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Abstract

Multilingual Neural Machine Translation
(MNMT) enables one system to translate
sentences from multiple source languages
to multiple target languages, greatly re-
ducing deployment costs compared with
conventional bilingual systems. The MNMT
training benefit, however, is often limited to
many-to-one directions. The model suffers
from poor performance in one-to-many and
many-to-many with zero-shot setup. To
address this issue, this paper discusses how to
practically build MNMT systems that serve
arbitrary X-Y translation directions while
leveraging multilinguality with a two-stage
training strategy of pretraining and finetuning.
Experimenting with the WMT’21 multilingual
translation task, we demonstrate that our sys-
tems outperform the conventional baselines of
direct bilingual models and pivot translation
models for most directions, averagely giving
+6.0 and +4.1 BLEU, without the need for
architecture change or extra data collection.
Moreover, we also examine our proposed
approach in an extremely large-scale data
setting to accommodate practical deployment
scenarios.

1 Introduction

Multilingual Neural Machine Translation (MNMT),
which enables one system to serve translation for
multiple directions, has attracted much attention
in the machine translation area (Zoph and Knight,
2016; Firat et al., 2016). Because the multilingual
capability hugely reduces the deployment cost at
training and inference, MNMT has actively been
employed as a machine translation system back-
bone in recent years (Johnson et al., 2017; Hassan
et al., 2018).

Most MNMT systems are trained with multiple
English-centric data for both directions (e.g., En-
glish→ {French, Chinese} (En-X) and {French,

∗Equal contributions.

Chinese}→ English (X-En)). Recent work (Gu
et al., 2019; Zhang et al., 2020; Yang et al., 2021b)
pointed out that such MNMT systems severely
face an off-target translation issue, especially in
translations from a non-English language X to an-
other non-English language Y. Meanwhile, Fre-
itag and Firat (2020) have extended data resources
with multi-way aligned data and reported that one
complete many-to-many MNMT can be fully su-
pervised, achieving competitive translation perfor-
mance for all X-Y directions. In our preliminary
experiments, we observed that the complete many-
to-many training is still as challenging as one-to-
many training (Johnson et al., 2017; Wang et al.,
2020), since we have introduced more one-to-many
translation tasks into the training. Similarly re-
ported in the many-to-many training with zero-shot
setup (Gu et al., 2019; Yang et al., 2021b), the com-
plete MNMT model also suffers from capturing
correlations in the data for all the X-Y directions
as one model training, due to highly imbalanced
data.

In this paper, we propose a two-stage training
for complete MNMT systems that serve arbitrary
X-Y translations by 1) pretraining a complete mul-
tilingual many-to-many model and 2) finetuning
the model to effectively transfer knowledge from
pretraining to task-specific multilingual systems.
Considering that MNMT is a multi-task learner
of translation tasks with “multiple languages”, the
complete multilingual model learns more diverse
and general multilingual representations. We trans-
fer the representations to a specifically targeted task
via many-to-one multilingual finetuning, and even-
tually build multiple many-to-one MNMT models
that cover all X-Y directions. The experimental re-
sults on the WMT’21 multilingual translation task
show that our systems have substantial improve-
ment against conventional bilingual approaches and
many-to-one multilingual approaches for most di-
rections. Besides, we discuss our proposal in the
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Figure 1: Average translation performance of our systems in the WMT’21 large-scale multilingual translation
Task 1 (top) and Task 2 (bottom), with the respective average improvement of (12E6D, 12E6D+FT, 24E12D,
24E12D+FT) = (+3.6, +4.7, +5.0, +6.0) and (+2.0, +2.9, +3.2, +4.1) against the bilingual baseline (“Bi”) and the
pivot translation baselines (“Pivot”). “12E6D/24E12D” denote our two settings, with “+FT” suffix for finetuned
systems.

light of feasible deployment scenarios and show
that the proposed approach also works well in an
extremely large-scale data setting.

2 Two-Stage Training for MNMT Models

To support all possible translations with |L| lan-
guages (including English), we first train a com-
plete MNMT system on all available parallel data
for |L| × (|L| − 1) directions. We assume that
there exist data of (|L| − 1) English-centric lan-
guage pairs and remaining (|L|−1)×(|L|−2)

2 non-
English-centric language pairs, which lets the sys-
tem learn multilingual representations across all |L|
languages. Usually, the volume of English-centric
data is much greater than non-English-centric one.
Then, we transfer the multilingual representations
to one target language L by finetuning the system
on a subset of training data for many-to-L direc-
tions (i.e., multilingual many-to-one finetuning).
This step leads the decoder towards the specifically
targeted language L rather than multiple languages.
As a result, we obtain |L| multilingual many-to-
one systems to serve all X-Y translation directions.
We experiment with our proposed approach in the
following two settings: 1) WMT’21 large-scale
multilingual translation data with 972M sentence
pairs and 2) our in-house production-scale dataset
with 4.1B sentence pairs.

3 WMT’21 Multilingual Translation
Task

We experiment with two small tasks of the
WMT’21 large-scale multilingual translation task.
The tasks provide multilingual multi-way parallel
corpora from the Flores 101 data (Wenzek et al.,
2021). The parallel sentences are provided among
English (en), five Central and East European lan-
guages of {Croatian (hr), Hungarian (hu), Esto-
nian (et), Serbian (sr), Macedonian (mk)} for the
task 1, and five Southeast Asian languages of {Ja-
vanese (jv), Indonesian (id), Malay (ms), Tagalog
(tl), Tamil (ta)} for the task 2. We removed sen-
tence pairs either of whose sides is an empty line,
and eventually collected the data with (English-
centric, Non-English-centric)=(321M, 651M) sen-
tence pairs in total. The data size per direction
varies in a range of 0.07M-83.9M. To balance
the data distribution across languages (Kudugunta
et al., 2019), we up-sample the low-resource lan-
guages with temperature=5. We append language
ID tokens at the end of source sentences to specify
a target language (Johnson et al., 2017). We tok-
enize the data with the SentencePiece (Kudo and
Richardson, 2018) and build a shared vocabulary
with 64k tokens.

We train Transformer models (Vaswani et al.,
2017) consisting of a m-layer encoder and n-layer
decoder with (hidden dim., ffn dim.) =(768, 3072)
in a complete multilingual many-to-many fash-
ion. We have two settings of (m, n) = (12, 6)
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model en hu hr sr et id ms tl mk jv ta avg.
Bilingual 30.4 19.5 23.9 16.7 19.4 20.9 17.6 13.0 24.1 1.2 1.8 17.1
Pivot-based 30.4 19.7 23.6 17.6 19.1 19.5 21.8 14.1 23.6 3.5 5.4 18.0
Many-to-one 32.9 20.8 24.0 17.4 19.8 25.3 20.3 16.6 25.0 1.5 5.1 19.0
Ours: Pretrained 32.0 18.9 23.4 15.6 19.0 28.6 26.5 21.1 26.2 10.8 8.1 20.9
+ finetuning 33.2 19.8 23.8 19.5 19.8 30.0 27.3 21.9 26.8 11.2 8.7 22.0
Data size (M) 321 172 141 123 85 63 20 19 18 5 4 –

Table 1: Average sacreBLEU scores for many-to-L directions on both Task 1 and 2, and the data statistics of the
corresponding L-centric training data (L={en, hu, hr, sr, et, id, ms, tl, mk, jv, ta}). All the multilingual systems
including many-to-one baselines and the proposed model are 12E6D. Note that the “Pivot-based" system for many-
to-English directions is identical to “Bilingual".

for “12E6D” and (24, 12) for “24E12D” , to learn
diverse multilingual dataset. The model param-
eters are optimized by using RAdam (Liu et al.,
2020) with an initial learning rate of 0.025, and
warm-up steps of 10k and 30k for the 12E6D and
24E12D model training, respectively. The systems
are pretrained on 64 V100 GPUs with a mini-batch
size of 3072 tokens and gradient accumulation of
16. After the pretraining, the models are finetuned
on a subset of X-L training data. We finetune the
model parameters gently on 8 V100 GPUs with
the same mini-batch size, gradient accumulations,
and optimizer with different learning rate schedul-
ing of (init_lr, warm-up steps)=({1e-4, 1e-5, 1e-6},
8k). The best checkpoints are selected based on
development loss. The translations are obtained
by a beam search decoding with a beam size of 4,
unless otherwise stated.

Baselines For system comparison, we build three
different baselines: 1) direct bilingual systems, 2)
pivot translation systems via English (only applica-
ble for non-English X-Y evaluation) (Utiyama and
Isahara, 2007), and 3) many-to-one multilingual
systems with the 12E6D architecture. The bilin-
gual and pivot-based baselines employ the Trans-
former base architecture. The embedding dimen-
sion is set to 256 for jv, ms, ta, and tl, because of the
training data scarcity. For the X-Y pivot translation,
a source sentence in language X is translated to En-
glish with a beam size of 5 by the X-En model,
then the best output is translated to the final target
language Y by the En-Y model.

Results All results on the test sets are displayed
in Figure 1 and Table 1, where we report the
case-sensitive sacreBLEU score (Post, 2018) for
translation accuracy. Overall, our best systems
(“24E12D+FT") are significantly better by ≥ +0.5

sacreBLEU for 83% and 88% directions against the
bilingual baselines and the pivot translation base-
lines, respectively. In Table 1, we present the av-
erage sacreBLEU scores for many-to-L directions,
showing that our proposed approach successfully
achieved the best performance in most targeted
languages. Compared to the many-to-one multilin-
gual baselines, the proposed approach of utilizing
the complete MNMT model transfers multilingual
representations more effectively to the targeted
translation directions, as the L-centric data size
are smaller. We also note that the winning system
of the shared task achieved (task1, task2)=(37.6,
33.9) BLEU with a 36-layer encoder and 12-layer
decoder model (Yang et al., 2021a) that is pre-
trained on extra language data including parallel
and monolingual data, while our best system with
a 24-layer encoder and 12-layer decoder obtained
(task1, task2)=(25.7, 22.8) sacreBLEU, without
using those extra data.

4 In-house Extremely Large-Scale
Setting

Deploying a larger and larger model is not always
feasible. We often have limitations in the computa-
tional resources at inference time, which leads to a
trade-off problem between the performance and the
decoding cost caused by the model architecture. In
this section, we validate our proposed approach in
an extremely large-scale data setting and also dis-
cuss how we can build lighter NMT models without
the performance loss, while distilling the proposed
MNMT systems (Kim and Rush, 2016). We briefly
touch the following three topics of 1) multi-way
multilingual data collection, 2) English-centric vs.
multi-centric pretraining for X-Y translations, and
3) a lighter NMT model that addresses the trade-
off issue between performance and latency. Then,
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xx-de xx-fr xx-es xx-it xx-pl
Pivot-based baselines 35.7 39.8 38.0 33.0 26.2
Pretrained model on en-xx data 14.2 33.1 — — —
+ Many-to-one multilingual finetuning 36.6 41.3 — — —
Pretrained model on {en, de, fr}-xx data 37.5 42.1 20.0 16.6 11.1
+ Many-to-one multilingual finetuning 38.3 42.6 39.3 34.6 28.3

Table 2: Average sacreBLEU scores of the proposed two-stage MNMT training for the many-to-one directions,
with the English-centric pretrained model and the multi-centric model pretrained on {en, de, fr}-xx data.

we report the experimental results in the extremely
large-scale setting.

Multilingual Data Collection We build an ex-
tremely large-scale data set using our in-house
English-centric data set, consisting of 10 European
languages, ranging 24M-192M sentences per lan-
guage. This contains available parallel data and
back-translated data between English and {German
(de), French (fr), Spanish (es), Italian (it), Polish
(pl), Greek (el), Dutch (nl), Portuguese (pt), and Ro-
manian (ro)}. From these English-centric corpora,
we extract a multi-way multilingual X-Y data, by
aligning En-X and En-Y data via pivoting English.
Specifically, we extracted {de, fr, es, it, pl}-centric
data and concatenate them to the existent direct
X-Y data, providing 78M-279M sentence pairs per
direction. Similarly as in Section 3, we build a
shared SentencePiece vocabulary with 128k tokens
to address the large-scale setting.

En-centric vs Multi-centric Pretraining In a
large-scale data setting, a question might come
up; Which pretrained model provides generalized
multilingual representations to achieve better X-Y
translation quality? Considering English is often
a dominant text data, e.g., 70% tasks are English-
centric in the WMT’21 news translation task, the
model supervised on English-centric corpora might
learn representations enough to transfer for X-Y
translations. To investigate the usefulness of the
multi-centric data training, we pretrain our Trans-
former models with deeper 24-12 layers described
in Section 3, on the English-centric data and the
L-centric data (L={en,de,fr}), individually. After
pretraining, we apply the multilingual many-to-one
finetuning with a subset of the training data and
evaluate each system for the fully supervised X-Y
directions, i.e., xx-{en,de,fr}, and the partially
supervised X-Y directions, i.e., xx-{es,it,pl}.
We followed the same training and finetuning set-
tings as described in Section 3, unless otherwise

stated.

MNMT with Light Decoder At the practical
level, one drawback of the large-scale models
would be latency at inference time. This is mostly
caused by the high computational cost in the de-
coder layers due to auto-regressive models and the
extra cross-attention network in each block of the
decoder. Recent studies (Kasai et al., 2021; Hsu
et al., 2020; Li et al., 2021) have experimentally
shown that models with a deep encoder and a shal-
low decoder can address the issue, without los-
ing much performance. Fortunately, such an archi-
tecture also satisfies demands of the many-to-one
MNMT training, which requires the encoder net-
works to be more complex to handle various source
languages. To examine the light NMT model archi-
tecture, we train the Transformer base architecture
modified with 9-3 layers (E9D3) in a bilingual set-
ting and compare it with a standard Transformer
base model, with 6-6 layers (E6D6), as a baseline.
Additionally, we also report direct X-Y translation
performance, when distilling the best large-scale
MNMT models alongside the light NMT models
as a student model. More specifically, following
Kim and Rush (2016), we train light NMT student
models (E9D3) that serve many-to-L translations
(L={de, fr, es, it, pl}).

Results Table 2 reports average sacreBLEU
scores for many-to-one directions in our in-house
X-Y test sets. For the xx-{de,fr} directions,
the proposed finetuning helps both English-centric
and multi-centric pretrained models to improve the
accuracy. Overall, the finetuned multi-centric mod-
els achieved the best, largely outperforming the
English pivot-based baselines by +2.6 and +2.8
points. For the comparison among the multilingual
systems, the multi-centric model without finetun-
ing already surpasses the finetuned English-centric
systems with a large margin of +0.9 and +0.8 points
for both xx-{de,fr} directions. This suggests
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Figure 2: The BLEU score and latency in milliseconds
of standard (E6D6) and light (E9D3) architecture.

that, by pretraining a model on more multi-centric
data, the model learns better multilinguality to
transfer. For the xx-{es,it,pl} directions1,
the fineutned multi-centric systems gain similar ac-
curacy improvement, averagely outperforming the
conventional pivot-based baselines.

Figure 2 shows the effectiveness of our light
NMT model architecture for five bilingual En-X
directions, reporting the translation performance
in sacreBLEU scores and the latency measured on
CPUs. Our light NMT model (E9D3) successfully
achieves almost 2x speed up, without much drop
of the performance for all directions. Employing
this light model architecture as a student model,
we report the distilled many-to-one model perfor-
mance in Table 3, measured by sacreBLEU and
COMET scores (Rei et al., 2020). For consistent
comparison, we also built English bilingual base-
lines (E6D6) that are distilled from the bilingual
Teachers, then we obtained the English pivot-based
translation performance. For all the many-to-L di-
rections (L={de,fr,es,it,pl}), the light NMT models
that are distilled from the best MNMT models show
the best performance in both metrics. Besides that,
we also note that our direct X-Y light NMT sys-
tems successfully save the decoding cost with 75%
against the pivot translation2.

1Most are zero-shot directions such as “Greek-to-Spanish”.
2The light NMT model halves the latency against the base-

line system, as shown in in Figure 2 and needs to be run
once. On the other hand, the pivot-based baseline systems
via English need to translate twice for X-Y directions (e.g.,
German-to-English and English-to-French translations for a
German-French direction).

Models BLEU COMET

xx-de Pivot-based baselines 38.1 60.8
Ours 39.5 67.2

xx-fr Pivot-based baselines 41.5 69.3
Ours 42.9 73.2

xx-es Pivot-based baselines 37.4 73.9
Ours 38.0 74.4

xx-it Pivot-based baselines 32.6 77.2
Ours 33.7 80.9

xx-pl Pivot-based baselines 26.7 77.8
Ours 28.0 88.5

Table 3: Average direct X-Y translation performance of
our proposed light NMT models. All “Our” NMT sys-
tems employ the light models (E9D3) that are distilled
from the best systems reported in Table 2.

5 Conclusion

This paper proposes a simple but effective two-
stage training strategy for MNMT systems that
serve arbitrary X-Y translations. To support transla-
tions across languages, we first pretrain a complete
multilingual many-to-many model, then transfer
the representations via finetuning the model in a
many-to-one multilingual fashion. In the WMT’21
translation task, we experimentally showed that the
proposed approach substantially improve transla-
tion accuracy for most X-Y directions against the
strong conventional baselines of bilingual systems,
pivot translation systems, and many-to-one multi-
lingual systems. We also examined the proposed
approach in the extremely large-scale setting, while
addressing the practical questions such as multi-
way parallel data collection, the usefulness of mul-
tilinguality during the pretraining and finetuning,
and how to save the decoding cost, achieving the
better X-Y quality.
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