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Abstract

Machine-generated text presents a potential
threat not only to the public sphere, but also to
the scientific enterprise, whereby genuine re-
search is undermined by convincing, synthetic
text. In this paper we examine the problem of
detecting GPT-2-generated technical research
text. We first consider the realistic scenario
where the defender does not have full infor-
mation about the adversary’s text generation
pipeline, but is able to label small amounts
of in-domain genuine and synthetic text in or-
der to adapt to the target distribution. Even
in the extreme scenario of adapting a physics-
domain detector to a biomedical detector, we
find that only a few hundred labels are suffi-
cient for good performance. Finally, we show
that paragraph-level detectors can be used to
detect the tampering of full-length documents
under a variety of threat models.

1 Introduction

Recent advances in techniques for generating real-
istic synthetic content (i.e., deepfakes) pose a di-
verse set of problems with significant societal con-
sequences (Kreps et al., 2020; Bommasani et al.,
2021; McGuffie and Newhouse, 2020). The advent
of large language models for text generation (Rad-
ford et al., 2019; Brown et al., 2020) have made
it easier than ever to create convincing synthetic'
text (Solaiman et al., 2019). While much attention
has been focused on the role of synthetic audio and
video, it can be argued that synthetic text may give
rise to some of the most serious threats to infor-
mation integrity and the long-term preservation of
archival knowledge (Aliman and Kester, 2021).

'Some authors use the term fake text; however, we prefer
synthetic, since human-written text can contain false infor-
mation, while machine-generated text can (sometimes) be
factually correct (Schuster et al., 2020; Belz, 2019).

Review of Characterizing Tamarobin System Diseases
in Lymphoblastic Cancer Patients

Using the ZiiTELMA monoclonal antibody system
(ZezM), we evaluated the natural antigens of
tamarobin broth, dextrose, and tamarobin vin B,
sodium-citrate. Despite their excellent clinical
properties, none of them have antiviral roles in

the immune system...
The prefrontal "cortex" in the pigeon catecholamine
histofluorescence

The prefrontal cortex of mammals is densely
innervated with dopaminergic fibers. We report a
comparable, dense network of catecholamine
(probably dopamine)-containing fluorescent fibers
in the posterodorsolateral neostriatum of the
pigeon. This region is clearly separable...

Figure 1: Machine-generated text enables the corrup-
tion of technical knowledge (e.g., biomedical research).
One of the above abstracts was generated by GPT-2.
More examples of generated text can be found in §A.7.

While there are currently no documented cases
of published papers containing text from neural lan-
guage models, non-neural machine-generated pa-
pers have already been published in peer-reviewed
journals (Cabanac and Labbé, 2021). With more
convincing text generation techniques and a grow-
ing number of publications, this is a problem that
could get much worse, particularly for non-peer-
reviewed technical text (Ranade et al., 2021). In ad-
dition to hindering the scientific process, synthetic
technical texts could be used to manipulate public
opinion and sow discord around specific scientific
topics (Aliman and Kester, 2021). Other conse-
quences of machine-generated technical text in-
clude the contamination of NLP pipelines (Ranade
et al., 2021) and poisoning of language models
(Schuster et al., 2021).

The rise of realistic machine-generated text — and
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its possible misuse — has spurred the development
of automated tools to distinguish between genuine
and synthetic English text.” However, most work
to date has focused on web text or news, rather than
on domain-specific technical text (Solaiman et al.,
2019; Zellers et al., 2019). While synthetic techni-
cal text is likely to be distinguished by subject mat-
ter experts (SMEs), it is difficult for non-domain
evaluators to do so. Therefore, given the ease at
which large amounts of synthetic text can be gener-
ated, automated countermeasures are necessary in
order to alleviate the burden on SMEs.

We focus on developing capabilities for detect-
ing generated technical English text and delineating
the contexts in which these detection approaches
can be applied.> We assume an adversary gener-
ating technical text using GPT-2 (Radford et al.,
2019), but do not know apriori in exactly which
technical area. Realistically, some domain shift
will be inevitable, which leads us to investigate
whether detectors can be applied across domains,
e.g., can a detector of generated physics papers be
adapted to also detect biomedical text? In addition,
most work to date has focused on detecting short
pieces of text. We show that automated detection
of tampered full-length research papers is possible
under various threat models. Our work makes two
main contributions:

* We show that accurate cross-domain detection
of generated technical text is possible using a
small number of in-domain samples and quan-
tify the amount of SME effort required.

* We study the detectability of tampered full-
text technical papers (where a subset of para-
graphs have been replaced with generated text)
under various scenarios.

2 Related Work

Automated detection of synthetic text Auto-
mated approaches to detecting machine-generated
text have included energy-based models (Bakhtin
et al., 2019), repurposing the generator as a dis-
criminator (Zellers et al., 2019), and various neural
and non-neural classifiers (Solaiman et al., 2019;
Ippolito et al., 2020; Uchendu et al., 2020; Zhong
et al., 2020; Frohling and Zubiaga, 2021; Fagni

2Most work on the detection of GPT-2-generated text has
focused on English. However, (Harrag et al., 2020) examines
automated detection of synthetic tweets in Arabic.

30ur code is available at https://github.com/
ciads-ut/cross—-domain-detection-gpt-2

et al., 2021). Most work on automated detection
targeted GPT-2-generated text, although Bakhtin
et al. (2019), Uchendu et al. (2020), Fagni et al.
(2021) and Stiff and Johansson (2021) also exper-
imented with other generators. Finally, there is a
growing body of work on the adversarial robust-
ness of automated detectors of synthetic text (Wolff,
2020; Bhat and Parthasarathy, 2020; Stiff and Jo-
hansson, 2021; Crothers et al., 2022). A survey
on the automatic detection of synthetic text can be
found in (Jawahar et al., 2020).

Prior work closest to our study are (Solaiman
et al., 2019), (Ippolito et al., 2020), (Munir et al.,
2021), (Bakhtin et al., 2019) and (Stiff and Johans-
son, 2021), which look at cross-domain settings
where the distribution of synthetic text used to train
a detector differs from the target distribution. The
shift could be due to different model architectures
(Bakhtin et al., 2019; Stiff and Johansson, 2021),
different model sizes (Solaiman et al., 2019), differ-
ent decoding strategies (Solaiman et al., 2019; Ip-
polito et al., 2020), or different fine-tuning datasets
(Bakhtin et al., 2019; Munir et al., 2021; Stiff and
Johansson, 2021). Bakhtin et al. (2019) show that
energy-based models generalize poorly across cor-
pora (Wikipedia, news and books), but that training
on the union of the source and target domains is
effective. Munir et al. (2021) show that XL.Net
can accurately attribute synthetic text even when
the GPT-2-generated portions of the training and
test sets come from GPT-2 fine-tuned on different
subreddits.

Unlike the previous papers, we evaluate our de-
tectors on technical (biomedical) text, and vary the
number of labeled samples available for training
in the target domain, under the assumption that
source labels are plentiful but target examples are
more expensive to obtain (i.e., source samples can
be generated at will, but target examples need to
be discovered and verified by a human since the
adversary’s target text generator is generally un-
available). In addition, we evaluate the detection
of full-length tampered documents consisting of a
mix of real and machine-generated content.

Attribution for synthetic text In addition to dis-
tinguishing between real and generated text, one
may also wish to determine which system gener-
ated a given text (e.g., model type, size, decoding
strategy). Variations of this “authorship attribu-
tion” problem have been explored by Uchendu et al.
(2020), Tay et al. (2020) and Munir et al. (2021).
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These works have found that, in general, while
the attribution problem is harder than the detection
problem, details of the text generator can often be
learned from the generated text.

Human detection of synthetic text Human eval-
uations on the detection of generated text have been
conducted for news (Zellers et al., 2019; Brown
et al., 2020; Kreps et al., 2020; Clark et al., 2021),
product reviews (Hovy, 2016; Yao et al., 2017; Ade-
lani et al., 2020), web text (Gehrmann et al., 2019;
Ippolito et al., 2020), stories (Clark et al., 2021;
Donahue et al., 2020; Clark et al., 2021; Gunser
et al., 2021), peer reviews (Bartoli and Medvet,
2020), cybersecurity text (Ranade et al., 2021) and
submissions to federal public comment websites
(Weiss, 2019). These studies have shown that it
is difficult for people to distinguish between real
and neural-generated text. Gehrmann et al. (2019)
developed a tool, GLTR, to help users visualize
statistical artifacts in generated text.

3 Threat model and defender capabilities
3.1 Threat Model

Given that people have trouble distinguishing
real (human-written) from GPT-2-generated text
(Zellers et al., 2019; Kreps et al., 2020; Clark et al.,
2021), we study the detection of generated text
under the threat model where an adversary gener-
ates text from GPT-2 domain-tuned* on domain-
specific text. We do not necessarily assume that
text from this domain is publicly available in sig-
nificant quantities. Throughout, we shall refer to
those developing the generated text as the adver-
sary, and those building automated detectors of
synthetic text as the defender. As there does not
(yet) exist a "real-world" dataset of GPT-2 gener-
ated technical text, we simulate both the adversary
and the defender.’

We study two scenarios: where the adversary
generates single technical abstracts (§4.1), and
where the adversary replaces randomly selected
paragraphs in full-length documents with GPT-2-
generated paragraphs (§4.2). Other threat models
are possible, such as replacing single words, sen-
tences or phrases (Schuster et al., 2020; Donahue

4Following (Han and Eisenstein, 2019), we use domain-
tuning to refer to further self-supervised training of a model
on unlabeled text in a specific domain, and task-tuning to refer
to supervised fine-tuning of a model for a given labeling task.

SMore recently, a corpus of GPT-2 generated (NLP-related)
abstracts has been created for testing detection methods
(Liyanage et al., 2022).

Defender’s
pipeline

Pretrained
Generator

Proxy real text

Generate_
I Proxy

synthetic text

Build
Detector

Proxy'feal text

Domain-tune

Proxy
Generator

Detector

Synthetic text Real text
h ‘.‘ Evaluate
SME label - ~.
Target Generate|
Generator o L
Synthetic  Real text
text

Pretrained Adversary’s
Generator 9 g

Real text plpehne

Figure 2: Experimental setup for detecting synthetic
text used in this paper. Since the defender does not have
access to the adversary’s text generator, they develop a
proxy generator, in order to mimic the adversary’s gen-
erator as closely as possible. Proxy and target corpora
will generally come from different domains.

et al., 2020; Bhat and Parthasarathy, 2020), and
should be studied in future work.

3.2 Defender Capabilities

In general, the defender has little or no informa-
tion about the adversary’s text generation pipeline,
including the data used for training, the model ar-
chitecture used, or the decoding strategy employed.
We assume the defender has access to a small num-
ber of examples from the adversary, which can
be labeled by a subject matter expert (SME) as
real (human) or synthetic (generalted).6 In addition,
since the defender does not have access to the ad-
versary’s target generator, they can build a proxy
generator, trained on proxy text, in order to obtain

®We assume that a SME is able to accurately carry out this
task. In reality, even a SME could make mistakes, but we
leave the scenario of noisy labels to future work.
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more samples of real and synthetic text which are
(hopefully) statistically similar to the ones obtained
from the adversary’, as shown in Figure 2. The de-
fender can then train a model to detect generated
text using both the in-domain SME-labeled text
and the (possibly) out-of-domain proxy text, as de-
scribed in more detail in §4. The level of access the
defender is assumed to have to various parts of the
adversary generation pipeline is shown in Table 1.

Defender’s access level

Adversary’s (target) generator model None
Labeled samples from adversary domain | Limited (SME)
Real samples from proxy domain Plentiful
Synthetic samples from proxy domain Unlimited

Table 1: Assumptions about the defender’s access to
data or models that can be used in a detection pipeline.
We assume a SME is able to label a small (random)
sample consisting of real and adversary-generated text.

Since the effect of differing model sizes has al-
ready been explored (Zellers et al., 2019; Solaiman
et al., 2019; Frohling and Zubiaga, 2021), we as-
sume the adversary and defender use the same sized
model (GPT-2 Medium, with 355M parameters),
but domain-tuned on different datasets. Since the
defender cannot guess the temperature value used
by the target generator, we shall decode using a tem-
perature value of 1.0 for the target generator, but 0.8
for the proxy generator.® We also assume both ad-
versary and defender use nucleus sampling (Holtz-
man et al., 2020). The defender would not know
whether the generator is using nucleus sampling.
However, it was shown in (Ippolito et al., 2020;
Solaiman et al., 2019) that a discriminator trained
with nucleus sampling is able perform nearly as
well at detecting text generated with top-k (Fan
et al., 2018) sampling as with nucleus sampling,
while a discriminator trained using top-k sampling
fails to detect generations from nucleus sampling®.
Hence this is a reasonable assumption to make.

Our experiments will investigate the effects of
domain shift between the proxy and target data, as
well as the number of SME-labeled examples avail-
able to the defender. While the assumption that

"If text from the target domain is available to the defender
in large quantities, the proxy domain is effectively the same
as the adversary (target) domain.

8The effect of differing temperatures is also explored in
(Munir et al., 2021).

“Indeed, viewing the accuracy scores in Table 2 of (Ippolito
et al., 2020) as the payoft to the defender in a zero-sum game,
nucleus sampling is the minimax strategy for both defender
and generator.

both adversary and defender share the same model
architecture may seem like a strong one, we fix the
architecture so as to focus on the effect of domain
shift, and note that previous works have already
studied the effect of using different architectures
(Bakhtin et al., 2019; Stiff and Johansson, 2021),
model sizes (Solaiman et al., 2019), and decoding
strategies (Ippolito et al., 2020; Solaiman et al.,
2019).

4 Automated Detection
4.1 Detecting Generated Abstracts

While the defender could train a detector on the
union of SME-labeled (target) and proxy data as
done in (Zellers et al., 2019), we instead follow
a pipelined approach by first task-tuning on the
proxy real and synthetic text to produce a proxy
detector, before task-tuning a second time on the
SME-labeled text. One advantage of this approach
is that one would still have a detector even when
SME labels are not available. In addition, previous
studies have shown that task-tuning twice can yield
good performance on a variety of tasks and can
help mitigate the effects of domain shift (Phang
et al., 2018; Sellam et al., 2020).

Preliminary experiments on in-domain detection
showed that fine-tuning ROBERTa consistently out-
performed other classifiers (LSTMs, HAN, BERT
and XLNet), as shown in Appendix §A.2, and
so we exclusively use RoBERTa in all of our ex-
periments. This is in line with results in (So-
laiman et al., 2019; Uchendu et al., 2020; Fagni
et al., 2021), which showed the effectiveness of
RoBERTa for detecting GPT-2-generated text. In
order to investigate the benefit of further pretrain-
ing (Gururangan et al., 2020), we also domain-
tune RoOBERTa on technical text from various sci-
ence, technology, engineering, and mathematics
(STEM) fields, as described in §5.1.2; we call the
resulting model RoBERTa-large-STEM. Our exper-
iments will vary both the number of proxy and
SME-labeled abstracts, as well as the subject do-
main of proxy text, as detailed in §5.1.

4.2 Detecting Tampered Documents

We also investigate how well our detection meth-
ods work when applied at the document level, as-
suming the following attacker model: a fraction of
randomly-selected paragraphs in a document are
replaced by generated paragraphs (see §5.2.1 for
details). Each generated paragraph is conditioned
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on the previous paragraph (i.e., the previous para-
graph is used as a prompt). Conditioning helps
the text stay on-topic, and would likely help evade
coherence-based detectors!®(Singla et al., 2021).
We refer to the modified documents as tampered
rather than generated, since only a subset of the
document might be generated.

On the detection side, we train paragraph-level
detectors, and then aggregate paragraph scores into
document scores to classify documents. We need to
specify both the question we would like to answer,
as well as how to aggregate the detectors’ para-
graph scores {s;} to answer it. Here we interpret
s; as the probability that a paragraph has been gen-
erated. The general question “has this document
been tampered with?” leads to two more specific
questions and associated scoring strategies:

* (S1) Is at least one paragraph in the document
generated? The probability that a document
with paragraph scores {s;} has at least one
synthetic paragraph is then given by:

P=1-J]J1-s)

* (S2) What fraction of a document is gener-
ated? For a document with N paragraphs, this

is:
1
F= N Z ﬂs¢>0.5

As we will see, one drawback of scoring with (S1)
is that it is extremely sensitive to false positives. En-
tirely human-written documents have a high chance
of having one or two false positives (especially
among short paragraphs), even if the other para-
graphs are correctly classified. In these cases the
human documents will be classified as tampered.
Since the false positive rate is highest for short para-
graphs!!, we can filter out very short paragraphs
from each document before scoring. We thus also
experiment with the following score:

* (S1-T) Is at least one paragraph p; longer than
a given threshold 7" synthetic? The probability
that this is the case is:

P=1-— H(l — S ]llen(pi)>T)

19Such detectors would use paragraphs in context, rather
than independently, and should be considered in future work.

'The effect of paragraph length on the false positive rate is
shown in Figure 7 in Appendix §A.4. Similar results can also
be found in (Ippolito et al., 2020; Munir et al., 2021).

For each document we can use thresholds for P
or F' to decide how to classify the document; in
addition, we shall use (S2) to rank documents by
how much generated content they contain.

5 Datasets

Here we describe the datasets used and other ex-
perimental details when simulating the adversary
and defender’s pipelines (Figure 2). The experi-
ments on synthetic abstract detection are described
in §5.1; experiments on tampered document detec-
tion are described in §5.2.

5.1 Real and Synthetic Abstracts

Table 2 summarizes the datasets used. The ad-
versary has access to the Semantic Scholar Open
Research Corpus12 (Ammar et al., 2018), while the
defender has access so several subsets of CORE
(Knoth and Zdrahal, 2012), as well as small amount
of text labeled by a SME. We chose abstracts from
CORE related to biomedicine and physics, since
these subjects had the largest number of abstracts
for fine-tuning models (shown in §A.6, Table 10).

Synthetic abstract detection

Corpus Purpose

Semantic Scholar | e Real portion of the test set

(Biomed+CS) e Domain-tune adversary’s generator
e Task-tune detector on real (“SME-
labeled”) samples from adversary do-
main

CORE e Domain-tune proxy generator

(Biomed, Physics, | e Task-tune detector on proxy data

Biomed+Physics)

CORE (STEM): | e Domain-tune RoOBERTa on STEM

(all subjects listed | text (“RoBERTa-large-STEM™)

in §A.6)

Table 2: List of datasets and how each was used for the
cross-domain synthetic abstract detection experiments.
The Semantic Scholar Open Research Corpus is used
for the adversary’s generation pipeline, while subsets
of CORE are used for the defender’s pipeline.

5.1.1 Test Data

We first discuss the construction of datasets used
to evaluate the detection of GPT-2-generated ab-
stracts. The test set consists of 1000 real and 1000
synthetic abstracts, generated using GPT-2 domain-
tuned on abstracts from the January 2019 version
of the Semantic Scholar Open Research Corpus
(Ammar et al., 2018)'3, hereafter referred to as

2These abstracts are mostly, but not entirely, biomedical
(Beltagy et al., 2019).
3From https://api.semanticscholar.org/corpus/download/
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Semantic Scholar.'* Text was generated using nu-
cleus sampling, with p sampled uniformly between
0.9 and 1.0, since (Zellers et al., 2019) showed
detection was hardest with p in that range.

5.1.2 Training Data

Here we describe the SME-Ilabeled abstracts (in-
domain) and proxy (possibly out-of-domain) data
used to train detectors of GPT-2 generated ab-
stracts.

SME-labeled data Nested subsets of another
10k abstracts (of sizes {100, 500, 1000, 1k, 10k}),
obtained in the same way as the test set, were used
as “SME-labeled” (in-domain) data for training.

Proxy data Out-of-domain abstracts were sam-
pled from the CORE dataset of open access re-
search papers (Knoth and Zdrahal, 2012), version
2018-03-01'>. CORE covers a wide variety of
subjects, some of which can be identified from
each paper’s data provider. We used a subset of
CORE related to STEM fields!®, and filtered out
non-English abstracts using the Python package
langdetect. This subset of CORE was also used to
domain-tune RoBERTa-large on STEM abstracts,
resulting in RoBERTa-large-STEM.

We trained proxy generators using the biomed-
ical and physics portions of CORE (237,620 ab-
stracts for each), and on the union of the biomedical
and physics portions (“biomedical-physics”, with
475,240 abstracts). For each of these three gen-
erators, we created nested subsets (of sizes {100,
500, 1000, 1k, 10k, 100k}) of proxy training data.
As with the SME-labeled data, half of the samples
were real and half were generated'”. In the case of
biomedical-physics, we used equal numbers of real
biomedical and real physics text. We estimate that
roughly half of the biomedical-physics generations
were biomedical. Examples of generated physics
and biomedical abstracts can be found in Appendix
§A.T.

4Fine-tuning hyperparameters are shown in §A.1.

'S Available at https://core.ac.uk/services/dataset/

!The list of open access data providers for each STEM
subject is provided in Table 10 in Appendix §A.6.

71n the absence of additional information, it seems reason-
able to assume an uninformative prior wherein the classes are
balanced. In practice, one could base this prior on the empiri-
cal distribution over classes in the SME-labeled data, which
approximates the distribution of real and generated samples in
the corpus under consideration.

5.2 Real and Tampered Documents

While the CORE corpus includes full-length doc-
uments, they have not been pre-processed and are
rather noisy. Fortunately, the S20RC corpus (Lo
et al., 2020)'8 includes millions of pre-processed
scientific documents. The full-length papers in
S20RC have been preprocessed with paragraph
splitting; in addition, captions, tables, headers, foot-
ers, footnotes, abstracts and bibliography have been
removed from the main text.

We sampled from the 6.8 million papers in
S20RC which are biomedical'? to create disjoint
datasets for domain-tuning proxy and target GPT-2
generators, for task-tuning RoBERTa-based detec-
tors, and for test sets. Since our attacker model con-
sists of random paragraph replacement, we domain-
tuned GPT-2 on 890,000 biomedical paragraphs in
order to generate new paragraphs conditioned on
previous paragraphs.?’ This is done twice, on non-
overlapping data, to obtain two separate generators:
the target generator is used to create the test doc-
ument collections and SME-labeled training para-
graph collections, while the proxy generator is used
to create proxy training data. The details of each
of these datasets are given below.

5.2.1 Test Data

In order to evaluate our detectors against vari-
ous document tampering scenarios, we use sev-
eral document-level datasets, which differ by the
number of generated (replaced) paragraphs in each
document. Each of these test sets consists of
500 human documents and 500 tampered (gener-
ated/modified) documents.?! The five test sets con-
taining tampered documents are given as follows:
test-1-fake contains only tampered documents with
exactly one synthetic paragraph, text-x replaces
every paragraph with a generated paragraph with
probability z, for x in {0.1, 0.5, 0.9}, and test-
all-fake has all paragraphs generated, with each
subsequent paragraph generated conditional on the
previously generated paragraph. Two examples can
be found in Appendix §A.7, Table 13.

18y. 1 (2020-07-05) at https://github.com/allenai/s2orc.

19We selected all papers with a Microsoft Academic Graph
field of study which included Biology or Medicine, or which
had a PubMed or PMC ID tag (these are biomedical in a broad
sense: the 15% of papers that were not tagged with Biology or
Medicine were on the related fields of Chemistry, Psychology,
Physics, Math or Computer Science applied to biomedicine.)

Details on the fine-tuning of GPT-2 are in Appendix §A.1.

?IFor each test dataset we use the same 500 human docu-
ments and the same 500 documents to tamper with.
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5.2.2 Training Data

Here we describe the datasets used to build
paragraph-level detectors.

SME-labeled data Nested subsets of 10,000
paragraphs (of sizes {0, 100, 500, 1k, 10k}) were
used as SME-labeled (in-domain) training data,
with equal numbers of real and generated para-
graphs. The generated paragraphs are obtained
using the same domain-tuned generator as for the
test sets. For each paper, we sample one paragraph
to use as real, and one paragraph to condition on.

Proxy data The proxy GPT-2 generator is used
to obtain nested subsets of 10,000 paragraphs (of
sizes {0, 100, 500, 1k, 10k}) in much the same way
as for the in-domain data, except for one difference.
Unlike for the in-domain data, the defender has
access to every human paragraph that is being re-
placed by a (proxy) generated paragraph??. So for
each paper, we sample a real paragraph at position
1, and use the previous paragraph at position ¢ — 1
as a prompt for the generated paragraph.

What if the defender uses a proxy generator
designed for unconditional paragraph generation?
Preliminary experiments on using proxy data gener-
ated without prompting showed only a small drop
in accuracy under most dataset sizes, so this is not
a strong assumption to make.??

6 Results

6.1 Detection of Generated Abstracts

Detection performance on Semantic Scholar ab-
stracts depends on the model used for task-tuning
(RoBERTa-base, RoBERTa-large, or RoBERTa-
large-STEM), the proxy domain (biomedical,
physics, or biomedical-physics), and the number of
proxy and SME samples used for task-tuning, with
full results shown in Appendix §A.3. We consider
the effects of these four dimensions below.

Interplay of SME and proxy labels Some SME
labels are always needed for good performance,
even when the training proxy text is in a similar
domain as the target domain (Table 3). Without
any SME labels, the highest accuracy that could be
achieved with RoBERTa-large using only biomed-
ical proxy text was .67 (with 10k proxy samples).

220n the other hand, the in-domain data is labeled by a
SME, who identifies generated paragraphs but does not have
access to the human paragraphs that they replaced.

BSee Appendix §A.5 for details.

Proxy samples

0 100 500 1k 10k 100k
0 59 58 54 67 .65

iz_ 100 .68 .67 | .89 89 .81 .82
§ 500 .69 .68 .82 .75 .88 .84
%J k| 80 90 84 89 90 .84
» 10k| 92 95 94 94 9 92
Table 3: Detection accuracy when task-tuning

RoBERTa-large with biomedical proxy data.

n Biomedical Biomed-physics Physics
100 .67 .87 78
500 .89 .82 .83
1k .89 .85 .84
10k .81 .69 .62
100k .82 .70 .66

Table 4: Comparing proxy domains when task-tuning
RoBERTa-large on n proxy samples (from different do-
mains) and 100 SME samples.

Task-tuning the 10k-proxy model checkpoint a sec-
ond time with only 100 SME-labeled samples re-
sulted in a large improvement (accuracy of .81,
recall of .95).

Given a fixed number of SME samples, increas-
ing the number of proxy samples improves perfor-
mance, but only up to a point, after which the proxy
data starts being detrimental. For example, given
100 SME examples (row 2 in Table 3), the highest
performance for the biomedical proxy experiments
was achieved when using between 500 and 1000
proxy samples (resulting in accuracy of .76-.77 for
RoBERTa-base, .89 for RoBERTa-large and .91-.92
for RoBERTa-large-STEM). The same observation
holds when using physics and biomedical-physics
proxy text. Unsurprisingly, the effects are worse
with increasing domain shift. The decrease in accu-
racy when jumping from 1k to 10k proxy samples
is .08 for biomedical proxy data, .16 for biomedical-
physics proxy data, and .22 for physics proxy data.

Effect of domain shift When 1k or 10k SME la-
bels were available, performance across task-tuning
domains was similar. On the other hand, with 500
SME labels or less the impact of the proxy data
domain was greater, as shown in Table 4 for the
case of 100 SME labels. For most proxy dataset
sizes, there is a decrease in performance as one
moves from biomedical to physics.

Finally, we note that when using RoBERTa-
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large-STEM, 100 SME samples are sufficient to
achieve .91 accuracy when using biomedical proxy
samples. However, if the proxy samples come from
a different domain (physics, or a mix of physics and
biomedicine), then 500 SME samples are required
to achieve the same accuracy.

Effect of model size RoBERTa-large had higher
accuracy than RoBERTa-base under most scenar-
ios, with an absolute increase in accuracy ranging
between 1 and 22 points. RoBERTa-large always
had higher precision than RoBERTa-base.

Effect of domain-tuning Pre-training ROBERTa
on a diverse corpus of STEM technical text im-
proved performance in most cases, sometimes by
a large margin. RoBERTa-large-STEM outper-
formed RoBERTa-large even when the target and
proxy domains were close (i.e., using biomedical
proxy data), with 1 to 5 point gains in accuracy
under most conditions.

Domain-tuning ROBERTa was more beneficial
with increasing amounts of domain shift, and when
task-tuning on a large number of proxy samples
and a small number of SME-labeled samples, as
shown in Figure 3. A domain-specific RoOBERTa is
better at recovering from being trained on a large
volume of data from the wrong domain, when given
a small amount of in-domain text.

B Biomedical
220 [ Biomedical-physics
g £SZ3 Physics
5
g15 poasss
< [
[
c 3564
3564
o 10 (%%
> 1564
c 0564
< [
g ho%ss
5
00504 — 0z
0
100 500 1000 10,000

Number of SME samples

Figure 3: Increase in accuracy when switching from
RoBERTa-large to RoBERTa-large-STEM, when task-
tuning on 10k proxy samples.

6.2 Detection of Tampered Documents

The performance of the RoBERTa-large detectors
at the paragraph level is shown in Table 5. It is not
unrealistic to assume a SME can label 100 para-
graphs (50 real, 50 synthetic) to create a detector
with .94 accuracy. Thus, in the rest of the section
we shall only evaluate the classifier trained on 10k
conditioned proxy samples and 100 SME samples.

Identifying documents with at least one syn-
thetic paragraph Here we apply the scoring

Proxy samples

0 100 500 1k 10k

0 60 78 .84 93
S 1000 77 82 87 89 94
£500 85 89 90 90 .95
= 1k 91 91 90 92 94
“ 10k 96 95 96 96 .96

Table 5: Accuracy when task-tuning RoBERTa-large
on conditioned proxy data, evaluated on a balanced sub-
set of 1000 real and 1000 synthetic paragraphs.

Test set T =500 T = 1000

test-all-fake .87 [.79,1.0] .98[.96, 1.0]
test-0.9 87[.79,1.0] .97[.96, .99]
test-0.5 .86 [.79, .99] .96 [.96, .96]
test-0.1 81 [.77,.89] .80[.94, .63]
test-1-fake .76 [.74, .78] .67 [.91, .37]

Table 6: Performance (accuracy, [precision, recall])
when predicting whether documents contain at least
one synthetic paragraph (after removing paragraphs
shorter than 7).

strategies (S1) and (S1-T) described in §4.2 to pre-
dict whether a given document has at least one
generated paragraph. We found that on all our test
sets, scoring documents using (S1) resulted in re-
call of .99-1 but precision at nearly chance level
(.55-.56). This is due to the high false positive rate
for short paragraphs. To remedy this, we score us-
ing (S1-T), ignoring all paragraphs shorter than a
given threshold of 7" characters®*. The results for
T = 500 and 7" = 1000 are shown in Table 6.

When T" = 1000, performance is high for test-
all-fake, test-0.9 and test-0.5; however, recall drops
substantially for test-0.1 and test-1-fake. This is
due to the fact that these test sets contain very
few generated paragraphs, which are then more
likely to be filtered out: all synthetic paragraphs
were removed from 64% of tampered test-1-fake
documents, and 39% of tampered test-0.1 docu-
ments. Unfortunately, filtering less aggressively
with 7' = 500 improves recall at the cost of lower
precision across all test sets.

Ranking documents by fraction of generated
content We rank documents using (S2), i.e., ac-
cording to the estimated fraction of paragraphs clas-

21f all paragraphs in a document are shorter than 7', we
score the longest three paragraphs, but this is a rare occurrence
(less than 5% of documents when 7" = 1000).
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Test set P@100 P@250 P@500
test-all-fake | 1.0 1.0 .99
test-0.9 1.0 1.0 .99
test-0.5 .98 .97 .95
test-0.1 .70 74 .69

test-1-fake .57 .60 .59

Table 7: Ranking performance when ranking docu-
ments according to the estimated fraction of paragraphs
classified as generated.

sified as generated. Table 7 shows the fraction of
documents in the top-k ranked documents that were
tampered with (P@k). It is possible to retrieve
nearly all tampered documents, except for test sets
test-0.1 and test-1-fake.

Effect of paragraph splitting errors It is unre-
alistic to assume that the adversary and the defender
use the same paragraph splits. For example, text
from a PDF file must first be extracted and split
into paragraphs before detection can be done. Even
when using a good paragraph splitter, it is unlikely
that the paragraph splits would exactly match those
used by the generator. To investigate the robustness
of detection against paragraph splitting errors we
process each test set as follows: each paragraph
is sentence-segmented with scispaCy v.0.2.2 (Neu-
mann et al., 2019), and every five consecutive sen-
tences is taken to be a paragraph, disregarding the
original paragraph splits. This is a stress-test for
our detectors, since one can probably achieve far
fewer paragraph-splitting errors when using a para-
graph splitter such as GROBID (Lopez, 2009).

When applying the detector on the incorrectly-
split documents and scoring with (S1), we find
that precision increases from .55 to between .61
and .67. This is due the fact that paragraphs in
the human 5-sentence splits are generally longer
than the original paragraphs. On the other hand,
recall drops significantly for test-0.1 and test-1-
fake (from .99 to .87, and .99 to .79, respectively).
This is due to the fact that it is harder to detect
paragraphs containing a mix of real and synthetic
content: recall was .95, .66 and .33 for the the
subsets of paragraphs with 5, 4, and 3 synthetic
sentences, respectively>.

2This affected test-0.1 and test-1-fake the most, because
these test sets had a greater fraction of paragraphs with mostly
human sentences but with some generated sentences mixed in.

7 Conclusion

In this paper, we studied the problem of automatic
detection of GPT-2-generated technical text. We
found that RoOBERTa-based detectors can be suc-
cessfully adapted from one scientific discipline
(physics) to another (biomedicine), requiring rel-
atively small amounts of in-domain labeled data.
These could be provided by a subject matter ex-
pert (SME) in a reasonable amount of time. We
also evaluated these paragraph-level detectors on
a document tampering task, assuming that the ad-
versary replaces randomly-selected paragraphs in a
document with generated ones.

Future work should evaluate the extent to which
this methodology would work on detecting text
from newer generators such as GPT-3. Other chal-
lenging scenarios include adding noisy labels (e.g.,
if a SME makes a certain fraction of mistakes), and
class imbalance. Our results on document tamper-
ing (i.e., that it is significantly harder to detect small
amounts of generated text intermingled amongst
real text) also point to the need to develop detec-
tion pipelines for other threat models such as single
word or phrase substitutions (Schuster et al., 2020).
As text generation techniques continue to improve,
it may be that more interpretable, fact-checking
approaches are required to detect both human and
machine-generated misinformation.
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Ethical Considerations

Improvements in the detection of synthetic text
could be used by an adversary to improve the qual-
ity of generated text or to help them avoid detec-
tion (Darmetko, 2021). False positives are another
source of potential negative consequences of auto-
mated detectors. For example, incorrectly flagged
human-written content could be a source of misin-
formation, and could additionally lead to a loss of
trust in the detection system. Care should be taken
that false positives do not affect certain demograph-
ics disproportionately (Bommasani et al., 2021,
§5.2). Finally, widespread awareness of the mere
possibility of synthetic scientific text can further
undermine public trust in genuine science (Makri,
2017).
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A Appendix

A.1 Fine-tuning hyperparameters

Here we list the main hyperparameters used in our
experiments.

Domain-tuning GPT-2 to generate abstracts
The GPT-2 generators (both proxy and target gen-
erators) were domain-tuned with a block size of
512 BPE tokens, and a batch size of 6 on two Titan
RTX GPUs, with the Adam optimizer.

Domain-tuning GPT-2 to generate paragraphs
in context Proxy and target GPT-2 generators
were obtained by domain-tuning GPT-2 with a
block size of 768 and a batch size of 3 for
four epochs on two disjoint, random subsets of
S20RC biomedical papers, each consisting in
about 890,000 paragraphs.

We formatted the fine-tuning data in order to gen-
erate complete paragraphs conditioned on previous
paragraphs; i.e., each training instance consisted of
text from consecutive paragraph pairs: the last 256
tokens of a paragraph, a special newline token, and
the next paragraph. For each paragraph pair (A, B),
truncating A at 256 tokens allowed us to encode at
least 512 tokens for each paragraph B, and about
95% of paragraphs in the domain-tuning dataset
are shorter than 512 tokens. Thus, the model could
learn how to end paragraphs naturally.

Task-tuning RoBERTa We task-tuned all
RoBERTa models with a block size of 512 on
two Titan RTX GPUs. For RoBERTa-base, we
used a batch size of 40, while for RoBERTa-large
and RoBERTa-large-STEM we used a batch size
of 7. Preliminary experiments suggested that for
the smaller task-tuning datasets training for more
epochs improved performance. The 100-sample
task-tuning dataset was trained for 80 epochs, the
500-sample dataset was trained for 16 epochs,
and the other datasets were trained for 8 epochs.
Task-tuning on the SME-labeled (target) text was
done using the same hyperparameters as were used
for the proxy task-tuning.

A.2 Comparison of classifiers on in-domain
detection

Table 8 compares several classifiers on the in-
domain detection task (i.e., the real portions of the
train and test sets are from the Semantic Scholar
corpus, and the synthetic portions were produced
by the same GPT-2-Medium generator).

RoBERTa-large (Liu et al., 2019) and XLNet-
large (Yang et al., 2019) outperform the other clas-
sifiers. We chose RoBERTa over XLNet because
XLNet is known to be unstable when task-tuned on
small datasets (Ma et al., 2019).

Discriminator  Accuracy
LR (BOW) .64
LSTM .67
HAN 72
BERT-base .86
BERT-large .90
XLNet-base .89
XLNet-large 95
RoBERTa-base 93

RoBERTa-large 95

Table 8: Detection accuracy when for a variety of mod-
els trained on 10,000 in-domain abstracts.

LR (BOW) indicates logistic regression with un-
igram count features, and HAN (Hierarchical At-
tention Network) is a hierarchical LSTM with two
attention layers, one for words and another for sen-
tences (Yang et al., 2016).

Both the LSTM and the HAN used pre-trained
GloVe embeddings®® (Pennington et al., 2014).
They were trained for 60 epochs with early stop-
ping (patience 10), with 128 hidden layer units,
dropout of 0.5, a batch size of 64, learning rate
of 0.001 and the Adam optimizer. For the HAN,
abstracts were truncated at the first 20 sentences
and only the first 50 tokens in each sentence were
used. For the LSTM, abstracts were truncated at
200 tokens.

A.3 Full cross-domain results

Figures 4, 5 and 6 contain the full results (accu-
racy, precision and recall) for all the cross-domain
experiments discussed in §6.1.

Phttps://nlp.stanford.edu/data/glove.42B.300d.zip
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Figure 4: Detection performance when using biomedi-
cal proxy data.
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Figure 5: Detection performance when using physics
proxy data.

A.4 Effect of paragraph length on detection
performance

There is a higher percentage of short paragraphs in
the body of scientific papers than there is among
abstracts. We noticed this can lead to difficulties
in detection, since detector performance deterio-
rates with shorter text lengths (Ippolito et al., 2020;
Munir et al., 2021).

To investigate the effect of paragraph length on
performance, we ranked the human paragraphs by
their length in characters and binned them (200
per bin), in order to calculate the false positive
rate within each bin. The false negative rates were
calculated similarly using the generated paragraphs.
These are shown in Figures 7 and 8. The false
positive and false negative rates can be seen to
increase substantially for paragraphs with less than
500 characters.
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Figure 6: Detection performance when using biomedi-
cal and physics proxy data.
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Figure 7: False positive rate as a function of paragraph
length.

A.5 Effect of training on paragraphs
generated without conditioning

Since it might be unrealistic to assume that both the
adversary’s (target) generator and the defender’s
(proxy) generator both generate text in the same
way — by conditioning on the last 256 tokens of the
previous paragraph — we verified that our results are
not heavily dependent on this assumption by also
testing detection performance using unconditional
(i.e., unprompted) synthetic paragraphs as proxy
training data.

Tables 5 and 9 show paragraph-level accuracy
when training on conditioned and unconditioned
proxy data, respectively. As expected (Tay et al.,
2020), performance is higher when training with
conditioned proxy generations than with uncondi-
tioned proxy generations if no SME samples are
used (e.g., an increase in .10 in accuracy when us-
ing 10k proxy samples). This is mostly due to a
large increase in recall (up to .21 for 10k proxy sam-
ples). However, a second round of task-tuning with
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Proxy samples

0 100 500 1k 10k

0 S1 73 78 .83
100, .77 .75 .83
500 .83
1k
10k

SME samples

Table 9: Accuracy when task-tuning RoBERTa-large
on unconditioned proxy data, evaluated on a balanced
subset of 1000 real and 1000 synthetic paragraphs.

SME samples helps close the gap between task-
tuning with conditioned and unconditioned proxy
samples. Indeed, 100 SME samples are enough to
nearly close the gap (a difference of .02 in accu-
racy).
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A.6 STEM subset of the CORE dataset

Subject

%

Open access data providers

Biomedical

Physics

Computer Science

Mathematics

Various subjects

Total

28.1

39.8

34

6.1

22.6

100

PubMed Central

Nature Precedings

Publications from Karolinska Institutet

Collection Of Biostatistics Research Archive (COBRA)

e-publications @RCSI (Royal College of Surgeons in Ireland)
DigitalCommons @ TMC (Texas Medical Center)

Digital Commons@Becker (Washington University School of Medicine)

CERN Document Server
arxiv (astro-ph, cond-mat, gr-qc, hep, nlin-chao-dyn, nucl, quant-ph, physics)

arxiv (cs)

Dagstuhl Research Online Publication Server
CiteSeerX

Computer Science Technical Reports at Virginia Tech

arxiv (math)

University of Oxford Mathematical Institute Eprints Archive
NUMDAM

Bulgarian Digital Mathematics Library at IMI-BAS

Naval Postgraduate School

University of Oxford Mathematical Institute Eprints Archive
Massachusetts Institute of Technology
California Institute of Technology

Imperial College London

National University of Singapore
HAL-Polytechnique

Theses en Ligne (TEL)

Universitat Politecnica de Catalunya

University of Strathclyde

Digital library of Brno University of Technology

Table 10: Subjects, data providers, and fraction of (English-language) abstracts per subject in the STEM subset
of CORE used to domain-tune RoOBERTa-large-STEM. This subset contains 916,074 abstracts. The Biomedical
portion (237,620 abstracts), and a subset of the Physics portion (237,620 abstracts) were used to domain-tune
GPT-2 to generate physics and biomedical abstracts.
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A.7 Examples of generated technical text

Tables 11 and 12 show examples of GPT-2-generated biomedical and physics abstracts. Table 13 shows
two examples of tampered documents, where some of the paragraphs were replaced by GPT-2-generated
paragraphs. Some of the (human-detectable) errors in the generated abstracts are given in Appendix §A.8.

Generated biomedical abstracts

Cognitive health remains a widely misunderstood area of dementia research. Findings from the Diagnostic and Statistical
Manual of Mental Disorders, Fourth Edition (DSM-IV) continue to indicate that people with dementia have varying degrees of
personality disorders, one of which is asocial functioning. Given that individuals with dementia frequently experience emotions
and cognitions such as anger and blame, it is important to understand the factors that contribute to this range of dysfunctions in
cognitive functions. To address this issue, we review current thinking regarding how people with dementia and their caregivers
understand these issues. We describe the functional distinction between healthy and low-function functioning dementia, discuss
the relationship between dementia and temperament, and suggest future directions for future research and development.

Finds from modern groundwater samples have helped to nail down the mineralogy of many deposits of accessible minerals in the
Northwest Passage, including Baker Fountain, upper Boundary Haven, and Meishinmaru Harbor. Belying all this, however, have
been the potential variability of minerals in this area that are often overlooked, especially the Mocharla Complex, which contains
all of the elements of known elements within only 4% of metallic and rare earth elements. This latter figure equates us with other
locations where magnetic isotope data for Magnesite would make it worth pursuing such as Pennsylvania, New Jersey, San Nac/3
molar ratio studies, and a hexagonal ratio study, to name but a few. In this paper we provide perspectives in mineralogy and
mineralogy variation of the assemblages of alternatives to Magnesite in West Virginia; as well as the communities that should
feel comfortable championing the developers of M&RK and should consider the opportunity for they shops eventually reuse
Magnesite in sites near their site, regardless of the comings and goings in North America. The mineralogy presented in this
book is quite different from the one presented by Nides-R7K who has published articles and spoken series on Magnetozone suto
oravailable water conditions provide t he following: i) They are complementary. ii) Reproducer: George Shee, CSU North West,
University of Kansas. (Author book page#153-188), Valerie Schon, St. Paul Area Department of Science, University of Maine,
University of Minnesota, Science Center, York University, Michigan State University, North Carolina State University, Ohio
State University, University of Alabama-Birmingham, The College of chemist and analytical biologist, Society for Research on
the Geology/Geology "Living with magnesites" 194 times since 1994: Number 737 How to cite this: Shee, George. Metals,
minerals and past. Minerals, Minerals and Geology. Hostetter (D: Labour History of the Bureau of Mines), Washington, DC,
1996.

Here we report an efficient assay to differentiate, precisely and quickly, human prostate cancer (PCa) cell lines from normal
cells/prostatic tissue. In prostatic PCa from each patient, we measured CE kinase activation of 1,2-bromopentaneidin (BPP),
calcitonin-3, bone morphogenetic protein-6, urokinase 21 and eukaryotic phospho-protein kinase-2 (EPSK-2). Cells from 2
patients and 1 patient with hepatitis C and provided at the same time were simultaneously PCR screened to detect chromosomal
chromosomal aberrations and restriction fragment length polymorphism variations (RFLP). We found one viable Gdp from each
patient. We did not detect chromosomal aberrations and standard regulators of EGS in PCa patients. Most likely, our results,
also for grade II PCa, show that PCa cells have a passive chromosomal integrity with DNA repair genes, but this is not found in
intact androgen-depleted patients. Inadequate DNA repair genes and excessive chromosomal aberrations, due to non-genomic
proportions of UGT-3, EDS1, EGS2, URP-88 and UAR6 compared to their value combined, lower DNA repair products of
9.66%, and reduced cell ploidy.(ABSTRACT TRUNCATED AT 250 WORDS)

During age-dependent contractions, the forearm flexor isomerophilic is a loss of maximum strength of the abductor tendon, which
influences flexor mode and resistance. At peak contraction strength, the level of higher order strength produced by the concentric
contractions is higher than the lower order strength due to lower upper, lower, and lateral potentiometric torque respectively.
Moreover, age affects the time interval over which the elastic torque of the tendon increases, which changes from several short to
several long and gradual. The apparent loss of maximal strain strength of the tendon during WER occurs generally late in the
range of resistance, but in rare cases of progressively superior mechanical strength, the contractile effects of the WER series
from the same period may be preserved.

Table 11: Examples of abstracts generated by GPT-2 fine-tuned on biomedical text.
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Generated physics abstracts

We construct a free Kac-Moody algebra in terms of SU(N) bi-holomorphic maps. Our construction is not exactly as in the
standard program, which is based on the Kac-Moody algebra itself. In this work, we address the question whether a general
construction can be made using a 3-dimensional space with its boundary fixed to be a manifold. For such a construction, one can
quantize the free Kac-Moody algebra exactly using the interior data of a closed submanifold, an example of which is given.

A general classification of the massive scalar field model is presented. This model can be taken to be the simplest of all
models exhibiting super-Kahler group structure. The very general model is then interpreted as a manifestation of the infinite
supersymmetry of N=2 supersymmetric Yang-Mills theory with a simple Kaluza-Klein U(1) gauge group. This theory has an
analog of Seiberg-Witten theory with a U(1) gauge group. The two models are related by the fact that the massive scalar field
model reduces to the Seiberg-Witten model when the negative cosmological constant is eliminated.

We have simulated a sample of 60,000 galaxies in order to study the spatial structure of halos and the formation properties of their
wind-driven columns. The galaxy models (average virial radius R. = 0.25kpc, total column density Onufl/ 2 =1.2em™3,
total column density Ko = 0.3c¢m ™2 and total column density L,u—2/3 = 0.5¢m %) were selected from a large database of
spiral galaxy photometry. We have investigated the properties of the wind-driven column density as a function of the galaxy
size, the radius and the column density in the inner Lyman limit. R. and L,u are defined as the fraction of the total column
density, Onu2 — Lyu, of gas in the central region of the galaxy, and L, w is defined as the fractional logarithm of the gas density.
The simulations were carried out on a large 64x64 grid of 16x16 square degrees (3.6 x 3.6 square degrees) in order to obtain a
large number of potential galaxies. The cross-correlation of the radial profile of the radial intensity distribution and the velocity
distributions of gas streams shows that the velocity distribution is strongly wave-like, with the velocity dispersion < 0.5kms™1;
the power law of the dispersion is also found. We also find that the density of gas passes through a strong exponential regime at
the center, and that the central density exceeds that at the periphery by 2 solar masses per degree of freedom.

We propose a new solution to the cosmic censorship problem. It is based on the idea that all physical experiments have to be
canceled at the same time, with a specific choice of the data. In this approach the data would be separated from the source region
by a detector, whose response is controlled by the Planck energy. The data would be split into beams of different energies. The
different beams, and their response to each other, would be synchronized in a second detector, which would then (miraculously)
detect photons from the source region and carry out the corresponding measurements in the detector. In this way the cosmic
censorship problem can be reduced to a second problem: how to determine the signal and the background in the detector. We
give an explicit example for the case of neutrino astronomy, and show that we can solve the cosmic censorship problem without
any special choice of the signals of the detectors.

We study two-dimensional XY spin models in the two-dimensional triangular lattice using the "dynamical” renormalization
group method. For the first time, we study the ground-state phase diagram of the ground-state XY Heisenberg spin chain with
non-zero exchange coupling. We perform a thorough analysis of the chemical potentials and the thermodynamic properties of
the ground state. We find that the thermodynamic limit of the XY model exhibits a mean-field phase diagram characterized
by a disordered phase, a first-order phase transition, and a thermal phase. Our calculation illustrates the rigorous approach to
demonstrate the zero temperature properties of the XY model.Comment: 12 pages, 6 figure.

The KKP equation is an n-component Green function (GFF) Hamiltonian system. The KKP equation is known to be a Lie
algebra in the sense that it is a subalgebra of the SO(n) algebra SO(n);. In this paper we construct the n-component GS
theory with a Gaussian Hamiltonian H and a (1, 1) trace-free action. We show that in this system the excitation spectrum of the
n-component GS system is the same as in the sine-Gordon system except for the fact that the excitation spectrum in the KKP
system is product of the spectrum in the sine-Gordon and in the KKP system. We derive the n-component GS equation using the
KKP equation in the dilute state, and show that the solution of the KKP equation in a dilute state is equivalent to the solution in
the sine-Gordon system. This equivalence holds, in particular, when the KKP equation is interpreted as an SL(2, R) system in
terms of the second harmonic operator. We further show that this equivalence holds also for n-component GS systems with spin
two and spin zero. We also derive the KKP equation for the quantum spin chain with n-component GS components, which has a
non linear sine-Gordon Hamiltonian and a periodic potential.

Table 12: Examples of abstracts generated by GPT-2 fine-tuned on physics text.
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Tampered excerpt from Cooper et al. ""Effect of dietary sodium reduction on red blood cell sodium concentration and
sodium-lithium countertransport.' Hypertension 6.5 (1984): 731-735.

Two food lines were created in the cafeteria, and a record was maintained of each meal. For Group 2, food items high in sodium
were eliminated, and reduced sodium products were substituted when possible, as in the case of cheese, peanut butter, and
margarine. Study nutritionists worked closely with the cafeteria staff to structure an experimental diet that was moderately
reduced in sodium relative to the regular diet, yet similar in other respects. The only regular source of food for the participants
was the school cafeteria. Participants were recruited on the basis of an agreement not to receive packages from home or eat
meals away from school during the 24-day experimental period. A record was kept of attendance at meals. Acceptance of the
experimental diet was good. As noted, only one participant withdrew based on unwillingness to adhere to the dietary regimen.

For the study, subjects were offered a control diet consisting of potatoes, beans, noodles, bar snacks, cold cereal, sweet-
ened sodas, milk, cookies, fruit (numerous fruits, yogurt, frozen yogurt), and instant soup. In total, the diet contained
2.1 servings of meat and 10.5 servings poultry and eggs per week.

The first phase of the study lasted 24 days, with an intervening 5-day vacation, followed by a crossover of 24 days. On Days 1
and 24 of Phase I and Day 24 of Phase II, participants underwent a standard examination. Height and weight were measured in
light indoor clothes, with shoes off. Blood pressure was measured after a 15-minute rest by a procedure previously described , 9
and a 15 cc sample of blood was subsequently withdrawn with minimal hemostasis from the antecubital fossa. All examinations
took place between 600 and 800. Blood was transported to the laboratory within 1 hour. The batch was divided in half, and an
equal number of specimens was taken from each group and analyzed either immediately or placed in storage for analysis in 48
hours.

Tampered excerpt from Khandelia et al. ""Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis
and the mobile lipid signal in cancer cell membranes.'" PLoS ONE 5.9 (2010): e12811.

In this report, we investigate the biophysics of model membranes containing low concentrations of triglyceride molecules.

Reduced incorporation of glycosylated proteins in these membranes has been reported in vivo [26] [27] and in vitro
[28] as well as in our analysis of a high salt environment [29, 30]. The reduced distribution of protein is known to
reflect a decreased total availability of available constituents for substrate binding. To address this issue, the surface
structure of membrane-bound proteins is studied by a combination of an energy map [31] of the full (hexagonal) and
unbound (quadratic) parts of each subunit, in which the diagonal portion of this subcomplex is spatially preferentially
constrained. Averaged over time, this energy mapping demonstrates a reduced physical overlap between parts that are
on average loosely bound, indicating that these subunits are almost always pulled together. The contrast between the
unbinding observed in soluble polymeric membranes and these highly mobile proteins suggests that the monolayer of
such membranes is unable to adequately differentiate between component atoms. We find that such a system exhibits
a similar geometry as a "'live'' membrane by which particular proteins can separate into regions of homogeneous bulk
or in features termed proteasomal environments. These are structures that don’t have the same means of reducing the
total loading of smaller proteins that create surface areas for binding, allowing them to serve as attractive targets for
degradation. Indeed, although unconformity to this model may influence membrane biophysical properties, reducing
this structure should increase the translational and Kinetic properties of proteins found on the cell surface [5].

Besides lipoproteins and LDs, TGLs are also present in several biological membranes at varying concentrations. The lamellar
bodies of lung surfactant extracts in mammals can contain between 0.5% to 1.8% w/w TGLs [6, 7] . Ocular lens lipids contain
small amounts (mg TGLs/mg phospholipids) of TGLs. TGLs are also present in intestinal membrane extracts [8] . Lysosomes
contain non-negligible amounts of TGLs, for example, in cultured hamster fibroblasts [9] . In rat hepatocytes, lysosomes
contain nearly 3.7% TGLs [10] . Many proliferating or activated mammalian cells in particular, have a high concentration
of TGLs in membranes. Cancer cells contain as high as 6.8% TGL fraction of total plasma membrane lipids [11] . Several
malignant Chinese hamster ovary (CHO) cell lines contain 2.4-3.2% TGLs in their plasma membranes [12] . Human neutrophils
contain as high as 5.2% and 6.8% TGLs in their plasma membranes before and after stimulation with lipopolysaccharides [13] .
Activated macrophages [14] , lymphocytes [15] and B cells [16] also contain high amounts of TGLs in their plasma membranes.
In this report, we investigate the effect of low concentrations of TGLs, as found in a variety of cell types noted above, on
the structure and dynamics of model membranes, with the objective of ultimately obtaining hints into the possible structural
and functional role of TGLs in the plasma membrane of living systems. We have used triolein (TO) as our model TGL, and
1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) as the model phospholipid.

We developed three models of the free lipoprotein fraction within the monolayer membrane: (1) a free TGN that me-
diates the GP diffusion chain; (2) conjugated to free human T2PP and T3PP of all lymphocyte types to subsequently
allow uptake of lipospheres and membranes; and (3) cytochalasin C (CXCL) immunoprecipitation experiments were
performed on media from mice treated with TgIII.

Table 13: Two excerpts from tampered biomedical documents. Each blue (bolded) text is generated by conditioning
on the preceding human-written paragraph.
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A.8 Human-detected errors in generated
biomedical abstracts

The following are a list of errors we found in a sub-

e ‘Parents and doctors share more in common
than many researchers expect. What is avail-
able for use?’

set of 75 synthetic biomedical abstracts generated  Kpowledge error: entity does not exist

by GPT-2. A similar, larger list of annotations of
error types found in GPT-2 and GPT-3 generated
text was recently provided by (Dou et al., 2021).

Not a real word The following words caused
the annotator to mark the abstract as computer-
generated:

* ‘ProBNER’

* ‘Chaos-Tector Chargor’

* ‘fibre preveller’

* ‘gravidum’

* ‘di-nitro-L-arginine’

* ‘Cd-FPOs’

* ‘halliopeusing’
Incorrect acronym The following were
acronym-related errors:

* ‘left middle cerebral artery (LMCMA)’

¢ ‘occlusion MOOC)Y’

* ‘In Situ Analysis (SIA)’

* ‘semantic energy transport (STM)’

* ‘cross-questionnaires (CCQs)’

* ‘Noisy Distributed Execution (NDE)’

[acronym introduced but never used again]

Coherence problem

* ‘Nevographic Origin of Caustic Cygnosis’

* ‘R402D nuclear phytoarray’

* ‘the Sargento regime’

* ‘SEPA insertion rule’

e ‘4-OHDA’ [does not exist; but 6-OHDA does]

* ‘The Europir position’

Knowledge error: other

* ‘nonlinear RC receiver in a hydraulic grade’
[strange combination of electrical and fluid
mechanics terms]

* ‘inflammation-related molecules staphylococ-
cus aureus’ [Not a molecule]

* ‘the city of san real’ [not a city]
e ‘The State of Barack Obama’ [not a state]

* ‘premature diagnosis of asthma is signifi-
cantly associated with overweight’

* ‘Vaccine coverage is at such high levels in the
United States that without additional initia-
tives, an epidemic likely will emerge within
four years.’

* ‘Trespassing into a host’s natural area can con-

fer adverse impacts such as diseases, extra
costs, unexpected complications, disadvan-
tages and adverse property rights’ [unrealistic
list]

* “First, a proper description of Big Memory is  Contradictory or illogical

required; In previous studies, it was stated that
Stochastic Roughness is a Fundamentality for
Big Memory.’

* ‘The scheme is based on the framework called
as a density functional, proportional basis’
[has nothing to do with rest of abstract]

¢ ‘nanofacial’ [unrelated to rest of abstract]

¢ ‘CONCLUSIONS From a therapeutic point
of view, this multispectral imaging method
allowed to measure all ultrasound values si-
multaneously and easily. Further studies with
practical applications in pediatric emergency
medicine could reveal specific features of var-
ious brain injury in this way.” [unrelated to
rest of abstract]
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* ‘Sixty-six occlusions were identified in the

60 eyes for occlusions, 31 of these (90%) oc-
curred in abscesses while the rest were non-
occidental.’

* ‘Six groups of 75 children were examined

by means of retrospective analysis. The first
group consisted of 66 children, who received
care in the neonatal intensive care unit from
29 January 1971 to 24 June 1972. The second
group, consisting of 166 children,’

* ‘in patients aged over 65 y of gender between

52.7 years and 70.2 years’

* ‘three inference rules:’ [only two rules listed]

* ‘can be partially fully filled’



Odd grammar

* ‘Participants’ means of outcome’

* “To compare different gastrointestinal tumors
patients undergo for the intrauterine difficult
caesarean section’

* ‘High temperature polymer is potential dis-
play material, especially in film industry’
[missing determiners]

* ‘Therefore, new color model for high tem-
perature polymer is proposed. This paper in-
troduces carbon disulfide systems and their
design. Simple model is found. We used the
uncertainty principle to overcome this uncer-
tainty. The scheme is based on the framework
called as a density functional, proportional ba-

sis.” ["as a" should be "a"; also missing some
determiners]

* ‘associated with overweight.” [adjective needs
a noun|

Strange adjective

* ‘Voo-like Gene’

* ‘non-dominant rodent’

* ‘cat-like crystals’

* ‘air-exposed mice’

* ‘semantic energy transport’

* ‘intervertebral sedimentation’

* ‘double plasma-associated disease’

Repetition

* ‘our algorithm usually yields evidence of a
weak algorithm’

* ‘Negotiation and negotiation’

* ‘specialty medical specialty’

* ‘discriminant discriminative’

* ‘STM based STM system’

* ‘processions, and subsequent processesions.’

* ‘The two leading theories suggest that the in-
cidence is an early event after acute expan-
sion of spleen parenchyma, involving the clot-
ting/permeability clique. In this article, we
propose a new hypothesis: the incidence of
double plasma-associated disease is an early
event.

¢ ‘Interfaces and interfaces’

‘where each property represents a property’
‘all the vector representations (or all of them)’

‘in making decision-decisions. Results from
data from data’

‘during the growth phase and during the
growth phase,’

Semantically odd/sounds weird
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‘the aortic roots of rats’
‘first-trimester of illness’

‘Keeping the word has become an argument
against any pretense of better strategy’

‘Metabolic health refers to the state of health
associated with the metabolism of a given sub-
stance or disease, not necessarily a testicular
aspect of normal physical functioning’

‘mothers share more than once with a physi-
cian, parent or relative’

‘have not clarified the communication of the
ultrasound wave motion to the patient’

‘there are several non-invasive and sometimes
invasive systems which would benefit from
the use of these systems to an unlimited ex-
tent’

‘reduce productivity and results of the US Na-
tional Health Interview Survey’

‘We used the uncertainty principle to over-
come this uncertainty’

‘The rate of change in hourly body tempera-
ture was recorded in the eyes of dogs’

‘Monotreme rhythms in internal and external
body temperature’



