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Abstract

Transformer-based models are not efficient in
processing long sequences due to the quadratic
space and time complexity of the self-attention
modules. To address this limitation, Linformer
and Informer reduce the quadratic complex-
ity to linear (modulo logarithmic factors) via
low-dimensional projection and row selection,
respectively. These two models are intrinsically
connected, and to understand their connection
we introduce a theoretical framework of ma-
trix sketching. Based on the theoretical analy-
sis, we propose Skeinformer to accelerate self-
attention and further improve the accuracy of
matrix approximation to self-attention with col-
umn sampling, adaptive row normalization and
pilot sampling reutilization. Experiments on
the Long Range Arena benchmark demonstrate
that our methods outperform alternatives with
a consistently smaller time/space footprint1.

1 Introduction

Transformer (Vaswani et al., 2017) utilizes softmax
self-attention modules to capture the dependency
between tokens in a sequence and has been widely
used in various Natural Language Processing tasks.
The time and space complexity of the dot-product
self-attention is quadratic in the input sequence
length, which restricts the largest sequence length
and batch size. To adapt transformers to long se-
quences, documents have to be truncated, chunked
using a sliding window, or processed in parallel on
multiple GPUs. These additional operations usu-
ally cause the loss of long-range dependency and
introduce additional computational costs.

In this paper, we focus on efficient self-attention
methods (Xiong et al., 2021; Qiu et al., 2020;
Zaheer et al., 2020; Beltagy et al., 2020; Kitaev

∗Equal contribution. The majority of this work was done
prior to the first author’s internship at Amazon Alexa AI.

1Our code is released at https://github.com/
pkuzengqi/Skeinformer

et al., 2020a; Roy et al., 2021), among which Lin-
former (Wang et al., 2020b) and Informer (Zhou
et al., 2020) are two representative approaches to
reducing the O(n2) self-attention to an Õ(n) oper-
ation (Õ(·) means O(·) modulo poly-log terms and
n is the sequence length) in both space and time
complexity. Linformer forms a low-rank factoriza-
tion of the original attention by decomposing it into
smaller attentions, while Informer allows each key
to only attend to a certain number of queries.

To better understand self-attention, we intro-
duce a theoretical framework, sketching (Woodruff,
2014), to help explain the key ideas in Informer and
Linformer from the perspective of matrix approxi-
mation. Specifically, sketching methods replace the
original matrix B with its random sketch BS to
reduce computations. In Section 3.3 we introduce
some concrete instances of commonly used distri-
butions for constructing the random sketching ma-
trix S. Furthermore, taking matrix approximation
as a general guideline, we recognize the deficiency
in Informer and Linformer, that they either do not
fully utilize the information in the value matrix V ,
or deviate from the original self-attention output.
This guideline also motivates us to propose Skein-
former through the theoretical analysis under the
sketching framework.

To improve the approximation accuracy in terms
of the original attention output, Skeinformer ap-
plies sub-sampling sketching to reduce time com-
plexity and exploits the information from the value
matrix V with column sampling. Skeinformer
also incorporates an adaptive row normalization
step, which approximates the un-selected rows by
a vector with all elements 1

n and has significantly
boosted the performance of Informer. In addition,
we introduce a simple yet effective step, pilot sam-
pling reutilization, which reuses the computation
from pilot sampling to improve both approximation
accuracy and training efficiency. Our experiments
on the LRA benchmark show that Skeinformer con-
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sistently uses less space and time while achieving
better accuracy than most baseline methods.

In summary, our contributions are twofold:

• We introduce sketching as a theoretical frame-
work for analyzing and developing efficient
transformers. Specifically, the randomized
sketching theory covers these two methods
from the perspective of approximate matrix
multiplication. This framework connects the
studies on efficient transformers and random-
ized sketching theory, so that future develop-
ment in efficient transformers and sketching
can benefit each other.

• We propose Skeinformer as a straightforward
product of the sketching framework to acceler-
ate the training and inference of transformers.
Skeinformer consists of three components:
the initial column sampling that incorporates
the information from the value matrix V into
the sampling probabilities, the adaptive row
normalization that fills un-selected columns
with the averaged selected columns, and the
pilot sampling re-utilization.

2 Related Work

The ability to process long sequences is criti-
cal for many Natural Language Processing tasks,
including Document Summarization (Xiao and
Carenini, 2019; Huang et al., 2021), Question An-
swering (Wang et al., 2020a), Information Ex-
traction (Li et al., 2021; Du and Cardie, 2020;
Ebner et al., 2020; Du et al., 2022), and Ma-
chine Translation (Bao et al., 2021). However, the
quadratic computational cost of self-attention in
transformer-based models limits their application
in long-sequence tasks. Recent methods have been
proposed to accelerate attention computation by se-
lectively attending to a subset of the tokens or with
low-rank matrix approximation (Tay et al., 2020b).

Selective attention methods limit the scope of
matrix operation with sparse attention patterns or
column/row sampling methods. BlockBERT (Qiu
et al., 2020) introduces sparse block structures into
the attention matrix. Sparse Transformer (Child
et al., 2019) introduces dilated patterns. Big
Bird (Zaheer et al., 2020) proposes a combina-
tion of random, window, and global attention.
Longformer (Beltagy et al., 2020) combines lo-
cal windowed attention with task-motivated global
attention. The most related work to ours is In-

former (Zhou et al., 2020), which allows each key
to only attend to the top queries under the Kullback-
Leibler divergence based sparsity measurement.

Low-rank attention matrix approximation meth-
ods are based on the assumption of low-rank
structure in the full self-attention matrix. Lin-
former (Wang et al., 2020b) compresses the
size of the key and value matrices by the John-
son–Lindenstrauss transform (Johnson and Lin-
denstrauss, 1984). Performer (Choromanski et al.,
2020) recognizes the attention score matrix as an
empirical Gaussian kernel matrix and constructs
a low-rank projection for both the query and key
matrices through random Fourier features (Rahimi
and Recht, 2007). Nyströmformer (Xiong et al.,
2021) instead utilizes Nyström method (Williams
and Seeger, 2000; Drineas and Mahoney, 2005)
to approximate the attention score matrix. Sky-
former (Chen et al., 2021) replaces the softmax
structure with a Gaussian kernel and adapts the
Nyström method to accelerate the computation.

Some other methods follow a similar principle
to decompose the attention score matrix, although
they are not necessarily aiming to approximate the
original self-attention itself. The representative
methods include Linear Transformer (Katharopou-
los et al., 2020), which claims that the exponential
transform of the dot-product in the softmax opera-
tion can be replaced by the direct matrix multipli-
cation of the projected query and key matrices, and
Reformer (Kitaev et al., 2020b), which forces the
query and key matrices to be identical and applies
locality-sensitive hashing (LSH) (Har-Peled et al.,
2012) to simplify the computation of the attention
score matrix. Those methods are effective alterna-
tives of the original self-attention, while they do
not fall into the scope of matrix approximation. We
spare the discussion of those methods in this paper.

3 Sketching Framework

3.1 Problem Formulation
Given an input sequence X ∈ Rn×dinput , where n
is the sequence length and dinput is the embedding
dimension, the dot-product attention for a single
attention head in transformer (Vaswani et al., 2017)
is defined as

Attention(Q,K,V ) = softmax
(
QKT

√
p

)
V

where Q = XWQ, K = XWK , and V =
XWV . WQ, WK , WV ∈ Rdinput×p are the query,
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Algorithm 1: Skeinformer.
Input: query matrix Q, key matrix K, value matrix V (all are n-by-p), and sub-sample size d
Output: Attention output matrix R with the same shape as V

1 Uniformly sample d indices j1, · · · , jd with replacement;
2 Construct the d× p matrix QJ as to the index set J := {jk}dk=1, whose k-th row is Q(jk);
3 Compute the matrix BJ = softmax

(
QJK

T /
√
p
)

; // pilot sampling
4 Based on BJ , give the estimated sub-sampling probabilities {p̂i}ni=1 as in Equation (5);
5 With {p̂i}ni=1 sample d indices j′1, · · · , j′d without replacement;
6 Construct the d-by-p matrix KJ′ (resp., VJ′ ) according to the indices list J ′ := {j′k}dk=1, whose k-th row is K(j′

k
)

(resp., V(j′
k
));

7 Compute the two matrices AJ′
= exp

(
QKT

J′/
√
p
)
, and RJ′ = AJ′

VJ′ ; // column sampling

8 Construct a length n column vector g whose i-th element is (
∏d

k=1 aij′
k
)
1
d , ∀i ∈ [n];

9 Compute the row sum vector d := AJ′
1d + (n− d)g ; // adaptive row normalization

10 Denote the un-selected part of V as V(J′)C , and compute the vector v = V T
(J′)C1n−d;

11 Obtain the intermediate output R = diag(d−1)(RJ′ + gvT ), where d−1 is the element-wise inverse of d;
12 Compute BJV and assign it to the corresponding rows of R ; // pilot sampling reutilization
13 Return the matrix R as the ultimate output of this algorithm;

key, and value weight metrics that linearly project
the input X of dimension dinput to an output tensor
of dimension p.

To ease the future analysis, the softmax term
can be rewritten into D−1A, where A :=
exp(QKT /

√
p), and D is a diagonal matrix whose

diagonal is exp(QKT /
√
p)·1 (1 is a size-n vector

with all elements being 1).

3.2 Sketching Methods
Beyond current attempts to accelerate self-
attention, research in the random matrix approx-
imation community can be potentially applied to
fast attention. Among the theoretical frameworks,
the sketching method (Woodruff, 2014) is the most
comprehensive one as its general concept can in-
corporate many different approaches.

The core idea of the sketching method is to re-
place an original matrix B ∈ RnB×n with its ran-
dom sketch BS, where S ∈ Rn×d is a random
sketching matrix. In practice, to apply the sketch-
ing method we plug an identity matrix into the
original expression, and then formally replace the
identity matrix with the product SST , as the dis-
tribution of S is usually designed to satisfy the
constraint that

E(SST ) = I. (1)

Common methods to construct a sketching
matrix include sub-Gaussian maps (Vershynin,
2010; Halko et al., 2011), subsampled randomized
Hadamard transform (SRHT) (Ailon and Chazelle,
2006; Lu et al., 2013; Yang et al., 2017), sparse
oblivious subspace embeddings (Cohen et al.,

2016), very sparse random projection (Li et al.,
2006), accumulative sketching (Chen and Yang,
2021), and sub-sampling sketching (Monte Carlo
algorithms) (Drineas et al., 2006). Specifically,
Informer and Linformer, two efficient transformer-
based methods mentioned above, can be under-
stood as applications of sub-sampling sketching
and sub-Gaussian maps, respectively. We further
elaborate the connections in the next subsection.

3.3 Sketching in Self-attention Approximation

A naïve step in applying sketching method to ap-
proximate the self-attention output D−1AV is to
construct a random sketch of the un-normalized
attention score matrix A, the bottleneck in compu-
tation. Informer and Linformer construct two types
of sketches, ATS and AS respectively.

3.3.1 Informer
Informer selects d important rows of D−1A,
though deterministically, to represent D−1A. This
process can be related to a sketched approximation
D−1SSTA, where S is a sub-sampling matrix
defined as follows:

Definition 3.1 (Sub-sampling matrix). Consider
a discrete distribution which draws i with prob-
ability pi > 0,∀i ∈ [n]. For a random matrix
S ∈ Rn×d, if S has independent and identically
distributed (i.i.d.) columns and each column S(j)

is 1√
dpi

ei with probability pi, where ei is the i-th
column of the n-by-n identity matrix In, then S is
called a sub-sampling matrix with sub-sampling
probabilities {pi}ni=1.

Some researchers in the field of approximate ma-
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trix multiplication have provided a practical guide-
line for the choice of the sub-sampling probabilities
{pi}ni=1 in S. Specifically for the matrix multipli-
cation BC of two arbitrary matrices B and C,
Drineas et al. (2006) approximate it with BSSTC
and set the sampling probability pi in S propor-
tional to the product ∥B(i)∥2∥C(i)∥2, where B(i)

is the i-th column in matrix B and C(i) is the i-th
row in matrix C. For the product D−1A, the prob-

ability in sketching will be pi =

√∑n
j=1 a

2
ij∑n

j=1 aij
, where

aij is the j-th element of the i-th row in matrix A.
The above sampling probability choice {pi}ni=1

is highly related to the sparsity measurement used

in Informer, which is Mi = ln
∑n

j=1 aij

(
∏n

j=1 aij)
1/n . Here

pi is the ratio between the quadratic mean and the
arithmetic mean of {aij}nj=1; Mi is the logarithm
of the ratio between the arithmetic mean and the
geometric mean. It is clear that Mi will increase
with pi as these two ratios will both be large when
{aij}nj=1 are highly non-uniform. We conclude
that in Informer, the main idea to select the rows
with high sparsity measurement can be taken as a
special variant of the sub-sampling method above
with probabilities {pi}.

3.3.2 Linformer
Another type of sketch AS is mentioned (but not
finally used) in Linformer. The sketching matrix
S takes a form different from sub-sampling. The
construction of S in Linformer is motivated by
Johnson-Lindenstrauss (JL) transform, which ap-
plies the sketching matrix S satisfying the (ε, δ)-JL
guarantee:
Definition 3.2 (Oblivious Johnson-Lindenstrauss
guarantee (Johnson and Lindenstrauss, 1984)).
A distribution D over Rn×d satisfies “oblivious
Johnson-Lindenstrauss guarantee" if for some
ε, δ ∈ (0, 1/2):

∀b ∈ Rn, P
S∼D

(∣∣∥Sb∥22 − ∥b∥22
∣∣ > ε∥b∥22

)
< δ.

(2)
Specifically, a matrix with i.i.d. Gaussian ele-

ments can meet the above requirement. It has been
proven (Johnson and Lindenstrauss, 1984) that with
d = O(ε−2 log(1/δ)), a Gaussian sketching matrix
S can satisfy the oblivious (ε, δ)-JL guarantee. To
extend the conclusion from a single vector b ∈ Rn

to a matrix B ∈ RnB×n, the size d still needs to
suffer from an additional log nB term (Vershynin,
2010), which matches the bound in sub-sampling
sketching (Drineas et al., 2006, Theorem 1).

However, the direct use of Gaussian sketch-
ing matrix, i.e. the approximation D−1ASSTV
(Wang et al., 2020b, Eqn. (5)), requires the
computation of the whole matrix A. To
avoid this computational burden, Linformer re-
places the form of sketching method with
softmax

(
(QKT /

√
p)S

)
STV , which sacrifices

the accuracy for efficiency in some tasks as shown
in later experimental results.

4 Methodology: Skeinformer

Based on the previous discussion, we observe that
Informer omits the information from the value ma-
trix V , and Linformer deviates from the usual
sketching form for efficiency. To address these
issues and fully exploit the power of sketching,
we strengthen the attention approximation with the
following components.

In Section 4.1, we introduce column importance
sampling, which allows the information incorpora-
tion from V to accelerate the matrix multiplication
(compared to JL transform); in Section 4.2 and
Section 4.3, we leverage the sampled columns to
perform the row normalization and reuse the pilot
row sampling, which further improves the approxi-
mation and makes the training more stable.

We describe the proposed method Skeinformer
in Algorithm 1 and verify its performance on ma-
trix approximation in Section 5. We also provide
complexity analysis in Section 4.5 to show that our
method enjoys the same O(n log n) complexity as
other methods.

4.1 Column Sampling
The row selection in Informer has been derived as
a special variant of the sketching method and can
be further improved by utilizing the information
from V , in a form similar to Linformer:

D−1ASSTV ,

where S above is a sub-sampling matrix defined in
Definition 3.1 with sampling probabilities

pi ∝ ∥(D−1A)(i)∥2∥V(i)∥2, i = 1, 2, . . . , n.

We remark that using the sub-sampling sketching
in this way can both circumvent the computation
burden of Gaussian sketching, and also allow the
incorporation of the information from V .

As S formally samples some columns from
D−1A, we name the procedure as column sam-
pling in our method. The performance regarding
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Figure 1: Spectral norm results with the sequence length of 1024 and 4096. Y axis: Lower percentage score means
better approximation. X axis: Higher number of feature means larger computation cost. “V-Mean" is an artificial
baseline against sampling that always uses a rank-one matrix 1

n11
TV to approximate the original self-attention.

the Frobenius norm loss of the approximate matrix
multiplication can be guaranteed by the following
proposition:
Proposition 1 (Adapted from Theorem 1 (Drineas
et al., 2006)). Suppose the attention score matrix
B := D−1A ∈ Rn×n, the value matrix V ∈
Rn×p, the number of sampled columns d ∈ Z+

such that 1 ≤ d ≤ n, and the sampling probabil-
ities {pi}ni=1 are such that

∑n
i=1 pi = 1 and such

that for a quality coefficient β ∈ (0, 1]

pi ≥ β
∥B(i)∥∥V(i)∥∑n

i′=1 ∥B(i′)∥∥V(i′)∥
, ∀i ∈ [n]. (3)

Construct a sub-sampling matrix S ∈ Rn×d with
sub-sampling probabilities {pi}ni=1 as in Defini-
tion 3.1, and let BSSTV be an approximation to
BV . Let δ ∈ (0, 1) and η = 1+

√
(8/β) log(1/δ).

Then with probability at least 1− δ,

∥BV −BSSTV ∥2F ≤ η2

βd
∥B∥2F ∥V ∥2F . (4)

Remark. Proposition 1 guides Informer and our
method to pick the important rows and columns of
the attention score matrix B. In self-attention, it is
feasible to compute the norm ∥V(i′)∥ of each row
in V with O(n) time, assuming the dimension p in
each head is fixed and independent of n. However,
similar to Informer, it is inefficient to exactly com-
pute the ℓ-2 norm of each column in the n-by-n
matrix B, and we need pilot sampling as well to
estimate the norm of the columns in B. We show
that O(log n) samples in the pilot sampling are suf-

ficient to guarantee the quality coefficient β ≥
√

1
3

with high probability by the following lemma. (See
proof in Appendix.)
Lemma 1. Assume for any i ∈ [n], ∥B(i)∥2/n is
uniformly lower bounded by a constant C, where

B := D−1A. For another constant δ ∈ (0, 1/2),
we uniformly sample d indices {jk}dk=1 from [n]
with replacement, and let d be a constant multiple
of log(n/δ). Then with probability at least 1 − δ,
the estimated sub-sampling probabilities

p̂i :=
(
∑d

k=1 b
2
jki

)
1
2 ∥V(i)∥

∑n
i′=1(

∑d
k=1 b

2
jki′

)
1
2 ∥V(i′)∥

, ∀i ∈ [n], (5)

satisfy the constraints (3) with β =
√

1
3 , where

bji is the element of B from the j-th row and i-th
column.

This lemma states the sub-sampling weights
used in our proposed method. Its computation only
requires accesses to {B(jk)}dk=1 obtained from the
pilot sampling, and thus has greatly reduced the
time cost. Combining the preceding lemma and
Proposition 1, we conclude that with the sampling
probabilities {p̂i}ni=1 estimated by O(log n) pilot
samples, the sampled d important columns suffice
to capture the essence of the original output BV .
We conclude this subsection with a remark that the
theoretical result that sub-sampling sketching can
well approximate the original self-attention, indeed
matches the rank collapse phenomenon observed
by Dong et al. (2021) that self-attention can be well
approximated by a low-rank matrix.

4.2 Adaptive Row Normalization
In addition to the theoretical guarantee of the sub-
sampling sketching method, we identify an impor-
tant component behind Informer, row normaliza-
tion, which implicitly fills the un-selected rows
with 1

n . The experiments in Section 5 reveal that
even the rank-one pure row normalization bench-
mark 1

n11
TV , as an ablation, will have acceptable

spectral norm loss ∥D−1AV − 1
n11

TV ∥2. There-
fore, we incorporate adaptive row normalization
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to provide an even better attention score distribu-
tion in each row. It fills un-selected columns with
the averaged selected columns. Moreover, from
the model training perspective, it allows the whole
value matrix V in Skeinformer to participate in
the computation (compared to only using the sub-
sampling sketch STV ), and thus can improve the
efficiency of updating WV during the training.

Specifically, in adaptive row normalization any
row in the matrix A can be divided into two parts,
the exactly computed elements in the selected
columns with indices {j′k}dk=1 ⊂ [n] and the other
elements in the un-selected columns. For the latter,
in each row, we set all the un-selected elements
as the geometric mean of the selected ones, con-
sidering the exponentiation in softmax. We then
perform row normalization based on the above con-
struction, in which the i-th diagonal element in D
is estimated as

d̂ii =

d∑

k=1

aijk + (n− d)(

d∏

k=1

aijk)
1
d , (6)

where each aij is the corresponding element in ma-
trix A. Next we normalize rows composed of exact
elements in the selected columns, and the other
elements estimated with the mean value above. We
comment that though the component of adaptive
row normalization makes the proposed method in-
applicable to Proposition 1, it benefits the perfor-
mance on matrix approximation and avoid the cost
to compute the diagonal normalization matrix D.
(c.f. Section 5)

4.3 Pilot Sampling Reutilization
Since we have already computed BJ in pilot sam-
pling step (defined in Ln. 3 of Algorithm 1), we
can exactly reproduce the d rows in the original
self-attention output with an additional product
BJV in O(n log n) time. This allows for more
precise approximation with little cost. In addition,
the computation of those rows involves the whole
key matrix K, which benefits the training of the
parameters WK .

4.4 Implementation Details
Applying the sub-sampling-based methods requires
the support for padding masks commonly used in
Natural Language Processing tasks. However, a
naïve implementation of Algorithm 1 will result in
the unnecessary sampling of the padding tokens.
Therefore, we count the number of the unpadded

tokens m, and only perform the pilot sampling
within the certain range [m]. After the matrix BJ

is computed, we set its columns belonging to the
padded part to be all zero, so that the probability
p̂i of choosing column i from the padded part will
be zero and the column will not be sampled in the
later importance sampling. Similar modifications
can also be applied to Informer to enable its appli-
cations in NLP tasks in Section 6.

4.5 Complexity Analysis

With the mild assumption in Lemma 1, we claim
that our method can have an O(n log n) time and
space complexity. The claim is shown by the fol-
lowing analysis of the complexity, which heavily
relies on the notations in Algorithm 1.

First, we point out that the row/column retriev-
ing operation after index sampling can be imple-
mented by only forming a view and thus the cost
is negligible. For Line 1 ∼ 4 in Algorithm 1,
the time complexity of the uniform pilot sampling
is O(d) = O(log n), while the computation of
the matrix BJ and the corresponding probabilities
{p̂i}ni=1 costs O(nd) = O(n log n) time and space.
For Lines 5 ∼ 7, with probabilities {p̂i}ni=1, the
importance sampling takes O(n+d log n) = O(n)
time, and similar to the computation above it takes
O(n log n) time and space to obtain AJ ′ and RJ ′ .
For Lines 8 ∼ 10, it is clear that the three vectors
g, d, and v can be computed in O(n log n) time.
As for the last step in Line 11, since it just requires
the matrix product involving a diagonal matrix, we
can finish the computation also in O(n log n) time
and space. In summary, the total time and space
complexity for Algorithm 1 is at most O(n log n),
much lower than the O(n2) complexity for the orig-
inal softmax self-attention.
Remark. The complexity above is derived based
on the high probability bound in Proposition 1,
which is different than the derivation by some pre-
vious methods to claim the linear O(n) complexity.

5 Approximation Evaluation

As a preliminary justification of our proposed meth-
ods, we compute the spectral norm loss, a com-
mon metric for approximate matrix multiplication,
to evaluate the effect of different models to ap-
proximate the original self-attention. We compare
the spectral norms of the differences between the
outputs from vanilla self-attention and other fast
attention methods given the same input Q,K,V.
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Specifically we compute ∥BV − R∥2, where
B := D−1A is the attention score matrix in the
original method, and R is the output of each ap-
proximation method.

To construct the inputs Q,K,V, we first truncate
the raw text from Wikitext-2 dataset (Merity et al.,
2017) into sequences of length 512. Then we trans-
form the input X into Q,K,V with the query, key,
and value weight metrices from a pretrained model
or a randomly initiated model.

We report the spectral norm loss of different
sketching-based methods in Figure 1. The results
are averaged over 768 trials, and the error bars
in the figure represent the standard error of the
reported values. For size d (x-axis), either the num-
ber of columns/rows selected or the projection di-
mension, it is set in the range from 23 to 28.

V-Mean uses a rank-one matrix 1
n11

TV to ap-
proximate the original self-attention, and thus its
approximation error does not change with the size
d. V-Mean can also be seen as an ablation for the
row normalization step (equivalent to adaptive row
normalization without sub-samples). We observe
the row normalization step greatly contributes to
the approximation of self-attention that involves
a softmax structure. Among the candidates, Ske-
informer tends to have the smallest spectral norm
loss, especially when d is large. It attains a higher
accuracy than Informer and Linformer regarding
the matrix approximation performance.

6 Experiment

6.1 Benchmark

We experiment on Long Range Arena (LRA)
benchmark (Tay et al., 2020a), including ListOps
(Nangia and Bowman, 2018), Text Classification
(Maas et al., 2011), Document Retrieval (Radev
et al., 2013), Pathfinder (Linsley et al., 2018),
and Image Classification (Krizhevsky et al., 2009).
LRA is designed for long-context scenarios and
more appropriate for evaluating efficient transform-
ers comparing to GLUE (Mutton et al., 2007) with
shorter input context . Following (Xiong et al.,
2021) we use a 2-layer transformer model with 64
embedding dimensions, 128 hidden dimensions,
and 2 attention heads for all experiments. More
details can be found in Appendix.

6.2 Baseline Methods

We compare our method with the standard
quadratic self-attention (Vaswani et al., 2017), Big

Bird (Zaheer et al., 2020), Linformer (Wang et al.,
2020b), Informer (Zhou et al., 2020), Performer
(Choromanski et al., 2020), and Nyströmformer
(Xiong et al., 2021). In addition to their vanilla
implementations, we compare with standard self-
attention without dropout (since most fast attention
methods do not have this component), Linformer
with unreduced Johnson-Lindenstrauss Transform
(the original form that Linformer deviates from),
and Informer with padding masks.

Ablation studies include replacing the column
sampling with uniform sampling, disabling the
adaptive row normalization or replacing it with the
simple row normalization implemented in Informer,
and disabling the pilot sampling reutilization.

For clarification, deep transformers or pretrained
language models are not appropriate baselines.
Training a deep transformer from scratch requires
large computational resources and much more data
to converge, and therefore is not adopted by previ-
ous work. A shallow transformer structure, on the
other hand, has been justified by previous work to
be enough for fair comparison in attention accelera-
tion performance. Pretrained models are trained for
token-level text-based tasks, and are not suitable
for image pixel sequences (as in Pathfinder and Im-
age Classification), character sequences (as in Text
Classification) and math operation sequences (as
in ListOps).

6.3 Results

We conclude the results in Table 1 and Table 2 with
the following observations:

Most Õ(n) attention acceleration methods
have comparable or better performance with
vanilla attention. After all models converge to
their long-time limits, Linformer tends to have
worse performance possibly due to the violation of
the sketching form, while Skeinformer has the best
overall performance.

While surprising, those approximation methods
tend to outperform the original transformer in most
tasks. We speculate the reason behind this phe-
nomenon is that a good approximation can recover
the main signals in the original self-attention ma-
trix, and also restrain the noise via the sparse /
low-rank structure. A similar phenomenon can be
found in CNN (Sanyal et al., 2018), that a low-rank
regularizer, such as SVD, applied to the representa-
tion of the intermediate layers can allow the model
to have lower prediction errors. This speculation
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Models Text ListOps Retrieval Pathfinder Image Average
Standard (Vaswani et al., 2017) 57.69 38.15 80.10 73.59 37.97 57.50
· w/o dropout 59.44 38.17 79.35 72.35 37.58 57.38
V-Mean 65.29 28.78 80.49 61.01 34.33 53.98
BigBird (Zaheer et al., 2020) 61.91 38.86 79.73 71.75 35.00 57.45
Performer (Choromanski et al., 2020) 57.67 37.70 75.69 56.50 37.40 52.99
Nystromformer (Xiong et al., 2021) 60.91 37.76 79.87 72.53 31.93 56.60
Reformer (Kitaev et al., 2020a) 62.69 37.94 78.85 69.21 36.42 57.02
Linformer (Wang et al., 2020b) 58.52 37.97 77.40 55.57 37.48 53.39
· w/ unreduced JLT 59.12 37.48 79.39 68.45 35.96 56.08
Informer (Zhou et al., 2020) 61.55 38.43 80.88 59.34 36.55 55.35
· w/ padding mask 60.98 37.26 79.92 62.51 37.19 55.57
Skeinformer 62.47 38.73 80.42 71.51 37.27 58.08
· w/o column sampling 64.48 30.02 80.57 64.35 36.97 55.28
· w/o row normalization 60.67 37.69 78.67 66.35 37.06 56.09
· w/ simple row normalization 60.26 38.35 78.97 65.41 39.72 56.54
· w/o pilot sampling reutilization 62.39 38.12 79.88 71.53 37.20 57.83

Table 1: Classification accuracy (%) on the test sets of LRA benchmark. Skeinformer does not always outperform
other baseline methods but has consistently comparable general performance. The approximation methods are not
expected to outperform the original methods (standard self-attention) though they surprisingly do.

Models Text ListOps Retrieval Pathfinder Image
time ↓ bz ↑ time ↓ bz ↑ time ↓ bz ↑ time ↓ bz ↑ time ↓ bz ↑

Standard 50.63 16 22.30 64 53.27 16 13.91 128 21.40 64
· w/o dropout 39.49 8 19.50 32 41.88 8 11.79 64 14.88 32
V-Mean 3.62 128 4.14 256 3.90 64 3.67 512 4.44 256
BigBird 20.59 64 17.28 128 21.73 32 17.83 256 18.84 256
Performer 2.63 64 9.31 128 12.50 32 10.40 256 8.94 256
Nyströmformer 12.18 64 12.28 128 13.35 32 19.58 128 10.30 256
Reformer 10.53 64 8.28 128 11.27 64 9.25 256 11.88 256
Linformer 7.91 64 6.25 128 8.08 64 6.90 256 6.65 256
· w/ unreduced JLT 36.87 8 21.49 32 35.93 4 15.17 128 22.03 128
Informer 33.13 16 21.89 32 36.52 16 26.14 64 24.92 128
· w/ mask 25.94 32 21.50 64 35.95 32 15.79 128 22.58 128
Skeinformer 9.60 64 9.66 128 10.61 64 9.25 256 11.86 256
· w/o column sampling 7.60 128 6.66 256 6.70 64 7.27 512 7.76 256
· w/o row normalization 25.02 16 16.02 64 55.72 4 11.12 256 15.52 128
· w/ simple row normalization 6.80 128 8.16 256 8.03 64 6.84 512 11.27 256
· w/o pilot sampling reutilization 7.15 128 7.31 256 8.68 64 7.09 512 10.19 256

Table 2: Training time (minute per thousand steps) and actual batch size (in batch accumulation) on LRA benchmark.
Less training time per thousand steps indicates higher time efficiency. Higher batch size indicates higher space
efficiency, and within a certain range means more accurate gradient estimations. we simulate the case of real-world
applications of efficient transformers that models are trained with their maximum batch size conditioned on memory.

motivates us to turn to some theoretical framework
for matrix approximation to better analyze the fast
attention methods, which will potentially benefit
transformer pruning, compression and distillation.

Skeinformer has the comparable general per-
formance in terms of time/space complexity and
classification accuracy. A long transformer is con-
sidered efficient when it (1) reduces space complex-
ity and supports larger sequence length and larger
batch size, (2) reduces time complexity with less
training time per step and less total time to con-
verge, and (3) shows comparable performance with
vanilla softmax without much loss from approxi-
mation.

For convergence efficiency, Skeinformer effi-

ciently converges to the long-time limit. Regarding
the training efficiency, we focus on how soon the
model can attain the stationary distribution of its
long-time limit (He et al., 2019). The loss decay
plot on ListOps in Appendix shows significant dif-
ferences in the convergence rate of each method in
addition to classification accuracy.

Though our method does not always outperform
others (with the fastest convergence or the highest
accuracy) , but we remark that Skeinformer at-
tains the best accuracy-efficiency trade-off based
on experimental results. On the opposite, some
model converges fast but gets stuck in a local opti-
mum, like Linformer in some cases.
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7 Conclusion

We conclude in this paper that sketching can be ap-
plied as a theoretical framework for analyzing fast
attention models, through which we are able to rec-
ognize the potential improvements upon previous
work. Theoretical results are provided to guarantee
the high accuracy of the approximation to the origi-
nal self-attention by our proposed Skeinformer. We
empirically validate the contributions of the compo-
nents in Skeinformer, including column sampling,
adaptive row normalization and pilot sampling re-
utilization, with extensive comparisons with vari-
ous baseline and ablation methods.
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A Further experiment Details

A.1 Implementation Details

As it is not realistic to exhaustively fine-tune all
models and search for the best performance under
limited computation resources, we instead replace
the self-attention module in transformer with the
various drop-in attention methods and keep other
experimental settings the same. Following (Xiong
et al., 2021) we use a 2-layer transformer model
with 64 embedding dimensions, 128 hidden dimen-
sions, and 2 attention heads for all experiments.
Mean pooling is used in all classifiers.

For comparable computation complexity, we
control the number of features used in all methods,
which leads to 256 as the number of features in Ske-
informer, 256 as k in Linformer, 256 as the number
of landmarks in Nyströmformer, (256/ log n) as
the factor in Informer, and 256 as the number of
features in Performer. Additionally, the number of
random blocks and block size in Big Bird are by
default 3 and 64, under which setting Big Bird will
visit 640 · n elements in the attention matrix while
other models visit 256 · n elements. A clearer com-
plexity evaluation on the FLOPs of each method is
provided in Appendix.

We use Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 1e−4. Batch size is selected
conditioned on the memory requirements of Skein-
former, which leads to 128 for Text Classification,
256 for ListOps, 64 for Document Retrieval, 512
for Pathfinder and 256 for Image. For methods
reporting out-of-memory errors, we apply gradi-
ent accumulation and report the accumulated steps.
Instead of setting a fixed epoch number, we train
all models until convergence with a stopping strat-
egy (if better performance is not observed for 10
checking steps on the validation set we will stop
the training process).

We conduct all experiments on one Tesla V100
SXM2 16GB. For numerical consistency, all ex-
periment results are averaged across three random
runs.

A.2 LRA Dataset

We evaluate on five classification tasks in LRA
benchmark (Tay et al., 2020a), excluding Pathfider-
X, which fails all baseline models.

ListOps (Nangia and Bowman, 2018): This 10-
label classification task requires the models to parse
a sequence of length 2k of numbers and operators

and evaluates their capacity of modeling hierarchi-
cally structured long sequences.

Text Classification on IMDb review
dataset(Maas et al., 2011): This byte-Level
binary classification task requires the model to
analyze the sentiment of a sequence of length 4k
by composing the unsegmented characters into
higher-level meaningful units.

Document Retrieval on AAN dataset (Radev
et al., 2013): This byte-Level binary classifica-
tion task requires the model to compress long se-
quences of length 4k into representations for simi-
larity score calculation in a two-tower setup with-
out cross-attention.

Pathfinder on CIFAR-10 dataset(Linsley et al.,
2018): This binary classification task requires the
model to decide whether two points are connected
by a dashed path on an image represented as a pixel
sequence of length 4k, and exams their capacity to
capture long-range spatial dependency.

Image Classification (Krizhevsky et al., 2009):
This 10-label classification task requires the models
to learn the spatial relations between the flattened
input pixels of length 1k.

A.3 Validation Loss

We present the loss decay plots on all tasks in Fig-
ure 2. In the first subplot for the text classification
task, we note all the methods quickly overfit the
dataset. In all the other plots, our methods show
the ability to both efficiently converge to the long-
time limit and find better local minima with lower
validation loss.

A.4 FLOPs

We conclude in this subsection the floating point
operations (FLOPs) of each candidate model (ex-
cluding the ablation models). To ease the notation,
given the sequence length n, we fix p = 32, d =
256. Assuming the matrices Q,K,V are given
and omitting the non-leading term, we report the
FLOPs of each model in Table 3. We additionally
comment that Reformer is excluded from the table
since its FLOPs are not fixed and depend on the fre-
quency of collision after hashing of tokens, which
changes with the input sequence.

A.5 Hyper-parameter Sensitivity

Figure 3 shows the accuracy and training time for
Skeinformer using different batch sizes (64,128)
and learning rates (1e − 3,1e − 4,1e − 5) on text

5198



Figure 2: Validation loss (Y axis) changes with regard to training time (second, X axis).

Models FLOPs
Standard 2n2p

Big Bird 5ndp

Performer 3ndp

Nystromformer 4ndp

Linformer 4ndp

Informer 3ndp

Skeinformer 4ndp

Table 3: The leading terms of FLOPs in computing
attention.

classification. The results are averaged across ran-
dom trials. We observe that smaller learning rate
offers slower convergence but to a better point.

Figure 3: Testing accuracy and training time (Y axis)
changes with regard to learning rate (X axis).

B Proof of Lemma 1

Proof. For each column B(i), we first define a dis-
crete random variable Xi, that with probability
1
n , Xi = bji, ∀j ∈ [n], where bji is the j-th el-
ement in B(i). Since all the elements in B are
bounded (within the range [0, 1]) due to the row
normalization in softmax, we infer that for any
i ∈ [n], X2

i ∈ [0, 1] is a sub-Gaussian random vari-

able with parameter σ = 1
2 (Wainwright, 2019).

Combine the conclusion with the assumption that
EX2

i ≤ C, we have

X2
i

EX2
i

∼ sub-Gaussian
(
σ2 =

1

4C2

)
. (7)

Then we uniformly sample d indexes {jk}dk=1’s
with replacement, and we estimate the squared
norm of each column with the unbiased estima-
tor Yi = n

d

∑d
k=1 b

2
jki

. We remark Yi has the same
distribution as n

d

∑d
k=1X

2
i,(k), where Xi,(k)’s are

d i.i.d. copies of Xi. Therefore through a linear
transform of Equation (7) we can derive that

Yi
nEX2

i

∼ sub-Gaussian
(
σ2 =

1

4C2d

)
. (8)

Notice different Yi’s may not be independent
since they all rely on the same d rows in B. How-
ever, we can still apply the maximal sub-Gaussian
inequality (Boucheron et al., 2013) to have:

P
{
max
i∈[n]

∣∣∣∣
Yi

nEX2
i

− 1

∣∣∣∣ >
1

2

}
≤ 2ne−

C2d
2 . (9)

If the high probability bound holds that
maxi∈[n]

∣∣∣ Yi

nEX2
i
− 1

∣∣∣ ≤ 1
2 , we directly have that

our estimators Yi ∈ [12∥B(i)∥2, 32∥B(i)∥2],∀i ∈
[n]. In that case, the estimated sub-sampling
probabilities satisfy that

p̂i =
Y

1
2
i ∥V(i)∥

∑n
i′=1 Y

1
2
i′ ∥V(i′)∥

≥
√
1/2∥B(i)∥∥V(i)∥√
3/2∥B(i)∥∥V(i′)∥

=

√
1

3
pi, ∀i ∈ [n],

where pi’s are the optimal probabilities defined in
the main paper.

In that case, to prove the lemma it suffices to
pick a big enough sub-sample size d such that the
right-hand side of Inequality (9) is smaller than δ.
Simply solving the inequality leads to the desired
result d ≥ 2

C2 log(
2n
δ ). ♢
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