longer input sequences (we
use 5120 and 1024 tokens for their encoders and
decoders, respectively) by employing a combined
global and local attention mechanism which scales

linearly with sequence length. The LED architec-
ture is almost identical to that of BART except that
the position embeddings of BART are copied 16
times to enable longer input. The parameters of
LED are initialized from BART and no additional
pre-training was done. DialogLED is initialized
from LED and further pre-trained on long dialog
data using a window-based denoising task specifi-
cally designed for conversations, which results in
significant improvement for long-dialog summa-
rization.

We initialize and train all of our models using
the pre-trained BART, LED, and DialogLED mod-
els available in the Hugging Face Transformers li-
brary (Wolf et al., 2020). We use the corresponding
tokenizers (all of which use the BART/GPT-2 byte-
pair encoding with a vocabulary size of 50 265),
but we add additional speaker tokens, e.g., [DR]:,
[PT]:, etc. We investigate both the base and large
models (140M vs. 400M parameters, respectively).
Except for the additional position embeddings, all
base models and all large models have the same
number of parameters.

4.1 Pre-training

We investigate two types of pre-training with
doctor-patient conversations: BART-style denois-
ing using the entire input as described by Lewis
et al. (2020) and DialogLED-style window-based
denoising as described by Zhong et al. (2021). We
found that sentence and turn permutation are al-
ways detrimental to the downstream summariza-
tion of our doctor-patient conversations as mea-
sured by a decrease in ROUGE scores, so we only
perform text infilling for BART-style pre-training
and we only use speaker masking, turn splitting,
turn merging, and text infilling for window-based
pre-training. The other denoising hyperparameters
are identical to those used in the original papers.
For BART-style denoising, we discovered that it
is beneficial to allow the attention mechanism to
attend to the additional padding tokens that are
added as a result of the text infilling. We hypothe-
size that this could imply that adding noise to the
entire input is too “difficult” of a pre-training task
so that some additional information is necessary in
the form of the padding tokens, but we leave the
further investigation of this observation to a future
study.

For all models, we split the conversations into
chunks of 1024 tokens for BART-style pre-training,
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and we simply truncate long conversations at 5120
tokens for window-based denoising with LED and
DialogLED. The number of epochs that each model
is pre-trained for is chosen to achieve optimal per-
formance on the downstream summarization task.
For the large models, this results in less than one
full pass across the pre-training dataset being re-
quired. All of our pre-training hyperparameters are
shown in the Appendix in Table A.1.

4.2 Fine-tuning
Our fine-tuning task is training a text generation
model to summarize doctor-patient conversations
into coherent HPI summaries containing all rele-
vant medical information. As with pre-training, we
use a decoder sequence length of 1024 tokens and
encoder sequence lengths of 1024 tokens for BART
and 5120 tokens for LED and DialogLED. 5120
tokens corresponds to the 95th percentile of conver-
sations in the summarization dataset, which allows
us to encode the full length of the majority of the
conversations when using LED and DialogLED.
Other than that, we maintain consistency across all
other fine-tuning hyperparameters (see Table A.2)
for all of our models. We train for a maximum of
30 epochs with a batch size of 8 and evaluate every
50 steps. We perform evaluation by using the vali-
dation data input to generate text using beam search
and monitor the geometric mean of ROUGE-1 F1,
ROUGE-2 F1, and ROUGE-L F1 scores on the
validation data. We stop training if the validation
score has not improved over the last five evaluation
calls and save the best model checkpoint.

4.3 Evaluation
In order to rapidly estimate performance across
all reference and generated summaries, we employ
several automatic evaluation methods. In addition
to ROUGE and UMLS concept-based evaluation,
which have been used previously in the literature,
we also suggest a named entity recognition model
as a second form of concept-based evaluation due
to the ease of fine-tuning such a model on publicly
available data.

4.3.1 ROUGE
We use the rouge-score package1 to compute
ROUGE scores, which aims to replicate results
from Lin (2004). While there are some issues
with using ROUGE for abstractive summarization

1https://github.com/google-research/
google-research/tree/master/rouge

(Kryscinski et al., 2020), especially with regard to
hallucination (Maynez et al., 2020), it is a useful
metric to assess the degree of overlap between ref-
erence and generated summary. As there are mul-
tiple reference summaries per conversation in the
fine-tuning test set, we first compute the ROUGE
scores of a generated summary with all of its corre-
sponding reference summaries for a single doctor-
patient conversation and then average each score.
To obtain an aggregate ROUGE score, we can then
average the scores across all conversations.

4.3.2 Clinical concepts
As ROUGE measures word overlap indiscrimi-
nately, it takes into account unimportant words and
is not as suitable for measuring semantic overlap.
Therefore, it is beneficial to quantify additional
metrics that are not as prone to these issues and
focus more on the relevant medical content of a
summary.

UMLS concept extraction The methodology de-
scribed in this paragraph is largely identical to the
evaluation described by Zhang et al. (2021). The
Unified Medical Language System (UMLS) (Bo-
denreider, 2004) is a large database of medical con-
cepts and relations between them. We use the ap-
proximate string matching algorithm implemented
in QuickUMLS (Soldaini and Goharian, 2016) to
extract strings from our summaries and match them
to concepts in the UMLS database. However, this
approach sometimes mislabels irrelevant strings as
medical concepts. To mitigate this somewhat, we
first aggregate and filter concepts from all reference
summaries for a given conversation by only keep-
ing a concept if it occurs in at least three reference
summaries or if it occurs in all reference summaries
if there are fewer than three. We then extract the
UMLS concepts for the generated summary and
compute precision, recall, and F1-score. Aggregate
scores are averaged across all conversations.

Transformer-based clinical concept extraction
(NER) To further deal with the limitations of
QuickUMLS, such as the extraction of irrelevant
strings from a summary, we train a deep learning
model to extract clinical concepts instead. For this,
we follow the clinical concept extraction approach
by Yang et al. (2020). We use their RoBERTa (Liu
et al., 2019) model pre-trained on MIMIC-III clini-
cal notes (Johnson et al., 2016) to fine-tune a named
entity recognition (NER) model on the i2b2 2010
dataset (Uzuner et al., 2011), which is a large col-
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lection of clinical notes annotated with three types
of medical concepts.

First, we mostly reproduce the strong classifi-
cation performance reported by Yang et al. (2020)
using the conventional i2b2 2010 train-test split
and a conditional random field layer on top of the
transformer model (see Table B.1 in the Appendix).
After verifying that this approach is successful, we
train our final clinical concept extraction model on
all i2b2 2010 data for use on our summaries.

To automate the NER-based concept evaluation,
we map the extracted entities to UMLS concept
unique identifiers (CUIs) using QuickUMLS (there
are frequently multiple CUIs per entity) and drop
any entities that cannot be mapped. We combine en-
tities that are of the same type (as predicted by the
NER model) and have overlapping sets of UMLS
CUIs. Similar to the QuickUMLS-only approach,
we only keep reference summary entities if they oc-
cur in at least three reference summaries for a given
conversation. Finally, we compute precision, recall,
and F1-score. For this, we define a true positive as
a concept extracted from the generated summary
where its predicted type matches that of a concept
extracted from the reference summaries and there
exists an intersection between the sets of UMLS
CUIs corresponding to the concepts. False posi-
tives and false negatives are defined accordingly.

5 Experiments

We establish baselines by fine-tuning base and large
versions of vanilla BART, LED, and DialogLED
models on the doctor-patient conversation sum-
marization dataset as described in Section 4.2,
i.e., using the versions of those models that are
pre-trained as described in their original papers.
To assess whether a second round of pre-training
on in-domain data is beneficial, we continue pre-
training the models on our doctor-patient conver-
sation dataset as described in Section 4.1 followed
by fine-tuning on the summarization dataset.

For BART, window-based denoising results in
a negative impact on ROUGE scores, so we only
investigate normal text infilling denoising, whereas
for LED and DialogLED, we consider both BART-
style text infilling and window-based denoising.
The results of performing all types of evaluation
described in Section 4.3 on the summarization test
set are shown in Table 1. Furthermore, we report
the median length of generated summaries in Ta-
ble 2.

6 Qualitative Analysis

In-domain pre-training Across all models and
pre-training objectives, ROUGE F1 scores always
improve with additional in-domain pre-training (Ta-
ble 1), clearly indicating that pre-training leads to
improved overlap between the generated and ref-
erence summaries. For the sake of completeness,
it should be mentioned that we find that ROUGE
precision generally decreases with increasing se-
quence length (Table 2) whereas ROUGE recall
generally increases; however, we see no such cor-
relation for ROUGE F1 so that we continue to use
ROUGE F1 for the discussion here. The full evalu-
ation results, including precision and recall can be
found in Table C.1 in the Appendix. There exists
some research into removing the length bias from
ROUGE score calculations (e.g., Sun et al., 2019),
but this is out of scope for our current study.

Overall, we find that pre-training LED with the
window-based denoising task leads to the strongest
models in terms of ROUGE scores. For LED-large,
in-domain pre-training improves the summariza-
tion performance of doctor-patient conversations by
1.59 points for ROUGE-1, 1.13 points for ROUGE-
2, and 1.10 points for ROUGE-L relative to the
vanilla LED-large baseline (Table 1).

Similarly, in-domain pre-training almost always
improves both of our concept-based evaluation met-
rics with the only noticeable outlier being BART-
large. We note that we observe a slightly stronger
dependence of precision and recall on sequence
length (Table 2 and Appendix Table C.2) than
with ROUGE. Nonetheless, in-domain pre-training
leads to the best-performing models as measured
by concept-based F1 scores even if the pre-trained
version does not generate longer sequences on av-
erage.

Overall, we find that pre-training DialogLED
with the BART-style text infilling task leads to the
strongest models in terms of concept-based scores,
which is contrary to the performance of DialogLED
when measured with ROUGE. This could imply
that while DialogLED generates extraneous text
(also shown by its long generation length in Ta-
ble 2) which results in lower ROUGE scores, it is
better at generating the relevant medical concepts,
which might make it more useful for medical sum-
marization.

Comparing across denoising tasks used for pre-
training, there seems to be no significant differ-
ence in terms of ROUGE between BART-style
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ROUGE F1 UMLS F1 NER F1

Model Pre-train R-1 R-2 R-L

BART-base — 35.19 13.28 25.43 24.27 36.22
BART-base BART 36.83 14.13 26.53 28.63 40.24
LED-base — 36.01 13.49 25.99 26.40 38.59
LED-base window 36.96 14.12 26.72 27.45 39.96
LED-base BART 36.65 13.60 26.31 28.47 41.39
DialogLED-base — 36.07 13.14 25.13 31.22 42.66
DialogLED-base window 36.85 13.79 25.74 31.62 41.87
DialogLED-base BART 36.79 13.59 25.88 33.33 42.72

BART-large — 38.25 14.78 26.65 35.19 47.52
BART-large BART 38.47 14.89 27.37 27.77 43.45
LED-large — 37.29 13.83 26.09 30.45 43.97
LED-large window 38.88 14.96 27.19 32.03 46.78
LED-large BART 38.07 14.56 26.82 35.33 47.15
DialogLED-large — 37.04 13.74 25.55 32.36 47.23
DialogLED-large window 37.26 14.15 25.73 34.05 45.86
DialogLED-large BART 37.73 14.56 25.69 38.90 51.57

Table 1: Evaluation results on the summarization test set. In the “Pre-train” column, “BART” refers to BART-
style pre-training without sentence permutation (text infilling across the entire input) and “window” refers to
window-based denoising (without turn permutation). The metrics from left to right are ROUGE-1 F1, ROUGE-2 F1,
ROUGE-L F1, QuickUMLS concept-based F1, and NER concept-based F1.

Model Pre-train Median
summary

length

BART-base — 53
BART-base BART 62
LED-base — 62
LED-base window 65
LED-base BART 65
DialogLED-base — 71
DialogLED-base window 73
DialogLED-base BART 71

BART-large — 89
BART-large BART 70
LED-large — 98
LED-large window 81
LED-large BART 88
DialogLED-large — 108
DialogLED-large window 110
DialogLED-large BART 115

Training set reference summaries 114
Test set reference summaries 81

Table 2: Median sequence length in number of tokens of
generated summaries and of summaries in the training
(with validation) and test data.

text infilling and window-based denoising, whereas
concept-based scores improve with BART-style
pre-training compared to window-based denois-
ing. Even though Zhong et al. (2021) designed
the window-based denoising task for conversation
data, it seems that it is not always beneficial to use
over more conventional pre-training. The most im-
portant thing is simply the process of pre-training
on medical conversations itself, regardless of pre-
training objective used.

One benefit of using automatic metrics is that
they may quantify smaller improvements which
would not be as visible with small-scale human
evaluation. In particular, Table 3 compares exam-
ple output from vanilla LED-large and from LED-
large pre-trained on doctor-patient conversations
using window-based denoising. While there are
some differences in the output, it is not immedi-
ately evident that the output from the pre-trained
model is better. Both models produce fluent sum-
maries and include all of the important concepts
mentioned in the reference summary. In the conver-
sation, the patient incorrectly refers to the mitral
valve as “microvalve”, and no explicit mention of
the correct term occurs (the relevant conversation
snippet is shown in Table 4). Naturally, a trained
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Source Summary

Reference The patient is a female presenting today for routine follow-up. She states that
she is doing well and continues to take Fosamax as prescribed. She continues to
experience pain to her back. She is also requesting to have her heart checked as she
was diagnosed with mitral valve prolapse several years ago.

BART-large
(vanilla)

The patient is a female presenting to the clinic today for a follow up visit concerning
her hypercholesterolemia. She reports that she has been on Fosamax for at least 4
years. She has been taking it weekly for the past 9 years. Her last bone density test
was in June of last year. She is still taking Prilosec every day.

LED-large
(vanilla)

The patient is a female presenting to the clinic today for a follow-up visit. She agreed
to a virtual scribe. Back Pain - She has noticed that her back has been bothering her
for the last month. It does not hurt to push, but it is bothersome. She takes Tylenol
or Advil if it is really annoying. She has been taking Fosamax for the past 4 years.
She would like to have a stress test of her arteries to see if they are strong. She is
currently taking Prilosec every day. Heart Failure - Her last heart exam was 5 years
ago. She had a microvalve prolapse at that time.

LED-large
(window-based
pre-trained)

The patient is a female presenting to the clinic today for a follow up visit. She has
a history of hyperlipidemia and hypercholesterolemia. She states that she has been
taking Fosamax for the past 4 years. She reports that her back has been bothering her
for the last month. She denies any fractures or fractures in her bones. She is taking
Prilosec every day. She would like to know how her arteries are doing and if she
needs more vitamin D. She also wants to know if she has a microvalve prolapse.

Table 3: Comparison of reference summary and several generated summaries for a conversation with 2088 tokens
from the test set.

medical scribe uses the correct term in the sum-
mary, whereas the LED models are not able to
perform this line of complex reasoning without ad-
ditional information, so they copy the term used by
the patient. The vanilla LED model makes another
error by stating that the patient takes Tylenol or
Advil; however, the doctor is the one to suggest
this in the conversation, the patient never made
such a statement. A small error also occurs in the
pre-trained LED model, which mentions that the
patient is inquiring about vitamin D, but this is also
something said by the doctor, not the patient.

Long conversations Vanilla BART-large is a
strong baseline that cannot always be outperformed
by the long-sequence models (Table 1). In fact, Di-
alogLED is noticeably weak in terms of ROUGE
which might imply that a non-trivial amount of in-
formation was lost during the first round of contin-
ued pre-training (on non-medical long-dialog data).
Such a direct comparison between DialogLED and
BART is possible because DialogLED is a fur-
ther pre-trained version of LED, which is itself
initialized from BART. However, as mentioned ear-

lier, concept-based evaluation of DialogLED shows
strong performance, indicating that ROUGE alone
may not be sufficient for quantifying the utility of
a model.

For a different reason than DialogLED, vanilla
LED is also a weak baseline. We observed dif-
ficulty during fine-tuning of vanilla LED on our
small dataset and hypothesize that this could be
a result of non-ideal initialization of its copied
position embeddings (Beltagy et al., 2020). As
the position embeddings for positions greater than
1024 never underwent their own additional pre-
training, their parameters are not necessarily opti-
mal at the start of fine-tuning. However, in-domain
pre-training results in a suitable initialization for
the position embeddings prior to fine-tuning, which
manifests itself in good performance compared to
pre-trained BART after fine-tuning. Still, LED is
not significantly better than BART after in-domain
pre-training even though it can process much longer
input. One possible reason is that most of the rel-
evant information for the HPI section might be
contained at the beginning of long conversations.
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[PT]: And, uh, I want to have my heart checked out because my heart, um, I think it was five years ago -
[DR]: Um-hum.
[PT]: We did it. I have a microvalve prolapse.
[DR]: Um-hum.
[PT]: But they said at that time it wasn’t that bad -
[DR]: Um-hum.
[PT]: But, um, I feel like I need to check up on that again. And can they do the, uh, also can they do the

arteries? Can they check your arteries?
[DR]: They do that with the stress test. The stress test is a way of, um, the stress test has a way of

looking at the arteries. You don’t want to actually have the dye put in your arteries because that is
dangerous.

Table 4: Snippet of the conversation corresponding to Table 3 revolving around the heart valve prolapse.

Another reason is that our median conversation
length in the fine-tuning dataset (see Section 3)
is not much longer than the maximum input size
BART can process, so there may not be enough
long conversations for the difference in models to
make a large difference.

If we bin the conversations by their number of
tokens and compare BART-large to LED-large, we
observe less of a drop in ROUGE for longer con-
versations with LED-large than with BART-large
(Figure 1), suggesting that LED does extract ad-
ditional useful information from long inputs. The
improved performance on long conversations with
LED-large is even more evident when analyzing
the concept-based metrics across different conver-
sation lengths as shown in Figure 2. LED-large is
very effective at extracting relevant concepts from
long conversations.

The example in Table 3 corroborates this finding:
The summary generated by BART-large fails to
mention the back pain and heart valve prolapse,
whereas LED-large correctly includes both of these
concepts. Both concepts are only mentioned in
the latter half of the conversation, which, with a
length of 2088 tokens, is significantly longer than
the maximum BART sequence length. Unrelated
to conversation length, the BART-large model is
seemingly confused by the duration for which the
patient has been taking Fosamax. However, the
BART output is actually more accurate than the
LED output, which states a duration of four years.
In the conversation, the doctor is briefly confused
about the Fosamax duration and initially assumes
“at least four years”, but then corrects that estimate
to “at least nine years” over the course of several
subsequent sentences.

Generated summary lengths We can observe
several trends in the lengths of generated sum-
maries in Table 2. First, large models generate
longer summaries than base models, and while
good performance is possible using base models
(Table 1), this might hint at an inadequate intrinsic
capacity of small models to model complex abstrac-
tive summarization, suggesting that one would be
better served by using the large models. Second,
pre-trained base models generate longer summaries
than their corresponding vanilla versions with the
exception of DialogLED-base, which could be
a result of it already having been pre-trained on
long-dialog data. Interestingly, this effect seems
to be reversed for the large models: pre-trained
BART-large and LED-large generate shorter sum-
maries than their vanilla versions while pre-trained
DialogLED-large generates slightly longer text.
Third, DialogLED always generates the longest
summaries compared to BART and LED even if
these have been pre-trained on in-domain data.
Again, this could be due to the round of pre-training
on (non-medical) long-dialog data that DialogLED
underwent.

On average, the generated summaries are shorter
than those in the fine-tuning training set, although
they happen to correspond well in length to those
in the test set. As described in Section 3, the train-
ing set summaries are longer on average because
they only contain the references with the most con-
cepts extracted using our in-house rule-based sys-
tem. Overall, these results indicate that there might
be a need to bias the models toward longer gener-
ation length. However, we do not add any sort of
length penalty here because our goal was to com-
pare what the models learn in an unbiased fashion.
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Figure 1: ROUGE score comparison binned by conver-
sation length.

7 Conclusion

We showed that in-domain pre-training improves
abstractive summarization of long doctor-patient
conversations into HPI notes across several mod-
els based on the BART architecture and across
two different pre-training objectives. To measure
the improvement, we used conventional evaluation
methods like ROUGE and UMLS concept-based
evaluation and also trained a neural clinical concept
extraction model to better extract relevant concepts.
We also demonstrated the benefit of using models
that can deal with long conversations intrinsically,
especially for ensuring that relevant medical con-
cepts are present.

While unlabeled doctor-patient conversations are
a useful source of pre-training data, we hope to in-
vestigate additional types (e.g., clinical notes) in
the future. Similar research has already shown that
other types of pre-training data can be very effec-
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Figure 2: Concept-based score comparison binned by
conversation length.

tive, e.g., pre-training on patient histories (Yalunin
et al., 2022) or pre-training on clinical notes for
named entity recognition (Yang et al., 2020). Addi-
tionally, we can explore combining and contrasting
our holistic pre-training approach with methods
that only pre-train a small amount of additional
parameters (Tai et al., 2020).

Lastly, given the varying lengths of generated
summaries, we are considering methods to con-
trol generation length as another future research
direction (Kikuchi et al., 2016).

Ethical Considerations

The models developed in this paper may omit im-
portant information or incorrectly include mislead-
ing details in the output they generate. Due to this,
we stress the importance of not using the gener-
ated outputs unsupervised. In all cases, medical
experts should review and edit the generated sum-
maries. Nonetheless, we expect that our models
can act as virtual assistants to alleviate some of the
documentation burden.

The data used for pre-training and fine-tuning
inherently contain sensitive medical information.
To protect private health information, the data were
manually de-identified by medical experts and no
private information was used in the methods de-
scribed in this paper.
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Appendix

A Hyperparameters

The pre-training hyperparameters are listed in Ta-
ble A.1 and the fine-tuning hyperparameters are
listed in Table A.2. Each model was trained us-
ing a single NVIDIA V100 GPU. Mixed precision
training and gradient checkpointing were used as
needed in order to fit the larger models into mem-
ory.

B NER Model Performance

We fine-tune RoBERTa (pre-trained on MIMIC-III)
on the i2b2 2010 dataset using the approach of
Yang et al. (2020) in order to use it as a clinical
concept extraction model for concept-based
evaluation. We show our performance on the
fine-tuning dataset in Table B.1 and compare it
to theirs. While we were not able to fully match
their results, we believe this is due to the fact that
the i2b2 2010 dataset is no longer available in its
original form. Nonetheless, we also achieve strong
results that are suitable for our purposes.

Model P R F1

Yang et al. (2020) 89.63 90.26 89.94
Ours 87.80 88.58 88.19

Table B.1: Comparison of clinical named entity recog-
nition models.

C Additional Evaluation

The complete ROUGE evaluation results are shown
in Table C.1, which shows precision and recall
in addition to the F1 score. Similarly, Table C.2
shows precision and recall for the two concept-
based evaluation methods.
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BART LED DialogLED
Parameter base large base large base large

Maximum encoder length 1024 1024 5120 5120 5120 5120
Maximum decoder length 1024 1024 1024 1024 1024 1024

Text infilling ratioa 0.3 0.3 0.3 0.3 0.3 0.3

Window ratio 0.1 0.1 0.1 0.1 0.1 0.1
Maximum window size 512 512 512 512 512 512
Text infilling ratiob 0.15 0.15 0.15 0.15 0.15 0.15
Speaker mask ratio 0.5 0.5 0.5 0.5 0.5 0.5

Learning rate 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5

Batch size 8 8 8 8 8 8
Epochs 3 0.6 3 (1)c 0.4 3 (1)c 0.4 (0.2)c

Warm-up ratio 0.01 0.01 0.01 0.01 0.01 0.01
Weight decay 0.001 0.001 0.001 0.001 0.001 0.001
Maximum gradient norm 1.0 1.0 1.0 1.0 1.0 1.0

Table A.1: Hyperparameters used for continued pre-training. We differentiate between BART-style noise, which
uses text infilling across the entire input (a), and window-based denoising, which only performs text infilling within
the window (b) and masks speakers separately. Both types of denoising are investigated for LED and DialogLED.
LED and DialogLED sometimes use different number of epochs during training for BART-style and window-based
denoising (c). No sentence or turn permutation is used.

BART LED DialogLED
Parameter base large base large base large

Maximum encoder length 1024 1024 5120 5120 5120 5120
Maximum decoder length 1024 1024 1024 1024 1024 1024
Learning rate 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5

Batch size 8 8 8 8 8 8
Maximum epochs 30 30 30 30 30 30
Warm-up steps 200 200 200 200 200 200
Weight decay 0.001 0.001 0.001 0.001 0.001 0.001
Maximum gradient norm 0.1 0.1 0.1 0.1 0.1 0.1
Steps between evaluation 50 50 50 50 50 50
Early-stopping patience 5 5 5 5 5 5
Number of beams 5 5 5 5 5 5
Maximum generation length 512 512 512 512 512 512
No repeat n-gram size 3 3 3 3 3 3

Table A.2: Hyperparameters used for fine-tuning.
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ROUGE-1 ROUGE-2 ROUGE-L

Model Pre-train P R F1 P R F1 P R F1

BART-base — 44.71 34.73 35.19 17.05 13.29 13.28 31.73 25.81 25.43
BART-base BART 43.12 38.44 36.83 16.71 14.87 14.13 30.51 28.43 26.53
LED-base — 43.26 37.03 36.01 16.36 14.03 13.49 30.65 27.46 25.99
LED-base window 42.68 38.97 36.96 16.39 15.11 14.12 30.27 28.95 26.72
LED-base BART 42.29 38.65 36.65 15.82 14.44 13.60 29.85 28.50 26.31
DialogLED-base — 39.09 40.39 36.07 14.25 14.94 13.14 26.67 29.08 25.13
DialogLED-base window 38.98 42.04 36.85 14.64 15.89 13.79 26.62 30.45 25.74
DialogLED-base BART 39.56 41.49 36.79 14.67 15.53 13.59 27.24 30.14 25.88

BART-large — 38.30 46.09 38.25 14.86 18.01 14.78 26.24 33.17 26.65
BART-large BART 42.73 41.80 38.47 16.64 16.27 14.89 29.83 30.60 27.37
LED-large — 37.00 46.11 37.29 13.70 17.44 13.83 25.43 33.40 26.09
LED-large window 40.50 44.62 38.88 15.69 17.35 14.96 27.83 32.16 27.19
LED-large BART 38.28 46.05 38.07 14.69 17.81 14.56 26.56 33.41 26.82
DialogLED-large — 33.83 49.98 37.04 12.53 18.81 13.74 22.83 35.95 25.55
DialogLED-large window 34.06 50.27 37.26 12.89 19.37 14.15 23.01 36.20 25.73
DialogLED-large BART 33.34 53.29 37.73 12.88 20.72 14.56 22.25 37.79 25.69

Table C.1: Complete ROUGE evaluation results on the summarization test set.

UMLS NER

Model Pre-train P R F1 P R F1

BART-base — 56.65 18.28 24.27 76.52 26.66 36.22
BART-base BART 57.05 22.93 28.63 70.93 32.56 40.24
LED-base — 52.77 21.21 26.40 69.62 31.61 38.59
LED-base window 53.04 21.88 27.45 70.29 32.43 39.96
LED-base BART 53.29 22.72 28.47 66.81 34.98 41.39
DialogLED-base — 51.99 26.63 31.22 66.34 38.02 42.66
DialogLED-base window 53.51 26.35 31.62 65.27 36.31 41.87
DialogLED-base BART 55.51 28.36 33.33 69.48 36.64 42.72

BART-large — 53.95 30.52 35.19 66.39 42.92 47.52
BART-large BART 46.97 23.49 27.77 66.84 37.42 43.45
LED-large — 43.80 28.01 30.45 51.84 44.27 43.97
LED-large window 51.15 27.13 32.03 65.93 41.39 46.78
LED-large BART 52.93 31.51 35.33 63.92 43.54 47.15
DialogLED-large — 44.14 30.43 32.36 54.46 48.84 47.23
DialogLED-large window 46.29 32.22 34.05 53.48 46.98 45.86
DialogLED-large BART 49.60 37.88 38.90 61.70 52.18 51.57

Table C.2: Complete concept-based evaluation results on the summarization test set.
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