
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 738 - 753

July 10-15, 2022 ©2022 Association for Computational Linguistics

Long-term Control for Dialogue Generation: Methods and Evaluation

Ramya Ramakrishnan
ASAPP

rramakrishnan@asapp.com

Hashan Buddhika Narangodage
ASAPP

hnarangodage@asapp.com

Mauro Schilman
ASAPP

mschilman@asapp.com

Kilian Q. Weinberger
ASAPP, Cornell

kweinberger@asapp.com

Ryan McDonald
ASAPP

rmcdonald@asapp.com

Abstract
Current approaches for controlling dialogue
response generation are primarily focused on
high-level attributes like style, sentiment, or
topic. In this work, we focus on constrained
long-term dialogue generation, which involves
more fine-grained control and requires a given
set of control words to appear in generated re-
sponses. This setting requires a model to not
only consider the generation of these control
words in the immediate context, but also pro-
duce utterances that will encourage the genera-
tion of the words at some time in the (possibly
distant) future. We define the problem of con-
strained long-term control for dialogue genera-
tion, identify gaps in current methods for eval-
uation, and propose new metrics that better
measure long-term control. We also propose a
retrieval-augmented method that improves per-
formance of long-term controlled generation
via logit modification techniques. We show
through experiments on three task-oriented di-
alogue datasets that our metrics better assess
dialogue control relative to current alternatives
and that our method outperforms state-of-the-
art constrained generation baselines. 1

1 Introduction

Despite recent advances in dialogue systems (Ser-
ban et al., 2016; Ham et al., 2020), controlling di-
alogue generation remains a significant challenge.
Response generation in dialogue can be controlled
towards different topics and styles (Madotto et al.,
2020) or towards a set of hard constraints (i.e., lex-
ical control words need to appear in the generated
text) (Sha, 2020). We focus on the hard constraint
setting, also known as constrained generation, as
this provides a more fine-grained method of con-
trolling dialogues.

For example, consider a customer service use
case (Figure 1), in which an agent speaks to a

1Our code is available at https://github.com/a
sappresearch/constrained-dialogue-genera
tion

Figure 1: Examples of short vs. long-term control for
dialogue generation. (Left) In short-term control, many
control words are generated initially, but the conversa-
tion is led away from the desired future. (Right) In
long-term control, responses are generated with the fu-
ture in mind with words generated at natural points in
the conversation.

customer about an issue. The goal is to gener-
ate a given set of control words in the responses
of one of the speakers (agent or customer). Naive
constrained generation approaches (Pascual et al.,
2020; Miao et al., 2019) use methods like beam
search and stochastic search to force the genera-
tion of these control words for short-term control,
where control words need to appear in a single ut-
terance or phrase. Because they do not consider the
future, these approaches may generate the words
all at once in a single response or not generate them
at natural places in the conversation (Figure 1, left).

The above example highlights the challenges
of applying existing constrained generation meth-
ods to long-term dialogue generation. First, since
another speaker is involved in the dialogue, the
model does not have full control of the generated
text. Instead, the model can only control the dia-
logue indirectly. Second, dialogues can be long and
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thus, controlling utterances several time steps into
the future is non-trivial. In this work, we propose
the problem of long-term dialogue control, where
the goal is to generate a set of control words over
many utterances in a dialogue, which requires ap-
propriately timing the generation of control words
(Figure 1, right). To the best of our knowledge, we
are the first work to constrain long-term dialogue
generation through lexical control words.

We begin by highlighting challenges with evalua-
tion for this problem. Successful long-term control
of dialogue can be difficult to measure. We de-
scribe current evaluation metrics for constrained
text generation and show that these metrics can be
gamed by generating all or many control words
early in the conversation. To resolve this and mea-
sure how natural the control is, we propose a new
set of metrics: long-term success rate, which mea-
sures the percentage of control words in simulated
roll-outs of the conversation, and precision, recall,
and F1-score, which compare control words in gen-
erated responses to those in reference responses
from a historical dataset. The second set of met-
rics specifically help to capture whether the control
words are generated at the right time.

Next, we propose a novel method to explicitly
address long-term control. Prior methods are un-
able to handle this task as the number of possible
future sequences is exponential. To alleviate this is-
sue, we retrieve similar conversations from training
and condition on them during generation. We first
identify similar neighbors using a kNN-based ap-
proach and then guide the language model towards
generating similar responses, inspired by plug-and-
play methods (Madotto et al., 2021; Dathathri et al.,
2019; Pascual et al., 2020). The motivation for this
is that retrieved conversations guide the model to
generate the control words at more natural points
in the conversation.

We conduct experiments on multiple task-
oriented dialogue datasets and show that our
method outperforms several constrained text gen-
eration baselines on automated evaluation metrics
as well as human evaluation. Specifically, we are
able to generate 30-40% more control words on
long-term success rate compared with baselines,
while preserving fluency (scores of ≥ 4.3 out of 5),
as measured by human evaluation.

2 Related work

Controllable text generation. Prior work has
developed many methods for controllable text gen-
eration. These approaches can be categorized into
three general areas. The first is altering decoding
strategies (Grover et al., 2019; Deng et al., 2020),
in which the sampling distribution can be modified
(Ghazvininejad et al., 2017; Baheti et al., 2018)
or hidden states in the models can be changed
(Gu et al., 2017). The second area involves in-
cluding prompts to guide text generation (Ribeiro
et al., 2018; Jiang et al., 2020; Li and Liang, 2021),
for example through universal trigger tokens (Wal-
lace et al., 2019; Shin et al., 2020). Finally, fine-
tuning can be used to guide language model outputs
through the use of a latent variable (Fan et al., 2018;
Peng et al., 2018) or through CTRL codes (Keskar
et al., 2019). Our work differs from the broad area
of controllable language generation in that 1) we re-
quire more fine-grained generation through lexical
control words and 2) we focus on dialogue settings
where another speaker can also change the course
of the conversation.

Constrained text generation. The key differ-
ence between constrained text generation and con-
trollable text generation is the focus on hard rather
than soft constraints. Typically, there are two gen-
eral methods for constrained generation: beam
search (Hokamp and Liu, 2017; Post and Vilar,
2018; Pascual et al., 2020) and stochastic search
(Miao et al., 2019; Sha, 2020). Directed Beam
Search (DBS) (Pascual et al., 2020), modifies lan-
guage model logits to encourage generation of a
specified set of “guide words", or control words.
A method based on stochastic search (Miao et al.,
2019) uses Metropolis-Hastings with the constraint
of keyword inclusion. These approaches do not ap-
ply to the dialogue setting where these constraints
need to hold for many utterances into the future.

Dialogue response generation. While many
works develop methods for unconstrained response
generation (Budzianowski and Vulić, 2019; Peng
et al., 2020; Cao et al., 2020; Hosseini-Asl et al.,
2020; Yavuz et al., 2019), there is a subset of work
more related to our problem focused on control-
ling response generation. In one work, transformer
models are fine-tuned for dialogue through modifi-
cations of the inputs, for example by adding infor-
mation about the user’s persona (Wolf et al., 2019).
The work of Lippe et al. (2020) generates utter-
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ances by paraphrasing templated responses. Sev-
eral works control generation through exemplar-
guided methods (Cai et al., 2020; Gupta et al.,
2020), which is a different setting from ours since
we want to guide generation based on a set of con-
trol words rather than through a prototype. One
work (Xu et al., 2019) controls response generation
through meta-words that include desired attributes
of the response (e.g., response length and speci-
ficity). Another work controls response generation
through control words by adding inductive biases
into training to guide generation (Wu et al., 2020).
However, this work only controls generation for
a single response, rather than controlling several
utterances into the future. The closest work to ours
is work by (Tang et al., 2019), which proposes a
similar problem of long-term control towards a tar-
get subject. While the setup is similar, we learn
to constrain dialogue responses given a set of con-
trol words rather than a target attribute, which also
results in a different approach.

Retrieval-augmented generation. Another re-
lated area is retrieval-augmented language genera-
tion, which inspires our approach of using retrieval
to control dialogue generation. REALM (Guu et al.,
2020) uses a latent knowledge retriever to identify
relevant documents and backpropagates through
this retrieval step. In another work (Fan et al.,
2020), relevant information is retrieved from an ex-
ternal knowledge base to guide dialogue generation.
Several works by Khandelwal et al leverage nearest
neighbor approaches to improve performance with
no additional training (Khandelwal et al., 2019,
2020). While these works condition on retrieval for
uncontrolled generation, we leverage ideas from
this space specifically for control in dialogue.

3 Problem definition

We first define the problem of long-term con-
strained dialogue generation. A conversation X =
{s1, u1, s2, u2, ..., sT , uT } is defined as a list of ut-
terances generated by two speakers: the system
s that we are trying to control and the user u,
which we don’t have explicit control over. T de-
notes the total number of turns in the conversation.
Given the current dialogue context of a conversa-
tion x = {s1, u1, ..., st, ut} up until timestep t and
a set of control wordsW = {w1, w2, ..., wM}, our
goal is to generate the remaining responses of the
conversation Rt+1:T = {st+1, ..., sT } such that
the control wordsW appear in the future generated

responses. We consider a scenario in which some-
one provides a set of control words to be included
in the conversation without assumptions on their
order. This means methods need to handle control
words given in any order.

We additionally assume access to a historical
dataset of conversations D = {x(i)}, i ∈ [1, ..., N ]
and a fine-tuned language model M on this dataset.
We can leverage these inputs in order to control
future responses Rt+1:T . We focus on the plug-
and-play setting (Pascual et al., 2020), in which
approaches simply guide the given language model
M towards generating the control words without
any additional re-training.

4 Proposed metrics for evaluation

Directly evaluating the generated responses in
terms of prior evaluation methods can lead to mis-
leading results. Previous works on constrained text
generation (Pascual et al., 2020) have used metrics
like perplexity to measure fluency and success rate
to measure the percentage of control words gen-
erated. However, these metrics are more relevant
for short-term generation, as they can be gamed
in settings where the control words would be nat-
urally distributed across the full conversation. As
shown in the left-hand side of Figure 1, when sev-
eral words are forced into the first response, the
conversation may move away from the desired fu-
ture and control word generation could be inap-
propriately timed. To better evaluate how well the
model generates the right words at the right time,
we propose the following new metrics.

The first metric we propose is long-term suc-
cess rate, which involves simulating conversations
with a user language model and computing the per-
centage of generated control words in the system
responses of these simulated roll-outs. Prior work
(Ghandeharioun et al., 2019) has used self-play for
evaluation, but they do not propose roll-outs as a
way to measure dialogue control.

Long-term success rate: Our modified success
rate metric is computed as the fraction of control
words generated in a full simulated roll-out of the
conversation. We compute this as: s = nw

|W| , where
nw is the number of control words that appear in
all of the future system responsesRt+1:T .

One limitation of long-term success rate is that it
doesn’t measure the timing of control words in the
conversation. So next, we want to evaluate whether
the methods generate control words at appropriate
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Figure 2: Visualization of FOP-retrieval. First, each conversation in the historical dataset D is split into many
past-future conversation pairs. The current context x and the pasts are encoded using language model M . We
use kNN search to identify pasts similar to context x and then select a desired future with the highest number of
control words. The output is the first response in the selected future s̃t+1.

points in the conversation. To measure this, we
propose computing precision, recall, and F1-score
for control words. This particular evaluation is
not done in simulation. Instead, we consider each
true system response in the evaluation dataset in
isolation and generate a response for each, given
the conversation history up until that point. We
compute the number of generated control words
that are correctly predicted, when compared with
the control words in the ground truth response in
the same time step.

For example, on the right side of Figure 1, when
generating the second customer response (given
the true conversation history up until then), we
would count a “correct" prediction for P/R/F1 as
a response that includes the word “shirt" (in any
position in the response), as it is a control word
that appears in the ground truth response in that
time step. It is true that control words can also
appear later in the conversation, but this setting
is already evaluated by long-term success rate in
simulated rollouts. After counting the number of
correctly predicted control words for each response
individually, we aggregate across all responses.

Precision: Precision is calculated at the corpus-
level as the number of correctly predicted control
words over the total number of predicted control
words (p = |correct|

|predicted| ).

Recall: Recall is similarly computed at the
corpus-level as the number of correctly predicted
control words over the total number of actual con-
trol words (r = |correct|

|actual| ).

F1-score: Finally, F1-score combines precision
and recall into one metric (f1 = (2∗p∗r)

(p+r) ).

These metrics penalize models that condense
all control words into one response. Instead, we
want the models to naturally generate control words
when they are relevant. These metrics evaluate
whether control words are generated at the appro-
priate position in a conversation. To introduce
some flexibility, an extension could be to compute
a soft version of precision, recall, and F1-score that
scores utterances based on whether control words
appear within N utterances of the ground truth po-
sition.

Finally, we use human evaluation to evaluate
how realistic and relevant the generated responses
are. Specifically, we evaluate each conversation
on fluency, consistency of control word generation,
relevance, coherence, and diversity.

5 Retrieval-based Control

We now present our proposed approach for con-
strained dialogue generation. Inspired by work in
retrieval-augmented generation (Guu et al., 2020;
Fan et al., 2020), we retrieve similar pasts based on
the current context x and use their futures to con-
trol dialogue response generation. The key insight
here is that by looking at how people have used
these control words in similar conversations in the
past, we can bias the models towards more natural
dialogues. In other words, we use futures of the
past conversations to guide the current response
generation. To better motivate the use of retrieval
in our problem, consider the example conversation
in Figure 1. The agent asks which item the cus-
tomer wants to return, and there are many possible
answers (e.g., “I want my pant refunded.", “I want
to return gloves I bought yesterday."). Keyword-
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Figure 3: Visualization of FOP-guided. Language model logits are first modified using a window-based approach.
All words (and similar words based on GloVe vector similarity) within the window are upweighted with a weight
decay. Once any word in the window is generated, the window shifts until the full response is generated. After N
generations, a re-ranking step selects the response with the highest number of control words and lowest loss.

based retrieval will surface a response about shirts,
a control word, which encourages the model to gen-
erate a natural response with that word: “It’s a Nike
shirt I bought a week ago."

We present two variants of our retrieval-inspired
Futures of the Past (FOP) approach: 1) FOP-
retrieval: we retrieve the desired future from histor-
ical data and simply use the retrieved utterance as
the generated response and 2) FOP-guided: we use
the utterance from FOP-retrieval as a reference sen-
tence to guide the model towards similar responses.

The simple variant of our approach, FOP-
retrieval, is shown in Figure 2. It focuses on identi-
fying what the model should say now that will lead
to the control words in the future. The reason we
need to determine what to say now is that control
words in our problem are distributed across a long
dialogue conversation. One possible approach to
generate the current response is to run many roll-
outs of the conversation and select the response that
leads to the highest number of control words. How-
ever, this brute force approach is computationally
expensive and will not be effective for rich, diverse
conversations. Instead, we leverage historical con-
versation data to identify the most relevant futures
given the current context and control words. The
retrieved futures can guide the model towards what
to say now that will lead to the desired future. The
guided variant, shown in Figure 3, involves guiding
the language model towards generating a response
similar to the retrieved utterance.

Our proposed approaches address some of the
challenges of long-term control for dialogue gener-
ation. First, another speaker can change the course
of the conversation, which is why we retrieve a
new set of similar past contexts at each time step
to re-align with the current context. Second, to
control responses many steps into the future, we

retrieve historical conversations with the desired
future (high percentage of control words) and gen-
tly nudge the conversation in that direction, thus
controlling not only the current utterance but also
the future of the conversation.

5.1 Retrieval Futures of the Past
(FOP-retrieval)

For the retrieval component, the goal is to select
futures that have relevant past contexts as well as
desired futures based on the control words. To
do this, we employ a multi-step approach. First,
we split each conversation x(i) in the historical
dataset D into a set of past-future conversation
pairs x(i) = {(p, f)(i,j)}. We encode the current
contextM(x) and each past conversationM(p(i,j))
using the language model M . Then, we use kNN
search based on FAISS, a library for fast nearest
neighbor retrieval (Johnson et al., 2019), to identify
k similar pasts from the historical data that closely
match the current context x. We then filter the
futures of these past conversations based on which
have the highest percentage of control words.

KNNx = faiss(M(x),M(p(i,j)), k)

f∗ = argmax([count(f (i,j),W)]f (i,j)∈KNNx)

s̃t+1 = f∗[0], f∗ = {s1, u1, ..., sT , uT }

In the above equations, the count function counts
the number of control wordsW in the future f (i,j).
The reference response s̃t+1 is simply the first ut-
terance of the retrieved future.

5.2 Guided Futures of the Past (FOP-guided)

Now that we have a candidate reference response
s̃t+1, we can guide the language model towards
generating a similar response. To do this, we mod-
ify the logits from the language model to encourage
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generation of the control words or similar words.
We start with the first word w0 in s̃t+1 and up-
weight logits in a way similar to DBS (Pascual
et al., 2020) using similarity of GloVe vector em-
beddings:

l′i = li + λ · min(0, cos(γ(ti), γ(wj)))
2,

where γ represents GloVe embeddings, ti is the
ith token of the language model’s vocabulary V ,
wj is the current reference word, and λ is a hyper-
parameter specifying how much weight to put on
generating words similar to wj .

With this approach, we observed that sometimes
the model got stuck on the first word and never
moved on to later words. To enable more flexible
control, instead of requiring every word to be gener-
ated before moving on to the next word, we include
a window of size q and increase the logits of each
word in the window, with a decay multiplier of 1

2i
,

i ∈ q. If any of the words in the window have been
generated, the window is shifted beginning from
the generated word with the same window size of
q. The process repeats until the full response has
been generated.

The decay multiplier is used to encourage the
model to generate earlier words in the reference re-
sponse and not skip words unless it’s highly likely.
We generate N such responses using this method
and include an additional ranking step to select
the best one. We first sort by the number of con-
trol words in the generated response. If multiple
responses generate the highest number of control
words, we sort by the loss from the model and
select the response with the lowest loss l:

R̃t+1 = {M j(l′)|j ∈ [1, ..., N ]}
s∗ = max([count(r,W)]r∈R̃t+1

)

R̂t+1 = {r|count(r,W) = s∗, r ∈ R̃t+1}
rt+1 = argmin([loss(r)]r∈R̂t+1

),

where R̃t+1 is the set of N generated responses,
using a model with logits l′. The final generated
response rt+1 is selected based on the two-step
ranking process. None of the other approaches
include this ranking component.

6 Experimental setup

6.1 Task-Oriented Dialogue Datasets
Our problem and approach are applicable to any
general dialogue control setting. In our experi-
ments, we controlled the customer in task-oriented

dialogue. This is useful for constructing a customer
bot that imitates real-life customers. By controlling
the customer simulator (for example through con-
trol words), we can develop a training environment
for coaching customer service agents in a variety of
diverse situations. For all datasets, we select con-
trol words from the utterances of the customer by
selecting the top M ranked words based on tf-idf.
For some real-world applications, control words
can also be manually selected by a designer.

MultiWoz 2.3: The first dataset we evaluate on
is MultiWoz 2.3 (Han et al., 2020), which is widely
used in the dialogue community. The dataset has
over 10K dialogues and 5 domains.

TaskMaster-3: The second is another commonly
used task-oriented dialogue dataset TaskMaster-
3 (Byrne et al., 2019). This dataset has 23,757
dialogues in the movie ticketing domain.

Action-Based Conversations Dataset (ABCD):
The final dataset (Chen et al., 2021) includes a set
of agent-customer conversations focused on solv-
ing customer problems. The dataset contains over
10k dialogues and is also focused on one domain.

6.2 Baselines
Wfirst: The first baseline is a naive approach that
outputs all control words in the first response of the
conversation and nothing afterwards, which means
words are not appropriately timed.

Fine-tuned: This approach simply generates re-
sponses using the fine-tuned language model M .

Prompt: This method is based on prompting ap-
proaches (Li and Liang, 2021; Ribeiro et al., 2018;
Jiang et al., 2020; Madotto et al., 2021). Because
we focus on the plug-and-play setting, we simply
append control words to the beginning of the con-
text and generate using this modified input.

Directed Beam Search (DBS): This is a con-
strained text generation approach (Pascual et al.,
2020), in which keywords are generated using logit
modification and beam search. It is not optimized
for long-term control and is highly dependent on
the ordering of control words.

Constrained Sentence Generation by
Metropolis-Hastings Sampling (CGMH):
This method (Miao et al., 2019) is based on
stochastic search methods that insert, delete, and
replace words in a sentence with the requirement
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Methods LT- f1- Human Overall
SR score eval average

Prompt 0.23 0.34 0.87 0.48
DBS 0.42 0.28 0.72 0.47

CGMH 0.90 0.17 0.3 0.46

FOP-retrieval 0.82 0.39 0.82 0.68
FOP-guided 0.74 0.41 0.81 0.67

Table 1: Summary table of results, including long-
term success rate (LT-SR) from Figure 4 averaged over
datasets for 9 control words, F1-score from the overall
F1 column of Table 2 that averages F1 over datasets,
and human eval from Table 3 averaged over all metrics
and divided by 5 to get a number between 0 and 1.

that control words need to be present. It is neither
optimized for long-term generation of control
words nor forward generation and is particularly
susceptible to aggressively generating all control
words in a single response. It was also originally
applied to the task of keyword-to-phrase genera-
tion so we adapted it to dialogue generation by
prompting the language model with the dialogue
context and also replaced a bidirectional RNN
model with our transformer-based model.

7 Results

7.1 Aggregated Results
We begin by presenting a top-level overview of our
main baselines and methods because each evalu-
ation metric captures a different aspect of perfor-
mance. Table 1 includes averaged scores across
tasks, parameters, and/or metrics for the main re-
sults in Tables 2 and 3 and Figure 4. These include
results of our two proposed automatic metrics of
long-term success rate and control word F1-score
(Section 4) as well as human-evaluated quality
metrics (Section 7.4). In subsequent sections, we
will examine each of these results more closely.

The key insight in these aggregated results is
that while FOP-based methods are not always the
best-performing system for each metric, they are
consistently the most reliable. Specifically, CGMH
has high success rate, but lowest F1 and human
scores. Prompt, on the other hand has the highest
human evaluation scores but the worst success rate.
This is not too surprising. It is, after all, an unmod-
ified language model, so it should be fluent and on
topic when viewed by a human. However, given
its extremely low success rate, it is not viable for
long-form controlled generation. In contrast, FOP-
based methods are either the top 1 or 2 performing

Figure 4: Long-term success rate computed on simu-
lated roll-outs for MultiWoz, TaskMaster, and ABCD.
Details on hyperparameters are in Appendix A.3.

system across all summary statistics.

7.2 Long-term Success Rate

The first analysis involves comparing all methods
on long-term success rate, which measures the per-
centage of control words in generated simulated
roll-outs. To do this, we train a separate user model
with the training dataset. We perform a roll-out per
test example with 10 generated system responses
and 10 generated user responses and compute the
percentage of control words in the generated sys-
tem responses. When counting the number of gen-
erated words, we compare word stems.

Figure 4 shows the performance of all ap-
proaches when varying the number of control
words. Both of our approach variants (FOP-
retrieval and FOP-guided) have higher success rates
than Prompt and DBS. Prompt is the method with
the lowest performance because including the con-
trol words at the beginning without any re-training
doesn’t provide the model with sufficient informa-
tion to generate the control words. DBS does well
when there is only a few control words but strug-
gles as the number of control words increases. This
is because DBS is not able to filter out words that
are irrelevant at the current time step and instead
simply tries to generate the words one by one. This
method is also unable to handle words when not in
the exact order it should appear.

FOP-retrieval, in some cases, has higher per-
formance than FOP-guided because it will get all
keywords in the retrieved response correct. FOP-
guided can choose to ignore these keywords if
the LM overrides it. So, we would expect FOP-
retrieval to do better on this metric, compared to
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Methods MultiWoz 2.3 TaskMaster-3 ABCD Overall
p r f1 p r f1 p r f1 avg(f1)

Wfirst 0.25 0.18 0.21 0.22 0.19 0.2 0.29 0.24 0.27 0.23
Fine-tuned 0.64 0.23 0.34 0.82 0.34 0.48 0.68 0.13 0.22 0.35

Prompt 0.45 0.18 0.25 0.81 0.36 0.49 0.69 0.18 0.29 0.34
DBS 0.4 0.2 0.27 0.43 0.27 0.33 0.39 0.17 0.24 0.28

CGMH 0.27 0.18 0.21 0.17 0.03 0.05 0.27 0.22 0.24 0.17

FOP-retrieval 0.38 0.18 0.25 0.68 0.38 0.49 0.65 0.33 0.44 0.39
FOP-guided 0.36 0.18 0.24 0.62 0.48 0.54 0.6 0.36 0.45 0.41

Table 2: Precision, recall, and F1-score for all methods on Multiwoz, TaskMaster, and ABCD. These metrics
capture whether the approaches generate control words at the right time by using the control words in the ground
truth response as a proxy. The last column is the macro f1-score average across all datasets.

Methods FL CC RL CO DV

DBS 4.60* 3.65† 3.80 2.90 3.10†

CGMH 1.70† 1.24† 1.52† 1.12† 1.82†

FOP-retrieval 4.81 4.77 3.63 2.82 4.35
FOP-guided 4.36† 4.53* 3.77 3.12 4.47

Prompt 4.87 4.98 4.30 4.22 3.42
True 4.88 4.90 4.83 4.92 4.80

Table 3: Human evaluation of simulated roll-outs. FL:
fluency; CC: control-consistency; RL: relevance; CO:
Coherence; DV: diversity. * and † indicate significant
differences from the best result in that column (bolded,
excluding True and Prompt) with p-value < 0.05 and
< 0.001 respectively, using Welch’s t-test. Annotators
rated fluency, control-consistency, and relevance per re-
sponse, while coherence and diversity were annotated
per conversation. All metrics are on a scale of 1 to 5.

FOP-guided. We also include an ablation experi-
ment in Appendix A.1.1 to analyze the effect of re-
moving the sliding window in FOP-guided. CGMH
seems to do well on long-term success rate, but
human evaluation (Section 7.4) results reveal that
the generated responses are not very fluent. This
method is one that can game previous evaluation
metrics, as it tends to condense many or all control
words into one utterance. Thus, these approaches
are better evaluated through the next set of metrics:
precision, recall, and F1-score.

7.3 Control Word P/R/F1

We now measure how well the approaches generate
control words at the right time using precision, re-
call, and F1-score. Table 2 compares these metrics
on all datasets. We see that, on average across all
datasets, FOP-guided gets higher F1-scores com-
pared with baseline methods. This is because by re-
trieving similar futures, we are able to guide the lan-
guage model towards generating control words at

appropriate points in the conversation. FOP-guided
does worse on MultiWoz because the dataset con-
tains more domains and has much more variety in
the conversations. This diversity makes it hard for
retrieval-based methods to successfully find similar
conversations to guide generation.

The naive approach Wfirst gets low recall and
precision since it only outputs the control words at
the first utterance. Similar to Wfirst, CGMH gets
low F1-scores because it generates many control
words early in the conversation rather than at a
natural time. DBS also does not do well on these
evaluation metrics as it is highly affected by the
order of control words, while our method is able
to retrieve similar futures to generate appropriate
words at the current time step. Finally, Prompt
does well on precision but not on recall as it’s not
explicitly guided to generate the control words.

7.4 Human Evaluation

Finally, we rate all methods on human evaluation.
We follow recent work on good evaluation practices
for text generation approaches (Karpinska et al.,
2021). Further details are in Appendix A.4.
Fluency: Is the response fluent and grammatical?
Control consistency: When control words appear
in the response, are they appropriately used?
Relevance: Is the response a natural reply to the
previous utterance in the conversation?
Coherence: Are all of the system responses in the
conversation coherent with respect to each other?
Diversity: Is there diversity in the system re-
sponses of the conversation?

Two raters annotated each example, and agree-
ment was measured using Krippendorff’s alpha for
each of the 5 metrics (0.84, 0.74, 0.82, 0.76, 0.67).
We present results in Table 3 for all five approaches
as well as for the ground truth conversation. We
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focus on comparisons between DBS, CGMH, and
the FOP methods, as these were the methods that
performed comparably on control metrics (at least
40% on long-term success rate) and thus are rea-
sonable baselines for long-term control.

CGMH consistently gets low scores across all
metrics. Compared to DBS, FOP-guided performs
similarly on fluency, relevance, and coherence but
much better on control-consistency and diversity,
which could be because retrieval helps decide nat-
urally what to say throughout the conversation.
FOP-guided is at least as good as FOP-retrieval
on relevance, coherence, and diversity, while only
slightly worse on fluency and control-consistency.
This is because FOP-guided uses the context and
retrieved sentence to generate a response, while
FOP-retrieval selects an already fluent historical
response. Overall, human evaluation results high-
light that both of our proposed methods generate
realistic, coherent text, while also generating a high
percentage of control words.

8 Conclusion

In this paper, we propose the problem of con-
strained dialogue generation, which involves con-
trolling dialogue responses such that a set of con-
trol words appear at some point in the future of
the conversation. We propose a new set of metrics
as well as a novel method that leverages retrieval
of relevant conversations to control future gener-
ated responses. We show on three datasets that our
method outperforms several constrained text gen-
eration baselines on quantitative metrics as well as
human evaluation. As far as we are aware, this is
the first work to address the problem of long-term
control for dialogue generation.
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A Appendix

A.1 Additional results

A.1.1 Ablation of window in FOP-guided

We ran ablation experiments comparing FOP-
guided with a version without the sliding window.
Table 4 includes the results for all of the baselines
on the most difficult setting for ABCD (9 control
words).

Methods Long-term
success rate

Prompt 0.15
DBS 0.38

CGMH 0.91

FOP-retrieval 0.72
FOP-guided 0.69

FOP-guided (no-window) 0.56

Table 4: Ablation experiment for the most difficult set-
ting in ABCD (9 control words). FOP-guided without
a sliding window performs worse on long-term success
rate.

Our approach FOP-guided gets more than 10%
more control words in simulated rollouts, compared
with FOP-guided without the window approach,
which highlights the usefulness of the sliding win-
dow component. We also compare the two FOP-
guided variants when varying the number of con-
trol words and see that FOP-guided consistently
performs better (Figure 5).

Figure 5: Long-term success rate on ABCD, compar-
ing FOP-guided and FOP-guided without a sliding win-
dow.

A.2 Example simulations on ABCD

In Tables 5, 6, 7, 8, and 9, we show some example
simulations on the ABCD dataset using a trained
agent model for each of the methods.

A.3 Experiment details
We did a hyperparameter search over the following
lambda values {0, 5, 10, 15, 20, 25} for all datasets.
On both ABCD and MultiWoz, the best hyperpa-
rameter for FOP-guided was λ = 15 and for DBS,
it was λ = 20. For TaskMaster, the best hyper-
parameter for FOP-guided was λ = 10 and for
DBS, it was λ = 15. CGMH was run with the
recommended hyperparameters from the authors.

For all datasets, we used the number of candidate
generations for FOP-guided as N = 10 and the
window size for logit modification as q = 4. The
number of examples used for multiple splits of
each dataset is as follows: For the ABCD dataset,
we used 8034 conversations for training and 1004
conversations each for dev and test splits. In the
Multiwoz dataset, we used 8438, 1000, 1000 as
train, dev and test splits respectively. Finally, for
the Taskmaster-3 dataset, we used 16629, 3564,
3564 as train, dev and test datasets respectively.

We used the GPT2-medium model from the
hugging-face repository as the pre-trained language
model for all of our experiments. This model con-
tains 345M parameters.

For all our experiments, we used a p3.2xlarge
EC2 instance. This instance has one GPU with
16GB capacity and 61GB of RAM. Out of all of
our experiments, simulated long-term success rate
experiments took the most amount of GPU hours to
run. Altogether it took somewhere between 24-36
GPU hours to complete all the experiments.

A.4 Human evaluation setting details
We recruited four trained annotators to evaluate
generated conversations on the following five met-
rics, each on a scale of 1 to 5. We split up the
examples across the four annotators such that each
example was judged by two annotators. We in-
cluded the ground truth conversation as an addi-
tional baseline to act as an upper bound. To ensure
the ratings would be high-quality, we provided a
rubric, included below, for each metric with exam-
ples for different ratings, did an initial pilot for a
few sample conversations, and provided a reference
sheet to help calibrate the ratings across annotators.

A.4.1 Rubric
Evaluate generated conversations on a few metrics,
each on a scale of 1 to 5:

[utterance-level] Fluency: Is this response flu-
ent and grammatical?
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• 1: Generated responses do not make any sense,
English-wise and grammar-wise, which could
include misspelled words, no transition words,
limited punctuation, skipped words, etc (e.g.,
“the figh help order”)

• 3: Generated responses have some good En-
glish so you can make out what is being said
but it’s not well-formed sentences (e.g., “will
you help order”)

• 5: Generated responses have perfect English
and perfect grammar. Customers can use
lower-case text as less-formal style so first-
letter capitalization is not necessary (e.g., “can
you help me refund my order?”)

[utterance-level] Relevance: Is this response a
natural reply to the previous utterance in the
conversation?

• 1: The generated response is not at all relevant
to the conversation context/history (e.g., when
asked for account id: “I can’t get my promo
code”)

• 3: The generated response is somewhat rel-
evant to the conversation context/history but
not the best fit (e.g., when asked for account
id: “No”)

• 5: The generated response is perfectly rele-
vant and a great response to the conversation
context/history (e.g., when asked for account
id: “Account ID: 3425435”)

[utterance-level] Control-consistency: If con-
trol words appear in this response, are they ap-
propriately used?

• 1: When used, the control words (which are
uppercased) make no sense in the generated
responses. They are fully forced into the re-
sponses (e.g., “TODAY account id: 435650”)

• 3: When used, the control words (which are
uppercased) make some sense in the gener-
ated responses but are not super smooth (e.g.,
“I need help with my order, can you help TO-
DAY?“)

• 5: When used, the control words (which are
uppercased) are perfectly and naturally used
in the generated responses (e.g., “TODAY, I
want to buy a shirt. Can you help me?”)

[conversation-level] Diversity: Is there diver-
sity in the customer responses of the conversa-
tion?

• 1: Almost all of the responses are repetitive
and have no diversity (e.g., “ok” “ok” “ok”
“thanks”)

• 3: Some of the generated responses provide
diversity while many do not (e.g., “I want to
buy a shirt” “can you help me with this?” “ok”
“thanks”)

• 5: All of the generated responses are diverse
and provide a variety of interesting words
through the conversation. The customer can
still say ok and thanks but it shouldn’t happen
all the time and has to be appropriate for that
point in the conversation (e.g., “I want to buy
a shirt” “can you help me with this?” “ok sure”
“thank you very much for your help!”)

[conversation-level] Coherence: Are all of the
customer responses in the conversation coher-
ent with respect to each other?

• 1: All of the responses have very little rela-
tion when seen together (e.g., “I want to buy
a shirt”, “can you help me with my promo
code”, “my subscription expired”)

• 3: Some of the generated responses in a con-
versation make sense together and some don’t
(e.g., “I want to buy a shirt” “I have a promo
code for buying this shirt” “my subscription
expired”)

• 5: All generated responses make complete
sense together (e.g., “I want to buy a shirt”,
“I have a promo code for buying this shirt”,
“thank you for helping me with this pur-
chase!”)
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FOP-guided

Control words to generate: valid credit make minute try card purchase trying worked

Speaker Utterance

AGENT Hello, thank you for contacting AcmeCorp, how may I help you today?
CUSTOMER Hi I was trying to make a purchase but for some reason my credit card keeps

getting rejected
AGENT I would happy to help.
CUSTOMER I got an email from you guys about a great sale and it listed this code and it said

it was invalid
AGENT Lets try a few things. First can you check the expiration date on your card.
CUSTOMER No its valid thats why I am confused.
AGENT Can you try to re-enter the card information one more time?
CUSTOMER Ok just a minute please
AGENT Alright, let me know if that helps.
CUSTOMER Ok I did its s ordering right now. That worked and it says it is correct.
AGENT Great, is there anything else I can help you with today? Is there anything else?
CUSTOMER That is all I needed thanks
AGENT Your welcome. Thank you for contacting us. Have a great day.
CUSTOMER you too

Table 5: Example simulation on the ABCD dataset using the FOP-guided method

FOP-retrieval

Control words to generate: valid credit make minute try card purchase trying worked

Speaker Utterance

AGENT Hello, thank you for contacting AcmeCorp, how may I help you today?
CUSTOMER Hi! I was trying to make a purchase but for some reason my credit card

keeps getting rejected
AGENT I would happy to help. Lets see if we can troubleshoot this issue.
CUSTOMER ok let me know what i should try
AGENT Lets try to make sure your card is not expired.
CUSTOMER no. its valid. Thats why I am confused
AGENT First can you try to log out and log back in.
CUSTOMER Ok let me give that a shot.
AGENT Okay, next can you check the expiration date on your card.
CUSTOMER Ok hang on one minute let me try that
AGENT No problem.
CUSTOMER Tried that. It didn’t work either
AGENT Can you try to check the expiration on your card?
CUSTOMER Let me try that
AGENT Alright.
CUSTOMER Well that kinda helped. I do not know why

Table 6: Example simulation on the ABCD dataset using the FOP-retrieval method
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DBS

Control words to generate: valid credit make minute try card purchase trying worked

Speaker Utterance

AGENT Hello, thank you for contacting AcmeCorp, how may I help you today?
CUSTOMER I would like to know if there is any reasonable way for validating an order?
AGENT I would happy to look into this for you.
CUSTOMER I already got a credit for a return and would like to correct it.
AGENT May I have your full name or account id please?
CUSTOMER Crystal Minh
AGENT Thank you Crystal.
CUSTOMER Can you make sure that this is correct?
AGENT One moment please.
CUSTOMER ok
AGENT What is your username, email address, and Order ID?
CUSTOMER crystalm minute
AGENT Thanks Crystal. I need to verify your purchase.
CUSTOMER crystalm minute@email.com
AGENT Your refund is in progress and you initiated it online.
CUSTOMER Okay. I will try it out now.

Table 7: Example simulation on the ABCD dataset using the DBS method

CGMH

Control words to generate: valid credit make minute try card purchase trying worked

Speaker Utterance

AGENT Hello, thank you for contacting AcmeCorp, how may I help you today?
CUSTOMER Myvalid credit card make me purchase minute we try to credit card to

purchase. Have been trying this worked
AGENT I would happy to look into this for you.
CUSTOMER I was wondering about this method ofvalid
AGENT May I have your full name or account id please?
CUSTOMER sure its avalid
AGENT Thank you may I please have your full address?
CUSTOMER 9 Guessvalid
AGENT What method of payment would you like to use?

Table 8: Example simulation on the ABCD dataset using the CGMH method
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Prompt

Control words to generate: valid credit make minute try card purchase trying worked

Speaker Utterance

AGENT Hello, thank you for contacting AcmeCorp, how may I help you today?
CUSTOMER Hi I’m having a problem with my account
AGENT I would happy to help.
CUSTOMER The credit card keeps getting rejected
AGENT Lets see if we can try a few things.
CUSTOMER ok
AGENT Can you try entering the information again?
CUSTOMER Okay I did but it still doesn’t work
AGENT Next can you try logging out and back in?
CUSTOMER Ok hold on
AGENT Let me know if that helps.
CUSTOMER hey that worked!

Table 9: Example simulation on the ABCD dataset using the Prompt method
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