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Abstract

Prompt-based methods have been successfully
applied in sentence-level few-shot learning
tasks, mostly owing to the sophisticated design
of templates and label words. However, when
applied to token-level labeling tasks such as
NER, it would be time-consuming to enumerate
the template queries over all potential entity
spans. In this work, we propose a more elegant
method to reformulate NER tasks as LM prob-
lems without any templates. Specifically, we
discard the template construction process while
maintaining the word prediction paradigm of
pre-training models to predict a class-related
pivot word (or label word) at the entity position.
Meanwhile, we also explore principled ways
to automatically search for appropriate label
words that the pre-trained models can easily
adapt to. While avoiding the complicated
template-based process, the proposed LM
objective also reduces the gap between
different objectives used in pre-training and
fine-tuning, thus it can better benefit the
few-shot performance. Experimental results
demonstrate the effectiveness of the proposed
method over bert-tagger and template-based
method under few-shot settings. Moreover, the
decoding speed of the proposed method is up
to 1930.12 times faster than the template-based
method.

1 Introduction

Pre-trained language models (LMs) have led to
large improvements in NLP tasks (Devlin et al.,
2019; Liu et al., 2019; Lewis et al., 2020). Popular
practice to perform downstream classification tasks
is to replace the pretrained model’s output layer
with a classifier head and fine-tune it using a
task-specific objective function. Recently, a new
paradigm, prompt-based learning, has achieved
great success on few-shot classification tasks
by reformulating classification tasks as cloze
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Figure 1: An example of template-based prompt method
for NER. Predicting all labels in sentence “Obama was
born in America." requires enumeration over all spans.

questions. Typically, for each input [X], a template
is used to convert [X] into an unfilled text (e.g.,
“IX] It was __."), allowing the model to fill in
the blank with its language modeling ability. For
instance, when performing sentiment classification
task, the input “I love the milk." can be converted
into “I love the milk. It was __.". Consequently, the
LM may predict a label word “great”, indicating
that the input belongs to a positive class.

Two main factors contribute to the success of
prompt-based learning on few-shot classification.
First, re-using the masked LM objective helps
alleviate the gap between different training
objectives used at pre-training and fine-tuning.
Therefore, the LMs can faster adapt to downstream
tasks even with a few training samples (Schick
and Schiitze, 2021a,b; Brown et al., 2020).
Second, the sophisticated template and label
word design helps LMs better fit the task-specific
answer distributions, which also benefits few-shot
performance. As proved in previous works, proper
templates designed by manually selecting (Schick
and Schiitze, 2021a,b), gradient-based discrete
searching (Shin et al., 2020), LM generating (Gao
etal., 2021) and continuously optimizing (Liu et al.,
2021) are able to induce the LMs to predict more
appropriate answers needed in corresponding tasks.

However, the template-based prompt methods
are intrinsically designed for sentence-level tasks,
and they are difficult to adapt to token-level clas-
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sification tasks such as named entity recognition
(NER). First, searching for appropriate templates
is harder as the search space grows larger when
encountering span-level querying in NER. What’s
worse, such searching with only few annotated
samples as guidance can easily lead to overfitting.
Second, obtaining the label of each token requires
enumerating all possible spans, which would be
time-consuming. As an example in Fig.1, the input
“Obama was born in America." can be converted
into “Obama was born in America. [Z] is a __
entity.", where [Z] is filled by enumerating all the
spans in [X] (e.g., “Obama", “Obama was") for
querying. Fig.1 shows that obtaining all entities in
“Obama was born in America ." requires totally 21
times to query the LMs with every span. Moreover,
the decoding time of such an approach would
grow catastrophically as sentence length increasing,
making it impractical to document-level corpus.

In this work, we propose a more elegant way for
prompting NER without templates. Specifically,
we reformulate NER as an LM task with an
Entity-oriented LM (EntLM) objective. Without
modifying the output head, the pre-trained LMs
are fine-tuned to predict class-related pivot words
(or label words) instead of the original words
at the entity positions, while still predicting the
original word at none-entity positions. Next,
similar to template-based methods, we explore
principled ways to automatically search for the
most appropriate label words. Different approaches
are investigated including selecting discrete label
words based on the word distribution in lexicon-
annotated corpus or LM predictions, and obtaining
the prototypes as virtual label words. Our approach
keeps the merits of prompt-based learning as
no new parameters are introduced during fine-
tuning. Also, through the EntLM objective, the
LM are allowed to perform NER task with only a
slight adjustment of the output distribution, thus
benefiting few-shot learning. Moreover, well-
selected label words accelerate the adaptation of
LM distribution towards the desired predictions,
which also promotes few-shot performance. It’s
also worth noting that the proposed method
requires only one-pass decoding to obtain all
entity labels in the sentence, which is significantly
more efficient compared to the time-consuming
enumeration process of template-based methods.
Our codes are publicly available at https://
github.com/rtmaww/EntLM/.

To summarize the contribution of this work:

* We propose a template-free approach to
prompt NER under few-shot setting.

* We explore several approaches for label
word engineering accompanied with intensive
experiments.

» Experimental results verify the effectiveness
of the proposed method under few-shot
setting. Meanwhile, the decoding speed of
the proposed method is 1930.12 times faster
than template-based baseline.

2 Problem Setup

In this work, we focus on few-shot NER task.
Different from previous works that assume a rich-
resource source domain and available support sets
during testing, we follow the few-shot setting of
(Gao et al., 2021), which supposes that only a small
number of examples are used for fine-tuning. Such
setting makes minimal assumptions about available
resources and is more practical. Specifically, when
training on a new dataset D with the label space
Y, we assume only K training examples for each
class in the training set, such that the total number
of examples is K,y = K x |Y|. Then, the model
is tested with an unseen test set (X%t ytest) ~
Dycs:. Here, for NER task, a training sample refers
to a continual entity span e = {1, ..., 2, } thatis
labeled with a positive class (e.g.,“PERSON").

3 Approach

In this work, we propose a template-free prompt
tuning method, Entity-oriented LM (EntLM)
fine-tuning, for few-shot NER. We first give a
description of the template-based prompt tuning.
Then we introduce the EntLM method along with
the label word engineering process.

3.1 Template-based Prompt Tuning

The standard fine-tuning process for NER is
replacing the LM head with a token-level
classification head and optimizing the newly-
introduced parameters and the pre-trained LM.
Different from standard fine-tuning, prompt-based
tuning reformulates classification tasks as LM
tasks, and fine-tunes LM to predict a label word.
Formally, a prompt consists of a template
function T)pyompe(-) that converts the input z to a
prompt input Zprompt = Tprompt(2), and a set of
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(a) Standard fine-tuning.

(b) Entity-oriented LM fine-tuning.

(c) Template-based prompt tuning.

Figure 2: Comparison of different fine-tuning methods for NER. (a) is the standard fine-tuning method, which
replace the LM head with a classifier head and perform label classification. (c) is the template-based prompt learning
method, which induces the LM to predict label words by constructing a template. (b) is the proposed Entity-oriented
LM fine-tuning method, which also re-uses the LM head and leads the LM to predict label words through an
Entity-oriented LM objective. (For entities with multiple spans, the model predicts the same label word at each

position, which is similar to the “IO" labeling scheme.)

label words V which are connected with the label
space through a mapping function M : Y — V.
The template is a textual string with two unfilled
slot: a input slot [X] to fill the input z and an
answer slot [Z] that allows LM to fill label words.
For instance, for a sentiment classification task, the
template can take the form as “[X] It was [Z].". The
input is then mapped to “z It was [Z].". Specifically,
when using a masked language model (MLM) for
prompt-based tuning, [Z] is filled with a mask token
[MASK]. By feeding the prompt into the MLM,
the probability distribution over the label set ) is
modeled by:

P(ylr) = PMASK] = MO)laprame)
= Softmaxr(Wi, - hjyask))

where Wy, are the parameters of the pre-trained
LM head. Unlike in standard fine-tuning, no
new parameters are introduced in this approach,
therefore the model can easier fit the target task
with few samples. Also, the LM objective reduce
the gap between pre-training and fine-tuning, thus
benefiting few-shot training (Gao et al., 2021).

3.1.1 Problems of Prompt-based NER

However, when applied to NER, such prompt-
based approach becomes complicated. given an
input X = {x1,...,z,}, we need to obtain
the label sequence Y = {yi,...,yn},yi € Y
corresponding to each token of X. Therefore, an
additional slot [S] is added in the template to fill
a token x; or a continual span sz- = {z,...,x}
that starts from z; and ends with z;. For example,
the template can take the form as “[X] [S] is
a [Z] entity.", where the LMs are fine-tuned to
predict an entity label word at [Z] (e.g., person)
corresponding to an entity label (e.g., PERSON).
During decoding, obtaining the labels Y of the

whole sentence requires enumeration over all the
spans: '
¥ = {argmax P([Z] = M(P)[Tprompt (X, 57),

. 733j}7 i,] € {1n})}>

2
Such a decoding way is time-consuming and the
decoding time increasing as the sequence length
getting longer. Therefore, although efficient in few-
shot setting, template-based prompt tuning is not
suitable for NER task.

53‘ = Enumerate({z;, ..

3.2 Entity-Oriented LM Fine-tuning

In this work, we propose a more elegant way to
prompt NER without templates, while maintaining
the advantages of prompt-tuning. Specifically, we
also reformulate NER as a LM task. However,
instead of forming templates to re-use the LM
objective, we propose a new objective, Entity-
oriented LM (EntLM) objective for fine-tuning
NER. As shown in Fig. 2 (b), when fed with
“Obama was born in America", the LM is trained
to predict a label word “John" at the position of the
entity “Obama" as an indication of the label “PER".
While for none-entity word “was", the LM remains
to predict the original word.

Formally, to fine-tune the LM with EntLM
objective, we first construct a label word set
V; which is also connected with the task label
set through a mapping function M y —
V). Next, given the input sentence X =
{z1,...,x,} and the corresponding label sequence
Y ={y1,...,yn}, we construct a target sentence
XEnt = Ly, M(yi),...,z,} by replacing
the token at the entity position i (here we assume
; 1s an entity label) with corresponding label word
M (y;), and maintaining the original words at none-
entity positions. Then, given the original input
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X, the LM is trained to maximize the probability
P(XE"|X) of the target sentence X £

n
LentLM = — Z logP(z; = xf"t]X) 3)
i=1
where P(z; = 2F™|X) = Softmaz(W, - h;).
Noted that Wy, are also the parameters of the
pre-trained LM head. By re-using the whole pre-
trained model, no new parameters are introduced
during this fine-tuning process. Meanwhile, the
EntLLM objective serves as a LM-based objective
to reduce the gap between pre-training and fine-
tuning. In this way, we avoid the complicated
template constructing for NER task, and keep the
good few-shot ability of prompt-based method.
During testing, we directly feed the test input X
into the model, and the probability of labeling the
it" token with class y € ) is modeled by:

p(yi =yl X) =plz; = M@)|X) @

Noted that we only need one-pass decoding process
to obtain all labels for each sentence, which
is intensively more efficient than template-based
prompt querying.

3.3 Label Word Engineering

Previous template-based studies have verified the
significant impact of template engineering on few-
shot performance. Similarly, in this work, we
explore approaches for automatically selecting
proper label words. Since the EntLM object lead
all entities that belong to a class to predict the same
label word, we believe that the purpose of label
word searching is to find a pivot word that can
mostly represent the words in each class.

3.3.1 Low-resource Label word selection

When selecting label words with only few
annotated samples as guidance, the randomness of
sampling will largely affect the selection. In order
to obtain more consistent selection, we explore
the usage of unlabeled data and lexicon-based
annotation as a resource for label word searching.
This is a practical setting since unlabeled data of
a target domain or a general domain is usually
available, and for NER, the entity lexicon of target
classes are usually easy to access.

To obtain annotation via entity lexicon, we adopt

the KB-matching approach proposed by Liang et al.

(2020), which leverages an external KBs, wikidata,
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Figure 3: Searching for two types of label words: the
discrete label words and the continuous vectors as
virtual label words. To search for the discrete label
words, we select the high-frequency words in data or
LM output distribution, or combine these two ways. To
search for virtual label words, we calculate the mean
vectors of the high-frequency words of each class as
prototypes.

as the source of lexicon annotation. Such lexicon-
based annotation is inevitably noisy. However, our
approach do not suffers a lot from the noise since
we only regarded it as an indication of the data
distribution and do not train the model directly
with the noisy annotation.

3.3.2 Label word searching

With the help of lexicon-annotated data Djeyicon, =
{(X;, Y)Y, we explore three methods for label
word searching.

Searching with data distribution (Data search)
The most intuitive method is to select the most
frequent word of the given class in the corpus.
Specifically, when searching for label words for
class C, we calculate the frequency ¢(z = w, y* =
(') of each word w € V labeled as C' and select the
most frequent words by ranking:

M(C) = argmax ¢(z = w,y" = C) (5

Searching with LM output distribution (LM
search) In this approach, we leverage the pre-
trained language model for label word searching.
Specifically, we feed each sample (X, Y*) into LM
and get the probability distribution p(Z; = w|X)
of predicting each word w € V at each position
J. Suppose Lyopr(Z; = w| X, Y™*) — {0,1} is the
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Datasets Domain # Class # Train # Test
CoNLL’ 03 News 4 14.0k 3.5k
OntoNotes*  General 11 60.0k 8.3k
MIT Movie Review 12 7.8k 2.0k
Table 1: Dataset details. OntoNotes* denotes

the  Ontonotes5.0  dataset  after
value/numerical/time/date entity types.

removing

indicator function indicating whether w belongs to
the topk predictions of x; in sample (X, Y ™). The
label word of class C' can be obtained by:

M(C) = arg max

X

Z Z (Z)topk(i‘i = w, y: = C)

(X,Y*)eD 1
(6)

where ¢topk (j;z = w, y* = C) = Itopk('ﬁi =
w|X,Y™) - Z(y; = C) denotes the frequency of w
occurring in the top k predictions of the positions
labeled as class C'.

Searching with both data & LM output distri-
bution (Data&LM seach) In this approach, we
select label words by simultaneously considering
the data distribution and LM output distribution.
Specifically, the label word of class C can be

obtained by:
R

M(C) = argmgx{ Z Zqﬁ(wz =w,y; =C)

(X,Y*)eD 1
1X|

: Z Zd’topk(i‘i = wvy;‘ = C)}

(X,Y*)eD 1
(7
3.3.3 Removing conflict label words

The selected high-frequency label words are
potentially high-frequency words among all the
classes. Using such label words will result
in conflicts when training for different classes.
Therefore, after label word selection, we remove
the conflict label words of a class C' by:

Pz =w,y* =C)

w = M(C)alfzk ¢(z = w,y* = k)

> Th
8)

where T'h is a manually set threshold.

4 Experiments

In this section, we conduct few-shot experiments
to verify the effectiveness of the proposed method.
We also conducts intensive analytical experiments
for label words selection.

4.1 Experimental settings

As mentioned in Section 2, in this work, we focus
on few-shot setting that no source domain data
yet only K samples of each class are available for
training on a new NER task. To better evaluate the
models’ few-shot ability, we conduct experiments
with K € {5,10,20,50}. For each K-shot
experiment, we sample 3 different training set and
repeat experiments on each training set for 4 times.
Few-shot data sampling. Different from sentence-
level few-shot tasks, in NER, a sample refers
to one entity span in a sentence. One sampled
sentence might include multiple entity instances.
In our experiments, we conduct an exact sampling
strategy to ensure that we sample exactly K
samples for each class. The details of the algorithm
can be found at Appendix A.2.

4.2 Datasets and Implementation Details

We evaluate the proposed method with three bench-
mark NER datasets from different domains: the
CoNLL2003 dataset (Sang and De Meulder, 2003)
from the newswire domain, Ontonotes 5.0 dataset
(Weischedel et al., 2013) from general domain and
the MIT-Movie dataset (Liu et al., 2013)! from the
review domain. As we focus on named entities,
we omit the value/numerical/time/date entity types
(e.g.,“Cardinal”, “Money", etc) in OntoNotes 5.0.
Details of the datasets are shown in Table 1.

Labeling multi-span entities. For entities with
multiple spans (including multiple words or sub-
tokens after tokenization), we let the model predict
the same label word at each position. This labeling
method is the same with the “IO" labeling schema,
which is consistent to our baseline implementation.

To ensure a few-shot scenario, we didn’t use
a development set for model choosing. Instead,
we use the model of the last epoch for predicting.
For lexicon-based annotation, we use the KB-
matching method of Liang et al. (2020)2. For more
implementation details (e.g., the learning rate, etc.),
please refer to Appendix A.1 or our codes.

4.3 Baselines and Proposed Models

In our experiments, we compare our method
with competitive baselines, involving both metric-
learning based and prompt-based approaches.
BERT-tagger (Devlin et al., 2019) The BERT-
based baseline which fine-tunes the BERT model

"https://groups.csail.mit.edu/sls/downloads/
Zhttps://github.com/cliang1453/BOND
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Datasets Methods K=5 K=10 K=20 K=50
BERT-tagger (10) 4187 (12.12) 59.91 (10.65) 68.66 (5.13) _ 73.20 (3.09)
NNShot 4231(8.92) 5924 (11.71)  66.89 (6.09)  72.63 (3.42)
CoNLL03 | StructShot 45.82(1030)  62.37(10.96)  69.51 (6.46)  74.73 (3.06)
Template NER 43.04 (6.15)  57.86(5.68)  66.38 (6.09) 72.71(2.13)
EntLM (Ours) 4959 (830)  64.79 (3.86)  69.52(4.48)  73.66 (2.06)
EntLM + Struct (Ours) | 51.32(7.67)  66.86 (3.01) 7123 (3.91)  74.80 (1.87)
BERT-tagger (I0) 3477(7.16) 5447(831) 6021 (3.89) 68.37(1.72)
NNShot 3452(7.85)  5557(9.20) 59.59(4.20) 6827 (1.54)
StructShot 36.46 (8.54)  57.15(5.84)  6222(5.10)  68.31(5.72)
OntoNotes 5.0 | T Slate NER 40.52(8.62)  49.89 (3.66)  59.53(2.25)  65.15(2.95)
EntLM (Ours) 4521(9.17)  57.64 (4.18)  65.64 (4.24)  71.77 (1.31)
EntLM + Struct (Ours) | 46.60 (10.35) 59.35(3.24)  67.91(4.55) 73.52(0.97)
BERT-tagger (10) 3057 (638)  50.60(7.29) 59.34 (3.66) 71.33 (3.04)
NNShot 38.97(5.54)  5047(6.09) 58.94(347) 71.17 (2.85)
MIT-Movie | StructShot 4160 (8.97)  53.19(5.52) 61.42(2.98) 72.07 (6.41)
Template NER 4597 (3.86)  49.30 (335  59.09 (0.35)  65.13(0.17)
EntLM (Ours) 46.62(9.46)  57.31(3.72)  62.36 (4.14)  71.93 (1.68)
EntLM + Struct (Ours) | 49.15(8.91)  59.21(3.96)  63.85(3.7)  72.99 (1.80)

Table 2: Main results of EntL.M on three datasets under different few-shot settings (K=5,10,20,50). We report mean
(and deviation in brackets) performance over 3 different splits (4 repeated experiments for each split).

with a label classifier.

NNShot and StructShot (Yang and Katiyar,
2020) Two metric-based few-shot learning ap-
proaches for NER. Different from Prototypical
Network, they leverage a a nearest neighbor
classifier for few-shot prediction. StructShot is
an extension of NNShot which proposes a viterbi
algorithm during decoding. We extend these
two approaches to our few-shot setting. Noted
that the viterbi algorithm in the original paper
calculates the data distribution of a source domain,
yet in our setting, the source domain is unavailable.
Therefore, we also use the lexicon-annotated data
for performing this method.

TemplateNER (Cui et al., 2021) A template-
based prompt method. By constructing a template
for each class, it queries each span with each class
separately. The score of each query is obtained
by calculating the generalization probability of the
query sentence through a generative pre-trained
LM, BART(Lewis et al., 2020).

EntLM The proposed method.

EntLM+Struct Based on the proposed method,
we further leverages the viterbi algorithm proposed
in (Yang and Katiyar, 2020) to boost the
performance. For more details please refer to (Yang
and Katiyar, 2020) or our codes.

In Appendix A.5, we also compare with the
roberta-base baselines from (Huang et al., 2020).

4.4 Few-shot Results

Table 2 show the results of the proposed method
and baselines under few-shot setting. From

the table, we can observe that: (1) On all
the three datasets, for all few-shot settings, the
proposed method performs consistently better than
all the baseline methods, especially for 5-shot
learning. Also, the performance of the proposed
method is more stable (according to the deviation)
than the compared baselines. (2) BERT-tagger
method shows poor ability of few-shot learning,
and the proposed method achieves up to 9.45%,
11.83%, 9.58% improvement over BERT-tagger
on CoNLLO03, OntoNotes 5.0 and MIT-Movie,
respectively. These results show the advantages
of the proposed method over standard fine-tuning,
which introduces no new parameters and uses
an LM-like objective to reduce the gap between
pre-training and fine-tuning. (3) The proposed
method consistently outperforms the template-
based prompt method, Template NER, which
shows the advantage of the proposed method over
standard template-based method. (4) When no rich-
resource source domain is available, the metric-
based methods (NNShot) do not show advantages
over BERT-tagger, which shows the limitation
of these method under more practical few-shot
scenarios. (5) Among all baselines, the StructShot
is a competitive baseline that also leverages lexicon
and unlabeled data for structure-based decoder,
yet our method can also benefit from the viterbi
decoder and outperform StructShot.

4.5 Efficiency Study

In this section, we perform an efficiency study on
all the three datasets. We calculate the decoding
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Methods CoNLLO03 OntoNotes MIT-Movie
K=5 K=10 K=5 K=10 K=5 K=10

DataSearch 50.00 (9.75) 61.31 (4.73) 36.94 (5.04) 49.54 (5.02) 39.25 (4.83) 51.65 (5.52)
LMSearch 48.40 (6.81)  59.39(5.50) 3698 (6.71) 4820(5.46) 39.12(4.18)  48.30 (3.76)
Data&LMSeach 49.55(7.76)  61.00(6.98)  36.60(7.90) 50.64 (6.12) 38.86 (11.43) 50.42 (6.45)
Data + Virtual 49.25 (4.96) 63.40(5.13) 45.61(10.51) 55.13(4.95) 45.59(8.25) 55.10 (4.42)
LM + Virtual 42.65(12.58) 59.39(5.50) 45.29(7.77) 54.50 (3.66) 46.23 (5.60) 54.92 (6.15)
Data&LM + Virtual  49.59 (8.30) 64.79 (3.86) 45.21 (9.17) 57.64 (4.18)  46.62 (9.46) 57.31(3.72)

Table 3: Comparison of our label word selection methods. We report mean (and standard deviation) performance.

Methods CoNLL OntoNotes MIT-Movie
BERT-tagger 8.57 23.89 6.46
TemplateNER 6,491.00  50,241.00 5254.00
NNShot 16.03 82.62 15.98
StructShot 19.84 98.67 17.66
EntLM 9.26 26.03 6.64
EntLM + Struct 13.40 34.92 7.38

Table 4: The decoding time (s) of different methods.

time of each method on a TiTan XP GPU with batch
size=8. (The source codes of Template NER do not
allow us to change the batch size, so we keep the
original batch size=45, which is the enumeration
number of a 9-gram span. ) From Tab.4, we can
observe that: 1) EntLM can achieve comparable
speed with BERT-tagger, as only one pass of
token classification is required for decoding each
batch. 2) The decoding speed of TemplateNER is
severely slow, while EntLM is up to 1930.12 times
faster than TemplateNER. These results show the
advantages of EntLM over template-based prompt
tuning methods in NER task.

4.6 Label Word Selection

In Sec.3.3, we have presented different ways for
label word selection. In this section, we conduct
experiments on these methods and the results are
reported in table 3. We can observe that: 1)
The virtual word selection approach is always
better than the discrete word selection. While
among all virtual selection methods, choosing high-
frequency words with the combination of data
and LM distribution shows advantages over other
methods. The reason of these results might be that
simultaneously considering both data distribution
gives not only the data prior in the target dataset,
but also the contextualized information from
the PLM, thus benefiting the performance. 2)
Searching only with LM distribution leads to poor
results especially under 5-shot setting, showing
that the general knowledge learned from pre-
trained might be less helpful than the data-specific
knowledge under few-shot settings.

F1 score against lexicon size
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Figure 4: Impact of different lexicon sizes.

4.6.1 Impact of Lexicon Quality on Label
Word Selection

Note that we leverage unlabeled data and lexicon
annotation for label word selection. In this
experiment, we study how the quality of lexicon
impacts the performance on the OntoNotes*
dataset. Specifically, we obtain different sizes of
lexicon (5% to 80% of the original lexicon size)
by sampling entity words in the original lexicon
with the weights of entity frequency. This sampling
method follows the real-world situation since high-
frequency entities are easier to obtain. Fig.4 shows
the results of EntLM and baseline methods against
lexicon size. We can observe that: (1) EntLM with
the Data&L M+ Virtual selection method illustrates
consistent high performance even with 5% lexicon.
This means our method is not limited to the
lexicon quality, and we only require a small lexicon
to reach acceptable few-shot performance. (2)
Compared with Data&LM+Virtual method, the
Data&LM is much more fragile regarding the
lexicon quality. However, it still performs better
than the compared baselines.

We further conduct experiments on different
sizes of the unlabeled dataset by uniformly
sampling 5%-80% of the original data. As shown
in Fig.5, the proposed method also shows high
robustness to the amount of unlabeled data.

4.7 Effect of Further Pre-training

When predicting label words on task-specific data
during fine-tuning, there is an intrinsic gap between
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Figure 5: Impact of the amount of unlabeled data.

CoNLL03

Methods K=5 K=T0

BERT-tagger 41.87 (12.12)  59.91 (10.65)
EntLM 49.59 (8.30) 64.79 (3.86)
EntLM + Struct 51.32 (7.67) 66.86 (3.01)
BERT-tagger (further) 41.16 (10.41)  61.70 (5.15)
EntLM (further) 56.82 (12.27)  66.82 (4.65)
EntLM + Struct (further)  58.77 (12.16)  68.96 (4.41)

Table 5: Impact of further pre-training.

the LM output distribution and the target data
distribution. Therefore, it is natural to conduct a
further pre-training approach on the target-domain
unlabeled data to boost the LM predictions towards
target distribution. In Table 5, we show the
results of our method and BERT-tagger trained
after further pre-training with MLM objective on
domain-specific unlabeled data. As seen, the
further pre-training practice can largely boost the
few-shot learning ability of EntLM, while showing
less helpful for classifier-based fine-tuning method.
This might because the LM objective used in
EntLM can benefit more from a task-specific LM
output distribution, showing the superiority of
EntLM in better leveraging the pre-trained models.

5 Related Works

5.1 Template-based prompt learning

Stem from the GPT models (Radford et al., 2019;
Brown et al., 2020), prompt-based learning have
been widely discussed. These methods reformulate
downstream tasks as cloze tasks with textual
templates and a set of label words, and the design
of templates is proved to be significant for prompt-
based learning. Schick and Schiitze (2021a,b)
uses manually defined templates for prompting text
classification tasks. Jiang et al. (2020) proposes
a mining approach for automatically search for
templates. Shin et al. (2020) searches for optimal
discrete templates by a gradient-based approach.
(Gao et al., 2021) generates templates with the T5
pre-trained model. Meanwhile, several approaches

have explore continuous prompts for both text
classification and generation tasks Li and Liang
(2021); Liu et al. (2021); Han et al. (2021). Also,
several approaches are proposed to enhance the
templates with illustrative cases (Madotto et al.,
2020; Gao et al., 2021; Brown et al., 2020) or
context (Petroni et al., 2020). Although template-
based methods are proved to be useful in sentence-
level tasks, for NER task (Cui et al., 2021),
such template-based method can be expensive for
decoding. Therefore, in this work, we propose a
new paradigm of prompt-tuning for NER without
templates.

5.2 Few-shot NER

Recently, many studies focuses on few-shot NER
(Hofer et al., 2018; Fritzler et al., 2019; Li et al.,
2020; Ding et al., 2021; Chen et al., 2021). Among
these, Fritzler et al. (2019) leverages prototypical
networks for few-shot NER. Yang and Katiyar
(2020) propose to calculate the nearest neighbor
of each queried sample instead of the nearest
prototype. Huang et al. (2021) experimented
comprehensive baselines on different datasets.
Tong et al. (2021) proposes to mine the undefined
classes for few-shot learning. Cui et al. (2021)
leverages prompts for few-shot NER. However,
most of these studies follow the manner of episode
training or assume a rich-resource source domain.
In this work, we follow the more practical few-shot
setting of Gao et al. (2021), which assumes only
few samples each class for training. We also adapt
previous methods to this setting as competitive
baselines.

6 Conclution

In this work, we propose a template-free prompt
tuning method, EntLM, for few-shot NER.
Specifically, we reformulate the NER task as a
Entity-oriented LM task, which induce the LM
to predict label words at entity positions during
fine-tuning. In this way, not only the complicated
template-based methods can be discarded, but also
the few-shot performance can be boosted since
the EntLLM objective reduces the gap between pre-
training and fine-tuning. Experimental results show
that the proposed method can achieve significant
improvement on few-shot NER over BERT-tagger
and template-based method. Also, the decoding
speed of EntLM is up to 1930.12 times faster than
the template-based method.
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A Appendix

A.1 Implementation Details

We implement our method based on the hug-
gingface transformers?. For all our experiments
except TemplateNER, we use “bert-base-cased"
pre-trained model as the base model for fine-
tuning, and no new parameters are introduced in the
proposed method. For both bert-base baselines and
our method, we set learning rate=1e-4 and batch
size=4 for few-shot training. For all experiments,
we train the model for 20 epochs, and AdamW
optimizer is used with the same linear decaying
schedule as the pre-training stage. These hyper-
parameter settings are as the same with (Huang
et al., 2021). For other hyper-parameter settings of
the baseline methods, we simply follow the default
settings. When implementing all methods, we
adopt the “IO" labeling schema since we found
that the “IO" schema is better than “BIO" schema
under few-shot setting.

As for label word selection, we use the
Data&LM seaching along with the virtual method
(Data&LM+Virtual) for all dataset and set the
conflict ratio to T'Th = 0.6. When selecting the
top k high-frequency words for virtual method, we
setk to 6.

A.2 Sampling Algorithm

We conduct an exact sampling algorithm to ensure
sampling exactly K samples for each class, which
is different from the greedy sampling method used
in previous methods (Yang and Katiyar, 2020). The
algorithm is detailed in Algorithm 1. For all of
the three datasets we used, we exactly obtained K
samples for each class under all the K -shot setting.

A.3 Effect of Conflict threshold

Fig. 6 shows the impact of conflict threshold on
5-shot performance. As seen, for Data&LMSearch,
lower conflict threshold results in improper label
words that bring noisy annotated entities. There-
fore, the performance promoting as the conflict
threshold increasing. As for Data&L.M+Virtual
method, the impact of conflict words are less
significant since multiple words are selected to
construct the virtual vector.

A.4 Effect of k in virtual method

Fig.7 shows the impact of the choice of top
k number for virtual method. @~ We conduct

*https://github.com/huggingface/transformers
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Figure 6: Impact of the conflict threshold.
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Figure 7: Effect of the choice of top & number for virtual
method.

experiments using the Data&l.MSearch+Virtual
method on CoNLL 5-shot dataset. We can see
that the performance of the proposed method is
robust to the choice of k, since it can consistently
achieve good results when £ >= 3. In our main
experiments, we simply choose k = 6 for all
datasets.

A.5 Comparison with Comprehensive
few-shot NER benchmark

We also conduct experiments on the few-shot
benchmark provided by (Huang et al., 2021), in
order to compare with the competitive baselines in
the paper. These methods are implemented with
the “Roberta-base" pretrained model. Therefore,
we also implement our method based on “Roberta-
base" for fair comparison. Since the sampled
data of OntoNotes is not available, we only
experimented on the CoNLL’03 and MIT-Movie
datasets. The results are shown in Table 6.

The results show that, our method outperforms
over all baselines. Notice that the NSP method
leverages the 6.8GB WiFiNE dataset for pre-
training, and that the ST method performs self-
training on the unlabeled data. However, our
method still shows better results, which illustrates
the effectiveness of the proposed objective over
standard fine-tuning. Also, the proposed method
can be further boosted with NSP and ST. We leave
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Methods CoNLL MIT-Movie

5-shot 5-shot
LC 53.5 51.3
LC+NSP 61.4 53.1
Proto 584 38.0
Proto+NSP 60.9 43.8
LC+ST 56.7 54.1
LC+NSP+ST 65.4 55.9
EntLM 68.6 55.2
EntLM (Struct) 69.9 57.1

Table 6: Comparison with the methods presented in
(Huang et al., 2021). LC is linear classifier fine-tuning
method. P is prototype-based training using a nearest
neighbor objective. NSP is noising supervised pre-
training and ST is self-training. Notice that our method
shows better results even without NSP and ST, and can
also be further boosted by these two methods.

this for future works.

A.6 Case Study

In Table 7, we show the label words selected with
the Data&LM+Virtual method as examples.

Algorithm 1 Few-shot Sampling

Require: # of shot K, labeled training set D with a label set
V.
1: S < ¢ // Initialize the support set
2: for each class 7 € ) do
3:  Count[i] « 0// Initialize the counts of each entity

class

4: end for

5: Shuffle D

6: for (X,Y) € Ddo

7 Add <+ True

8: for: € ) do

9: Calculate Temp_count[i] // Calculate the mention

number of class i in (X,Y")
10: if Count[i] + Temp_count[i] > K then
11: Add < False // Skip current sample that
violates the K-shot rule

12: end if

13: end for

14: if Add is True then

15: S+ SU{(X,Y)}

16: Update {Count[¢] + Count[] + Temp_count[¢] }

Vie)y

17: end if

18:  if Count[i] == K,Vi € ) then

19: break // Finish sampling
20: end if
21: end for
22: return S

Datasets

Label words (Data&LM+Virtual Search)

{"I-PER": ["Michael", "John", "David", "Thomas", "Martin", "Paul"], "I-ORG": ["Corp", "Inc",

CoNLL’03

"Commission", "Union", "Bank", "Party"], "I-LOC": ["England", "Germany", "Australia", "France",

"Russia", "Italy"], "[I-MISC": ["Palestinians", "Russian", "Chinese", "Russians", "English", "Olympic"]}

{"I-EVENT": ["War", "Games", "Katrina", "Year", "Hurricane", "II"], "I-FAC": ["Airport", "Bridge",
"Base", "Memorial", "Canal", "Guantanamo"], "I-GPE": [ "US", "China", "United", "Beijing",
"Israel", "Taiwan"], "I-LANGUAGE": ["Mandarin", "Streetspeak”, "Romance", "Ogilvyspeak",

OntoNotes*

"Pentagonese"”, "Pilipino"], "I-.LAW": ["Chapter", "Constitution", "Code", "Amendment", "Protocol",

"RICO"], "I-LOC": ["Middle", "River", "Sea", "Ocean", "Mars", "Mountains"], "I-NORP ": ["Chinese",
"Israeli", "Palestinians", "American", "Japanese", "Palestinian"], "[-ORG": ["National", "Corp", "News",
"Inc", "Senate", "Court"], "I-PERSON": ["John", "David", "Peter", "Michael", "Robert", "James"],
"I-PRODUCT": ["USS", "Discovery", "Cole", "Atlantis", "Coke", "Galileo"],

"I-WORK_OF_ART" : ["Prize", "Nobel", "Late", "Morning", "PhD", "Edition"]}

{"I-ACTOR": ["al", "jack", "bill", "pat", "der", "mac"], "I-CHARACTER": ["solo"],
"I-DIRECTOR": ["de", "del", "stone", "marks", "bell", "dick"], "I-GENRE ": ["fantasy", "adventure",

"romance", "comedy", "action", "thriller"], "I-PLOT": ["murder", "death", "vampires", "aliens",

MIT-Movie

"zombies", "suicide"], "I-RATING": ["13"], "I-RATINGS_AVERAGE": ["very", "nine", "well",

non

"highly", "really", "popular"], "I-REVIEW": ["comments", "regarded", "opinions", "positive"],

"I-SONG": ["heart", "favourite", "loves"], "I-TITLE": ["man", "woman", "night", "story", "men",

"dark"], "I-TRAILER": ["trailers", "trailer", "preview", "glimpse", "clips"],
"I-YEAR": ["last", "past", "years", "decades", "ten", "three"]}

Table 7: Label words obtained by Data&LM+Virtual Search method. The number of label words for each class
might be less than k& = 6 if the words cannot meet the conflict threshold T'h = 0.6.
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