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Abstract

Skill Extraction (SE) is an important and
widely-studied task useful to gain insights into
labor market dynamics. However, there is a
lacuna of datasets and annotation guidelines;
available datasets are few and contain crowd-
sourced labels on the span-level or labels from
a predefined skill inventory. To address this gap,
we introduce SKILLSPAN, a novel SE dataset
consisting of 14.5K sentences and over 12.5K
annotated spans. We release its respective
guidelines created over three different sources
annotated for hard and soft skills by domain
experts. We introduce a BERT baseline (Devlin
et al., 2019). To improve upon this baseline,
we experiment with language models that are
optimized for long spans (Joshi et al., 2020;
Beltagy et al., 2020), continuous pre-training
on the job posting domain (Han and Eisenstein,
2019; Gururangan et al., 2020), and multi-task
learning (Caruana, 1997). Our results show
that the domain-adapted models significantly
outperform their non-adapted counterparts, and
single-task outperforms multi-task learning.

1 Introduction

Job markets are under constant development—
often due to developments in technology, migra-
tion, and digitization—so are the skill sets required.
Consequentially, job vacancy data is emerging on
a variety of platforms in big quantities and can pro-
vide insights on labor market skill demands or aid
job matching (Balog et al., 2012). SE is to extract
the competences necessary from unstructured text.

Previous work in SE shows promising progress,
but is halted by a lack of available datasets and
annotation guidelines. Two out of 14 studies
release their dataset, which limit themselves to
crowd-sourced labels (Sayfullina et al., 2018) or
annotations from a predefined list of skills on the
document-level (Bhola et al., 2020). Additionally,
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Figure 1: Examples of Skills & Knowledge Compo-
nents. Annotated samples of passages in varying job
postings. More details are given in Section 4.

none of the 14 previously mentioned studies re-
lease their annotation guidelines, which obscures
the meaning of a competence. Job markets change,
as do the skills in, e.g., the European Skills, Com-
petences, Qualifications and Occupations (ESCO;
le Vrang et al., 2014) taxonomy (Section 3). Hence,
it is important to cover for possible emerging skills.

We propose SKILLSPAN, a novel SE dataset an-
notated at the span-level for skill and knowledge
components (SKCs) in job postings (JPs). As il-
lustrated in Figure 1, SKCs can be nested inside
skills. SKILLSPAN allows for extracting possibly
undiscovered competences and to diminish the lack
of coverage of predefined skill inventories.

Our analysis (Figure 2) shows that SKCs con-
tain on average longer sequences than typical
Named Entity Recognition (NER) tasks. Albeit
we additionally study models optimized for long
spans (Joshi et al., 2020; Beltagy et al., 2020), some
underperform. Overall, we find specialized domain
BERT models (Alsentzer et al., 2019; Lee et al.,
2020; Gururangan et al., 2020; Nguyen et al., 2020)
perform better than their non-adapted counterparts.
We explore the benefits of domain-adaptive pre-
training on the JP domain (Han and Eisenstein,
2019; Gururangan et al., 2020). Last, given the
examples from Figure 1, we formulate the task as
both as a sequence labeling and a multi-task learn-
ing (MTL) problem, i.e., training on both skill and
knowledge components jointly (Caruana, 1997).
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Annotations Approach Size Skill Type (Baseline) Model(s) s &
Kivimiki et al. (2013) Document-level Automatic N/A Hard LogEnt., TF-IDF, LSA,LDA X X
Zhao et al. (2015) Sentence-level ~ Automatic N/A Hard Word2Vec X X
Javed et al. (2017) Span-level Skill Inventory ~ N/A Both Word2Vec X X
Jia et al. (2018) Span-level Automatic 21,158 JPs*  Hard LSTM X X
Sayfullina et al. (2018) Span-level Crowdsourcing 4,863 Sent. Soft CNN, LSTM v X
Smith et al. (2019) Span-level Manual 100 JPs Hard Pattern Matching X X
Gugnani and Misra (2020) | Span-level Domain Experts  ~200 JPs Hard Word2Vec, Doc2Vec X X
Li et al. (2020) Document-level Proprietary N/A Hard FastText X X
Shi et al. (2020) Span-level Proprietary N/A Hard FastText, USE, BERT X X
Tamburri et al. (2020) Sentence-level ~ Domain Experts ~3,000 Sent. Both BERT X X
Chernova (2020) Span-level Manual 100 JPs Both FinBERT X X
Bhola et al. (2020) Document-level  Skill Inventory 20,298 JPs*  Hard BERT v X
Smith et al. (2021) Span-level Manual 100 JPs Hard Pattern Match., Word2Vec X X
Liu et al. (2021) Document-level Crowdsourcing  N/A Hard GNN X X
This work ‘ Span-level Domain Experts 391 JPs Both (Domain-adapted) BERT v /7

Table 1: Contributions of Related Work. We list the recent works of Skill Extraction. Note that (*) indicates labels
that are automatically inferred from some source (e.g., a predefined skill inventory) and not manually annotated.
With respect to the annotation approach, “Manual” indicates uncertainty whether they used domain experts or not.
Also note that many works do not release their dataset with annotations (#%) nor guidelines (&). The list is inspired

by Khaouja et al. (2021).

Contributions 1In this paper: (1 We release
SKILLSPAN, a novel skill extraction dataset, with
annotation guidelines, and our open-source code.!
(2 We present strong baselines for the task includ-
ing a new SpanBERT (Joshi et al., 2020) trained
from scratch, and domain-adapted variants (Guru-
rangan et al., 2020), which we will release on the
HuggingFace platform (Wolf et al., 2020). To
the best of our knowledge, we are the first to inves-
tigate the extraction of skills and knowledge from
job postings with state-of-the-art language mod-
els. (3) We give an analysis on single-task versus
multi-task learning in the context of skill extraction,
and show that for this particular task single-task
learning outperforms multi-task learning.

2 Related Work

There is a pool of prior work relating to SE. We
summarize it in Table 1, depicting state-of-the-art
approaches, level of annotations, what kind of com-
petences are annotated, the modeling approaches,
the size of the dataset (if available), type of skills
annotated for, baseline models, and whether they
release their annotations and guidelines.

As can be seen in Table 1, many works do not re-
lease their data (apart from Sayfullina et al., 2018
and Bhola et al., 2020) and none release their
annotation guidelines. In addition, none of the
previous studies approach SE as a span-level extrac-
tion task with state-of-the-art language models, nor

"https://github.com/kris927b/SkillSpan

did they release a dataset of this magnitude with
manually annotated (long) spans of competences
by domain experts.

Although Sayfullina et al. (2018) annotated on
the span-level (thus being useful for SE) and release
their data, they instead explored several approaches
to Skill Classification. To create the data, they ex-
tracted all text snippets containing one soft skill
from a predetermined list. Crowdworkers then an-
notated the highlighted skill whether it was a soft
skill referring to the candidate or not. They show
that an LSTM (Hochreiter et al., 1997) performs
best on classifying the skill in the sentence. In our
work, we annotated a dataset three times their size
(Table 2) for both hard and soft skills. In addition,
we also extract the specific skills from the sentence.

Tamburri et al. (2020) classifies sentences that
contain skills in the JP. The authors manually la-
beled their dataset with domain experts. They an-
notated whether a sentence contains a skill or not.
Once the sentence is identified as containing a skill,
the skill cited within is extracted. In contrast, we
directly annotate for the span within the sentence.

Bhola et al. (2020) cast the task of skill ex-
traction as a multi-label skill classification at the
document-level. There is a predefined set of unique
skills given the job descriptions and they predict
multiple skills that are connected to a given job
description using BERT (Devlin et al., 2019). In
addition, they experiment with several additional
layers for better prediction performance. We in-
stead explore domain-adaptive pre-training for SE.
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The work closest to ours is by Chernova (2020),
who approach the task similarly with span-level
annotations (including longer spans) but approach
this for the Finnish language. It is unclear whether
they annotated by domain experts. Also, neither
the data nor the annotation guidelines are released.
For a comprehensive overview with respect to SE,
we refer to Khaouja et al. (2021).

3 Skill & Knowledge Definition

There is an abundance of competences and there
have been large efforts to categorize them. For
example, the The International Standard Classifi-
cation of Occupations (ISCO; Elias, 1997) is one
of the main international classifications of occu-
pations and skills. It belongs to the international
family of economic and social classifications. An-
other example, the European Skills, Competences,
Qualifications and Occupations (ESCO; le Vrang
et al., 2014) taxonomy is the European standard ter-
minology linking skills and competences and qual-
ifications to occupations and derived from ISCO.
The ESCO taxonomy mentions three categories
of competences: Skill, knowledge, and attitudes.
ESCO defines knowledge as follows:

“Knowledge means the outcome of
the assimilation of information through
learning. Knowledge is the body of facts,
principles, theories and practices that is
related to a field of work or study.” 2

For example, a person can acquire the Python pro-
gramming language through learning. This is de-
noted as a knowledge component and can be con-
sidered a hard skill. However, one also needs to be
able to apply the knowledge component to a certain
task. This is known as a skill component. ESCO
formulates it as:

“Skill means the ability to apply knowl-
edge and use know-how to complete
tasks and solve problems.” 3

In ESCO, the soft skills are referred to as attitudes.
ESCO considers attitudes as skill components:

“The ability to use knowledge, skills
and personal, social and/or methodologi-
cal abilities, in work or study situations

https://ec.europa.eu/esco/portal/
escopedia/Knowledge

Shttps://ec.europa.eu/esco/portal/
escopedia/Skill

| | Statistics, Sre. — BiG HOUSE TECH Total

# Posts 60 60 80 200

# Sentences 1,036 1,674 3,156 5,866

.E # Tokens 29,064 36,995 56,549 | 122,608
& | #Skill Spans 1,086 984 1,237 3,307
# Knowledge Spans 439 781 2,188 3,408

# Overlapping Spans 45 29 135 209

. | #Posts 30 30 30 90
S | # Sentences 783 1,022 2,187 3,992
g_ # Tokens 11,762 19,173 21,149 52,084
% # Skill Spans 469 525 545 1,539
g # Knowledge Spans 126 287 806 1,219
# Overlapping Spans 12 17 32 61

# Posts 36 33 32 101

# Sentences 1,112 1,216 2,352 4,680

v | # Tokens 14,720 21,923 20,885 57,528
& | # Skill Spans 634 637 459 1,730
# Knowledge Spans 242 350 834 1,426

# Overlapping Spans 12 8 9 29

# Posts 126 123 142 391

# Sentences 2,931 3,912 7,695 14,538

S | # Tokens 55,546 78,091 98,583 | 232,220
& | # Skill Spans 2,189 2,146 2,241 6,576
# Knowledge Spans 807 1,418 3,828 6,053

# Overlapping Spans 69 54 178 301

# Posts 126,769

S | # Sentences 3,195,585
# Tokens 460,484,670

Table 2: Statistics of Dataset. Indicated is the number
of JPs across splits & source and their respective number
of sentences, tokens, and spans. The total is reported
in the cyan column and rows. We report the overall
statistics of the unlabeled JPs (If) in the gray rows.

and professional and personal develop-
ment.” 4

To sum up, hard skills are usually referred to as
knowledge components, and applying these hard
skills to something is considered a skill component.
Then, soft skills are referred to as attitudes, these
are part of skill components. There has been no
work, to the best of our knowledge, in annotating
skill and knowledge components in JPs.

4 SKILLSPAN Dataset

Data> We continuously collected JPs via web
data extraction between June 2020-September
2021. Our JPs come from the three sources:

1. BIG: A large job platform with various types
of JPs, with several type of positions;

2. HOUSE: A static in-house dataset consisting
of similar types of jobs as BIG. Dates range
from 2012-2020;

“http://data.europa.eu/esco/skill/A
3Qur data statement (Bender and Friedman, 2018) can be
found in Appendix A.
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Figure 2: Violin Plots of Annotated Components.
Indicated are the distributions regarding the length of
spans in each type of annotated component (i.e., length
of skills and knowledge components). The white dot is
the median length, the bars range from the first quartile
to the third quartile, and the colored line ranges from
the lower adjacent value to the higher adjacent value.

3. TECH: The StackOverflow JP platform that
consisted mostly of technical jobs (e.g., devel-
oper positions).

We release the anonymized raw data and an-
notations of the parts with permissible licenses,
i.e., HOUSE (from a govermental agency which
is our collaborator) and TECH.® For anonymiza-
tion, we perform it via manual annotation of
job-related sensitive and personal data regarding
Organization, Location, Contact, and
Name following the work by Jensen et al. (2021).
Table 2 shows the statistics of SKILLSPAN, with
391 annotated JPs from the three sources con-
taining 14.5K sentences and 232.2K tokens. The
unlabeled JPs (only to be released as pre-trained
model) consist of 126.8K posts, 3.2M sentences,
and 460.5M tokens. What stands out is that there
are 2-5 times as many annotated knowledge com-
ponents in TECH in contrast to the other sources,
despite a similar amount of JPs. We expect this
to be due the numerous KCs depicted in this do-
main (e.g., programming languages), while we ob-
serve considerably fewer soft skills (e.g., “work
flexibly”). The amount of skills is more balanced
across the three sources. Furthermore, overlapping
spans follow a consistent trend among splits, with
the train split containing the most.

Data Annotation We annotate competences re-
lated to SKCs in two levels as illustrated in Fig-
ure 1. We started the process in March 2021, with
initial annotation rounds to construct and refine the
annotation guidelines (as outlined further below).

®Links to our data can be found at https://github.

com/kris927b/SkillSpan.

The annotation process spanned eight months in
total. Our final annotation guidelines can be found
in Appendix B. The guidelines were developed by
largely following example spans given in the ESCO
taxonomy. However, at this stage, we focus on span
identification, and we do not take the fine-grained
taxonomy codes from ESCO for labeling the spans,
leaving the mapping to ESCO and taxonomy en-
richment as future work.

Further Details on the Annotation Process The
development of the annotation guidelines and our
annotation process is depicted as follows: (1) We
wrote base guidelines derived from a small number
of JPs. (2) We had three pre-rounds consisting of
three JPs each. After each round, we modified, im-
proved and finalized the guidelines. (3) Then, we
had three longer-lasting annotation rounds consist-
ing of 30 JPs each. We re-annotated the previous
11 JPs in (D) and 2). @ After these rounds, one
of the annotators (the hired linguist) annotated JPs
in batches of 50. The data in (1), 2), and 3) was
annotated by three annotators (101 JPs).

We used an open source text annotation tool
named DOCCANO (Nakayama et al., 2018). There
are around 57.5K tokens (approximately 4.6K sen-
tences, in 101 job posts) that we calculated agree-
ment on. The annotations were compared using Co-
hen’s x (Fleiss and Cohen, 1973) between pairs of
annotators, and Fleiss’ « (Fleiss, 1971), which gen-
eralises Cohen’s x to more than two concurrent an-
notations. We consider two levels of « calculations:
TOKEN is calculated on the token level, comparing
the agreement of annotators on each token (includ-
ing non-entities) in the annotated dataset. SPAN
refers to the agreement between annotators on the
exact span match over the surface string, regardless
of the type of SKC, i.e., we only check the position
of tag without regarding the type of the entity. The
observed agreements scores over the three annota-
tors from step (3) are between 0.70-0.75 Fleiss’ x
for both levels of calculation which is considered
a substantial agreement (Landis and Koch, 1977)
and a x value greater than 0.81 indicates almost per-
fect agreement. Given the difficulty of this task, we
consider the aforementioned x score to be strong.
Particularly, we observed a large improvement in
annotation agreement from the earlier rounds (step
(D and 2)), where our Fleiss’ x was 0.59 on token-
level and 0.62 for the span-level.

Overall, we observe higher annotator agreement
for knowledge components (3—5% higher) com-
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full uk driving licence  english java
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right to work in the uk
sen powders
acca/aca machine learning

supply chain javascript
project management  aws
docker
node.js

KNOWLEDGE

Table 3: Most Frequent Skills in the Development
Data. Top-5 skill components in our data in terms of
frequency on different sources. A larger example can
be found in Table 8 and Table 9 (Appendix C).

pared to skills which tend to be longer. The TECH
domain is the most consistent for agreement while
BIG shows more variation over rounds, likely due
to the broader nature of the domains of JPs.

Annotation Span Statistics A challenge of an-
notating spans is the length (i.e., boundary), SKCs
being in different domains (e.g., business versus
technical components), and frequently written dif-
ferently, e.g., “being able to work together” v.s.
“teamwork”). Figure 2 shows the statistics of our
annotations in violin plots. For the training set, the
median length (white dot) of skills is around 4 for
B1G and HOUSE, for TECH this is a median of 5.
In the development set, the median stays at length
4 across all sources. Another notable statistic is the
upper and lower percentile of the length of skills
and knowledge, indicated with the thick bars. Here,
we highlight the fact that skill components could
consist of many tokens, for example, up to length
7 in the HOUSE source split (see blue-colored vi-
olins). For knowledge components, the spans are
usually shorter, where it is consistently below 5
tokens (see orange-colored violins). All statistics
follow a similar distribution across train, develop-
ment, and sources in terms of length and distribu-
tion. This gives a further strong indication that
consistent annotation length has been conducted
across splits and sources.

Qualitative Analysis of Annotations Qualita-
tive differences in SKCs over the three sources are
shown (lowercased) in Table 3. With respect to
skill components, all sources follow a similar us-
age of skills. The annotated skills mostly relate to
the attitude of a person and hence mostly consist
of soft skills. With respect to knowledge compo-
nents, we observe differences between the three
sources. First, on the source-level, the knowledge

components vastly differ between B1G and TECH.
BI1G postings seem to cover more business related
components, whereas TECH has more engineer-
ing components. HOUSE seems to be a mix of
the other two sources. Lastly, note that both the
skill and knowledge components between the splits
diverge in terms of the type of annotated spans,
which indicates a variation in the annotated com-
ponents. We show the top—10 skills annotated in
the train, development, and test splits for SKCs
in Appendix C. From a syntactic perspective, skills
frequently consist of noun phrases, verb phrases, or
adjectives (for soft skills). Knowledge components
usually consists of nouns or proper nouns, such as

LR T3

“python”, “java”, and so forth.

5 Experimental Setup

The task of SE is formulated as a sequence la-
beling problem. Formally, we consider a set of
JPs D, where d € D is a set of sequences (i.e.,
entire JPs) with the ™ input sequence Xé =
{z1,%9,...,x7} and a target sequence of BIO-
labels y; = {y1,y2,...,yr} (e.g., “B—SKILL”,
“I-KNOWLEDGE”, “0”). The goal is to use D to
train a sequence labeling algorithm h : X — )
to accurately predict entity spans by assigning an
output label y, to each token x;.

As baseline we consider BERT and we investi-
gate more recent variants, and we also train models
from scratch. Models are chosen due to their state-
of-the-art performance, or in particular, for their
strong performance on longer spans.

BERT},e (Devlin et al.,, 2019) An out-of-
the-box BERT},,c model (bert-base—cased)
from the HuggingFace library (Wolf et al.,
2020) functioning as a baseline.

SpanBERT (Joshi et al., 2020) A BERT-style
model that focuses on span representations as op-
posed to single token representations. SpanBERT
is trained by masking contiguous spans of tokens
and optimizing two objectives: (1) masked lan-
guage modeling, which predicts each masked token
from its own vector representation. (2) The span
boundary objective, which predicts each masked
token from the representations of the unmasked
tokens at the start and end of the masked span.

We train a SpanBERT},s model from scratch on
the BooksCorpus (Zhu et al., 2015) and English
Wikipedia using cased Wordpiece tokens (Wu et al.,
2016). We use AdamW (Kingma and Ba, 2015) for
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Figure 3: Performance of Models. We test the models on SKILLS, KNOWLEDGE, and COMBINED. We report
the span-F1 and standard deviation (error bars) of runs on five random seeds. Note that the y-axis starts from 50
span-F1. STL indicates single-task learning and MTL indicates the multi-task model. Differences can be seen on
the test set: JobSpanBERT performs best on SKILLS, JobBERT is best on KNOWLEDGE, and JobBERT achieves
best in COMBINED. Exact numbers of the plots are in Table 5 (Appendix E).

2.4M training steps with batches of 256 sequences
of length 512. The learning rate is warmed up for
10K steps to a maximum value of 1e-4, after which
it has a decoupled weight decay (Loshchilov and
Hutter, 2019) of 0.1. We add a dropout rate of 0.1
across all layers. Pretraining was done on a v3-8
TPU on the GCP and took 14 days to complete.
We take the official TensorFlow implementation of
SpanBERT by Ram et al. (2021).

JobBERT’ We  apply  domain-adaptive
pre-training (Gururangan et al., 2020) to a
BERT}p,se model using the 3.2M unlabeled JP
sentences (Table 2). Domain-adaptive pre-training
relates to the continued self-supervised pre-training
of a large language model on domain-specific text.
This approach improves the modeling of text for
downstream tasks within the domain. We continue
training the BERT model for three epochs (default
in HuggingFace) with a batch size of 16.

JobSpanBERT®  We apply domain-adaptive pre-
training to our SpanBERT on 3.2M unlabeled JP
sentences. We keep parameters identical to the
vanilla SpanBERT, but change the number of steps

"nttps://huggingface.co/jjzha/
jobbert-base-cased

$https://huggingface.co/jjzha/
jobspanbert-base-cased

to 40K to have three passes over the unlabeled data.

Experiments We have 391 annotated JPs (Ta-
ble 2) that we divide across three splits: Train, dev.
and test set. We use 101 JPs that all three anno-
tators annotated as the gold standard test set with
aggregated annotations via majority voting. The
101 postings are divided between the sources as:
36 BIG, 33 HOUSE, and 32 TECH. The remaining
290 JPs were annotated by one annotator. We use
90 JPs (30 from each source, namely BIG, HOUSE,
and TECH) as the dev. set. The remaining 200 JPs
are used as the train set. The sources in the train set
are divided into 60 B1G, 60 HOUSE, and 80 TECH.

Setup The data is structured as CoNLL for-
mat (Tjong Kim Sang, 2002). For the nested anno-
tations, the skill tags are appearing only in the first
column and the knowledge tags are only appear-
ing in the second column of the file and they are
allowed to overlap with each other. We perform ex-
periments with single-task learning (STL) on either
the skill or knowledge components, MTL for pre-
dicting both skill and knowledge tags at the same
time, while evaluating the MTL models also on
either skills or knowledge components. We used a
single joint MTL model with hard-parameter shar-
ing (Caruana, 1997). All models are with a final
Conditional Random Field (CRF; Lafferty et al.,
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Figure 4: Almost Stochastic Order Scores of the Test Set. ASO scores expressed in €ni,. The significance level
a = 0.05 is adjusted accordingly by using the Bonferroni correction (Bonferroni, 1936). Read from row to column:
E.g.,in COMBINED STL-JobBERT (row) is stochastically dominant over STL-BERT},s. (column) with €, of 0.00.

2001) layer. Earlier research, such as Souza et al.
(2019); Jensen et al. (2021) show that BERT mod-
els with a CRF-layer improve or perform similarly
to its simpler variants when comparing the overall
F1 and make no tagging errors (e.g., B-tag follows
I-tag). In the case of MTL we use one for each tag
type (skill and knowledge). In the STL experiments
we use one CREF for the given tag type.

We use the MACHAMP toolkit (van der Goot
et al., 2021) for our experiments. For each setup
we do five runs (i.e., five random seeds).” For
evaluation we use span-level precision, recall, and
F1, where the F1 for the MTL setting is calculated
as described in Benikova et al. (2014).

6 Results

The results of the experiments are given in Figure 3.
We show the average performance of each model
in F1 and respective standard deviation over the
development and test split. Exact scores on each
source split and other metric details are provided
in Appendix E. As mentioned before, we experi-
ment with the following settings: SKILL, we train
and predict only on skills. KNOWLEDGE, train
and only predict for knowledge. COMBINED, we
merge the STL predictions of both skills and knowl-
edge. We also train the models in an MTL setting,
predicting both skills and knowledge simultane-
ously. We evaluate the MTL model on both SKILL
and KNOWLEDGE separately, and also compare it
against the aggregated STL predictions.

Performance on Development Set In Figure 3,
we show the results on the development set in the
upper plot. We observe similar performance be-
tween the domain-adapted STL models—JobBERT
and JobSpanBERT—have similar span-F1 for

°For reproducibility, we refer to Appendix D.

SKILL: 60.0540.70 vs. 60.07+0.70. In contrast,
for KNOWLEDGE, BERT},sc and JobBERT are
closest in predictive performance: 60.44+0.58 vs.
60.66+0.43. In the COMBINED setting, JobBERT
performs highest with a span-F1 of 60.32+0.39. On
average, JobBERT performs best over all three set-
tings. Surprisingly, the models for both SKILL
and KNOWLEDGE perform similarly (around 60
span-F1), despite the sources’ differences in prop-
erties and length Figure 2. In addition, we find
that MTL is not performing better than STL across
sources. For exact numbers and source-level (i.e.,
B1G, HOUSE, TECH), we refer to Appendix E.

Performance on Test Set We select the best per-
forming models in the development set evaluation
and apply it to the test set. Results are in Figure 3
in the bottom plot. Since JobBERT and JobSpan-
BERT are performing similarly, we apply both to
the test set and BERT},,... We observe a deviation
from the development set to the test set: JobSpan-
BERT 60.07+0.30—56.644-0.83 on SKILL, Job-
BERT 60.66+0.43—63.88+0.28 on KNOWLEDGE.
For COMBINED, JobBERT performs slightly worse:
60.32+0.39—59.73+0.38. Similar to the develop-
ment set, we find that on all three methods of
evaluation (i.e., SKILL, KNOWLEDGE, and COM-
BINED), STL still outperforms MTL. For SKILL
and KNOWLEDGE, STL is almost stochastically
dominant over MTL (i.e., significant), and for
COMBINED there is stochastic dominance of STL
over MTL, indicated in the next paragraph.

Significance We compare all pairs of models
based on five random seeds each using Almost
Stochastic Order (ASO; Dror et al., 2019) tests
with a confidence level of & = 0.05. The ASO
scores of the test set are indicated in Figure 4. We
show that MTL-JobSpanBERT for SKILL shows
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almost stochastic dominance (e, < 0.5) over all
other models. For KNOWLEDGE and COMBINED,
We show that STL-JobBERT is stochastically dom-
inant (enin = 0.0) over all the other models. For
more details, we refer to Appendix F for ASO
scores on the development set.

7 Discussion

What Did Not Work Additionally, we exper-
iment whether representing the entire JP for ex-
tracting tokens yields better results than the exper-
iments so far, which were sentence-by-sentence
processing setups. To handle entire JPs and
hence much longer sequences we use a pre-trained
Longformery,se (Beltagy et al., 2020) model. The
document length we use in the experiments is 4096
tokens. Results of the Longformer on the test
set are lower: For skills, JobSpanBERT against
Longformer results in 56.64+0.83 vs. 52.55+2.39.
For KNOWLEDGE, JobBERT against Longformer
shows 63.88+0.28 vs. 57.26+1.05. Last, for COM-
BINED, JobBERT against Longformer results in
59.73+0.38 vs. 55.05+0.71. This drop in perfor-
mance is difficult to attribute to a concrete rea-
son: e.g., the Longformer is trained on more varied
sources than BERT, but not specifically for JPs,
which may have contributed to this gap. Since the
vanilla Longformer already performs worse than
BERT},,s overall, we did not opt to apply domain-
adaptive pre-training. Overall, we show that repre-
senting the full JP is not beneficial for SE, at least
not in the Longformer setup tested here.

Continuous Pretraining helps SE  As previously
mentioned, due to the domain specialization of the
domain-adapted pre-trained BERT models, they
predict more skills and frequently perform better
in terms of precision, recall, and F1 as compared to
their non-adaptive counterparts. This is especially
encouraging as we confirm findings that continu-
ous pre-training helps to adapt models to a specific
domain (Alsentzer et al., 2019; Lee et al., 2020; Gu-
rurangan et al., 2020; Nguyen et al., 2020). How-
ever, there are exceptions. Particularly in Table 5
on TEST for KNOWLEDGE, BERT},,s. comes closer
in predictive performance to JobBERT (difference
of 1.5 F1) than on SKILLS. Our intuition is that
knowledge components are often already in the
pre-training data (e.g., Wikipedia pages of certain
competences like Python, Java etc.) and therefore
adaptive pre-training does not substantially boost
performance.
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Figure 5: Average Length of Predictions of Single
Models. We show the average length of the predictions
versus the length of our annotated skills and knowledge
components on the fest set and the total number of pre-
dicted skills and knowledge tags in each respective split
(#). There is a consistent trend over the three sources.

Difference in Length of Predictions The main
motivation of selecting models optimized for long
spans was the length of the annotations (Figure 2).
We investigate the average length of predictions
of each model (Figure 5) to find out whether the
models that are adapted to handle longer sequences
truly predict longer spans. Interestingly, the av-
erage length of predicted skills are longer than
the annotations over all three sources. There is
a consistent trend among SKILL: BIG and TECH
have similar length over predictions (>4), while
HOUSE is usually lower than length 3. For both
BIG and TECH, JobSpanBERT predicts the longest
skill spans (4.51 and 4.48 respectively). We suspect
due to the domain-adaptive pre-training on JPs, it
improved the span prediction performance. In con-
trast, the Longformer predicts shorter spans. Note
that the Longformer is not domain-adapted to JPs.

Regarding KNOWLEDGE, there is also a consis-
tent trend: BIG has the overall longest prediction
length while TECH has the lowest. The Longformer
predicts the longest spans on average for BIG and
TECH. Knowledge components are representative
of a normal-length NER task and might not need
a specialized model for long sequences. We show
the exact numbers in Table 7 (Appendix E) and
the number of predicted SKILL and KNOWLEDGE:
JobBERT and JobSpanBERT have higher recall
than the other models.

Performance per Span Length SKILLS are gen-
erally longer than KNOWLEDGE components in our
dataset (Figure 2). The previous overall results on
the test set (Figure 3) show that performance on
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Figure 6: Average Span-F1 per Span Length. We bucket the performance of JobBERT according to the length of
the spans until 10 tokens and show the performance on each length, averaged over five random seeds. Indicated per
bar is the support. The model performs best on medium-length skill spans (i.e., spans with token length of 4-5). For
knowledge spans, on average, it performs best on short-length spans (i.e., spans with token length of 1-2).

SKILL is substantially lower than KNOWLEDGE.

We therefore investigate whether this performance

difference is attributed to the longer spans in SKILL.

In Figure 6, we show the average performance of
the best performing model (JobBERT) on the three
sources (test set) based on the gold span length,
until a length of 10.

In SKILL components (upper plot), we see much
support for spans with length 1 and 2, which then
lowers once the spans become longer. Spans with
length of 1 shows low performance on BIG and
TECH (around 40 span-F1), which influences the
total span-F1. Short skills are usually soft skills,
such as “passionate”, which can be used as a skill
or not. This might confuse the model. In contrast,
performance effectively stays similar (around 60

span-F1) for span length of 2 till 7 for all sources.

Afterwards, it drops in performance. Thus, the
weak performance on SKILL seem to be due to
lower performance on the short spans.

For the KNOWLEDGE components (lower plot),
they are generally shorter. We see that there is a
gap in support between the sources, TECH has a
larger number of gold labels compared to BIG and
HOUSE. Unlike soft skills, KCs usually consist
of proper nouns such as “Python”, “Java”, and so
forth, which connects to the high performance on
TECH (around 76 span-F1). Furthermore, support
for spans longer than 2 drops considerably. In this

case, if the model predicts a couple of instances
correctly, it would substantially increase span-F1.
Contrary to SKILL, high performance of KNOWL-
EDGE can be attributed to its strong performance
on short spans.

8 Conclusion

We present a novel dataset for skill extraction on
English job postings— SKILLSPAN—and domain-
adapted BERT models—JobBERT and JobSpan-
BERT. We outline the dataset and annotation guide-
lines, created for hard and soft skills annotation
on the span-level. Our analysis shows that domain-
adaptive pre-training helps to improve performance
on the task for both skills and knowledge com-
ponents. Our domain-adapted JobSpanBERT per-
forms best on skills and JobBERT on knowledge.
Both models achieve almost stochastic dominance
over all other models for skills and knowledge
extraction, whereas JobBERT in the STL setting
achieves stochastic dominance over other models.

With the rapid emergence of new competences,
our new approach of skill extraction has future po-
tential, e.g., to enrich knowledge bases such as
ESCO with unseen skills or knowledge compo-
nents, and in general, contribute to providing in-
sights into labor market dynamics. We hope our
dataset encourages research into this emerging area
of computational job market analysis.
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A Data Statement SKILLSPAN

Following Bender and Friedman (2018), the fol-
lowing outlines the data statement for SKILLSPAN:

A. CURATION RATIONALE: Collection of job
postings in the English language for span-
level sequence labeling, to study the impact
of sequence labeling on the extraction of skill
and knowledge components from job post-
ings.

B. LANGUAGE VARIETY: The non-canonical
data was collected from the StackOverflow
job posting platform, an in-house job posting
collection from our national labor agency col-
laboration partner (which will be elaborated
upon acceptance), and web extracted job post-
ings from a large job posting platform. US
(en-US) and British (en-GB) English are in-
volved.

C. SPEAKER DEMOGRAPHIC: Gender, age, race-
ethnicity, socioeconomic status are unknown.

D. ANNOTATOR DEMOGRAPHIC: Three hired
project participants (age range: 25-30), gen-
der: one female and two males, white Euro-
pean and Asian (non-Hispanic). Native lan-
guage: Danish, Dutch. Socioeconomic status:
higher-education students. Female annotator
is a professional annotator with a background
in Linguistics and the two males with a back-
ground in Computer Science.

E. SPEECH SITUATION: Standard American or
British English used in job postings. Time
frame of the data is between 2012-2021.

F. TEXT CHARACTERISTICS: Sentences are
from job postings posted on official job va-
cancy platforms.

G. RECORDING QUALITY: N/A.
H. OTHER: N/A.

I. PROVENANCE APPENDIX: The job posting
data in TECH is from Stackoverflow jobs, and
is licensed under the CC BY-SA license. The
job posting data from HOUSE is from our col-
laborators: The Danish Agency for Labour
Market and Recruitment (STAR).

4974



B Annotation Guidelines

B.1 Span Specifications

Legend: Skill, Knowledge , “»” indicates an example sentence.

1. A skill starts with a VERB, otherwise (ADJECTIVE) + NOUN

1.1 Modal verbs are not tagged:
* Can [put personal touch on the menu]g,, .

o Will [train new staff]g,, .

2. Split up phrases with prepositions and/or conjunctions

2.1 Unless the conjunction coordinates two nouns functioning as one argument:
* [Coordinate parties and conferences],, -
2.2 Do not tag skills with anaphoric pronouns, only tag preceding skill:
* [Prioritizing tasks],,, and identifying those that are most important.
2.3 Split nouns and adjectives that are coordinated if they do not have a verb attached:
* Be [inquisitive]g,, and [proactive]g, -
* Prior  in-house  experience  with [media]gyowrepce » [publishing],\owi ence or
[internet companies |,y owrenae -
2.4 If there is a listing of skill tags and they lead up to different subtasks, we split them:

* [keep up the high level of quality in our team],,,, through [reviews]g,, , [pairing]y,, and

[mentoring]g,, -

3. If there is relevant information appended after irrelevant information (e.g., info specific to a company)
we try to make the skill as short as possible:

* [providing the best solution],,, fer—Siemens—Gamesa—in—a—very [structured]y,, and

[analytic]g,,,, manner.

4. Note also the words skills and knowledge can be included in the span of the component if leaving it out
makes it nonsensical:

* [personal skills]g,,,, — just [personal] would make it nonsensical.

5. Parentheses after a skill tag are included if they elaborate the component before them or if they are an
abbreviation of the component.
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6. Inclusion of adverbials in components. Adverbials are included if it concerns the manner of doing
something. All others are excluded:

* like-te [solve technical challenges independen‘tly]SKILL .

. .
[communicates openly]SKILL .

* [striving for the best],,, i-all-thatthey-de.

[Deliver first class customer service]g,, to-our-guests.

[Making the right decisions],,, earlyintheprocess.

7. Attitudes as skills. We annotate attitudes as a skill:
* a [can-do-approach].,, — we leave out articles from the attitude.

8. Attitudes are not tagged if they contain skill/knowledge components—then only the span of the skill is
tagged.

* liketo [solve technical challenges independently],,, -
» Passionfor [automation]yyowience -

* enjoy [working in a team]g,,, .

9. Miscellaneous:

9.1 Do not tag ironic skills (e.g., lazy).

9.2 Avoid nesting of skills, annotate it as one span.

9.3 We annotate all skills that are part of sections such as ‘“requirements”, *“good-to-haves”,
“great-to-knows”, “optionals”, “after this x months of training you’ll be able to...”, “At the job you’re

going to...”.

9.4 When there is a general standard that can be added to the skill, we add these:

* [Process payments according to the [...] standards],, -
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B.2 Knowledge Specifications

1. Rule-of-thumb: knowledge is something that one possesses, and cannot (usually) physically execute:

* [Python] owiepee (Programming language).
* [Business]gxowLence -

» [Relational Databases]yowiepce -

2. If there is a component between parentheses that belongs to the knowledge component, we add it:

* [(non-) relational databases]yyowienae -

¢ [Driver License (UK/EU)]xowrence -

LR INT3

3. Licenses and certifications: We add the additional words “certificate”, “card”, “license”, et cetera. to
the knowledge component.

4. If the knowledge component looks like a skill, but the preceding verb is vague and empty (e.g., follow,
use, comply with, work with) — only tag the knowledge component:

* Complywith [Food Code of Practice]ywowience -

* Work—with [AWS infrastructure]yowiepce -

5. We annotate only specified knowledge components:

* [MongoDB ] owienge OF other [NoSQL database ]y yowr rnar -

* [JEST]lnowrnce ©f-other-testdibraries. — “other test libraries” is under-specified.

6. Knowledge components can be nested in skill components.

* [Design, execution and analysis of [phosphoproteomics]yyowience experiments]SKILL .

7. If all components coordinate/share one knowledge tag, we annotate it as one:

* [application, data and infrastructure architecture],owirnce - — 1he knowledge tags coordinate to
“architecture”.

* [chemical/biochemical engineering],\owirnce -

8. If there is a listing of knowledge tags, we annotate all knowledge tags separately:

* [Bachelor Degreelwowienge 10 [Mathematicslyyowience »  [Computer Sciencelyowiepee > OF

[Englneerlng] KNOWLEDGE *
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B.3 Other Specifications

’ 1. Rule-of-thumb: If in doubt, annotate it as a skill.

’ 2. We are preferring skills over knowledge components.

3. We prioritize skills over attitudes; if there is a skill within the attitude, only tag the skill:

* Passionate-around [solving business problems]g,,, through

[innovation & engineering practices]\owirnr -

4. Skill or knowledge components in the top headlines of the JP are not tagged (e.g., title of a JP). If it is a
sub-headline or in the rest of the posting, tag it.

5. We try to keep the skill/knowledge components as short as possible (i.e., exclude information at the
end if it makes it too specific for the job).

6. We do not include “fluff” and “triggers” (i.e., words that indicate a skill or knowledge component will

follow: “advancedknowledge-of [...Jxnowrence ) around the components, including degree. This goes for
both before and after:

* Workingproficiency-n [developmental toolsets],owirncr -

» Advanced-knowledge-of [application data and architecture infrastructure] owiepce Gtsciplines.
* [Manual handling], ., tasks.

* [CV/CDlxowience experience.

* You-master [English] e ontevelCl.

d Pl:e'ﬁ'el'%ﬁ't_l'ﬂ [P ythOH]KNowLEDGE aﬂd [EngliSh]KNOWLEDGE :

* Fluentin-speken-and-written [English],owisnee -

LEINT3

7. Pay attention to expressions such as “participation in...”, “contributing”, and “transfer (knowledge)”.
These are usually not considered skills.

8. Skills and Knowledge components that are found in not-so-straightforward places (e.g., project
descriptions) are annotated as well, if they relate to the position.

9. In the pattern of “skill” followed by some elaboration, see if it can be annotated with a skill and a
knowledge tag:

* [Ensure food storage and preparation areas are maintained]g,, , according to
[Health & Safety and Audit standards]ow gpae -
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10. Occupations and positions in companies/academia should be excluded.

11. If there’s a knowledge/skill component in the position, we exclude it as well.

» Experienced Java Engineer. — completely untagged.

12. Only annotate the skills that are related to the position.

12.1. This includes skills that are specific for the position as well (e.g., skills of a ruminants
professor versus math professor).

12.2 Also skills that the person for the position is expected to do in the future.
12.3 This does not include skills, knowledge or attitudes describing only the company, the group you will

join in the department, and so on. Only annotate if it is specified or implied that the employee should
possess the skill as well.

13. We annotate industries and fields (that the employee will be working in) as knowledge components.
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C Type of Skills Annotated

In both Table 8 and Table 9, we show the top-10
skill and knowledge components that have been
annotated. We split the top-10 among the data splits
(i.e., train, development, and test set), and also
between source splits (i.e., BIG, HOUSE, TECH).

D Reproducibility

Parameter ‘ Value Range
Optimizer AdamW
B1, B2 0.9, 0.99
Dropout 0.2 0.1,0.2,0.3
Epochs 20
Batch Size 32
Learning Rate (LR) le-4 | le-3, le-4, le-5
LR scheduler Slanted triangular
Weight decay 0.01
Decay factor 0.38 0.35,0.38, 0.5
Cut fraction 0.2 0.1,0.2,0.3

Table 4: Hyperparameters of MACHAMP.

We use the default hyperparameters in
MACHAMP (van der Goot et al.,, 2021) as
shown in Table 4. For more details we refer to their
paper. For the five random seeds we use 3477689,
4213916, 6828303, 8749520, and 9364029. All
experiments with MACHAMP were ran on an
NVIDIA® TITAN X (Pascal) 12 GB GPU and an
Intel® Xeon® Silver 4214 CPU.

E Exact Number of Performance

In Table 5, we show the exact numbers of the plot
indicated in Figure 3. In addition, we also show the
results of each respective split.

For the STL models, we observe differences in
performances over the sources which is particu-
larly pronounced for knowledge components: The
TECH source is the easiest to process (and has most
SKCs), while SKCs identification performance is
the lowest for BIG. This might be due to the broad
nature of this source.

In the exact results table (Table 5) we add a (})
next to the highest span-F1 if the model is truly
stochastically dominant (ep;, = 0.0) over all the
other models. (*) denotes that the best model
achieved almost stochastic dominance (€nin <
0.5) over—at minimum—one other model (e.g.,
in TEST rows w.r.t COMBINED: MTL-JobBERT >
MTL-JobSpanBERT with epi, = 0.06) and stochas-
tically dominant over the rest.

In Table 6, we report the precision and recall
of the models, SKILL and KNOWLEDGE show the
precision and recall of the STL models. MULTI
shows the precision and recall of the MTL models.

Last, in Table 7, we show the exact numbers of
the length of predictions Figure 5. We also add
the number of predicted SKILL and KNOWLEDGE
Overall, JobBERT and JobSpanBERT predict more
skills in general than the other models. This is also
the case for knowledge components. We hypoth-
esize that this might be due to the BERT models
now being more specialized towards the JP domain
and recognizing more SKCs.

F Significance Testing

Recently, the ASO test (Dror et al., 2019)!° has
been proposed to test statistical significance for
deep neural networks over multiple runs. Gener-
ally, the ASO test determines whether a stochas-
tic order (Reimers and Gurevych, 2018) exists be-
tween two models or algorithms based on their
respective sets of evaluation scores. Given the sin-
gle model scores over multiple random seeds of
two algorithms A and B, the method computes a
test-specific value (eni,) that indicates how far al-
gorithm A is from being significantly better than
algorithm B. When distance €, = 0.0, one can
claim that A4 stochastically dominant over 3 with a
predefined significance level. When €, < 0.5 one
can say A > B. On the contrary, when we have
€min = 1.0, this means B = A. For ¢y, = 0.5,
no order can be determined. We took 0.05 for the
predefined significance level. In Figure 7, we show
the ASO scores on the development set.

lOImplementation of Dror et al. (2019) can be
found at https://github.com/Kaleidophon/
deep-significance (Ulmer, 2021)
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| Evaluation — | SKILL \ KNOWLEDGE \ COMBINED

Sre. | | Model, Task — | STL MTL | STL MTL | STL (*2)  MTL
BERTpase 59.55+0.97  58.88+1.14 | 50.68+3.25  51.10£1.67 | 57.46+1.19  57.00+£0.91
< SpanBERT 59.784044  60.02+2.15 | 50.65+2.32  51.794+2.12 | 57.71+£0.53  58.0042.07
8 JobBERT 60.60+0.81  59.7640.60 | 50.29+1.86  47.59+1.11 | 58.19+049  56.75+0.50
JobSpanBERT 60.16+0.61  59.44+1.11 | 45.204+2.76  47.69+3.38 | 56.56+£049  56.58+0.63
@ BERT s 56.83+1.29  55.89+1.90 | 55.00+1.11  54.05+1.00 | 56.1740.92  55.20+1.35
& SpanBERT 57.5441.08  57.30+0.84 | 52.01+£1.72  51.48+1.01 | 55.55+1.10  55.094+0.74
g JobBERT 59.81+£1.17  59.97+0.85 | 54.94+1.15 54.23+2.60 | 58.02+0.93  57.80+1.50
JobSpanBERT 59.97+1.03  59.6240.74 | 55.66+151  53.10+£1.27 | 58.37+1.07  57.14+0.56
BERT}ase 59.054+0.71  58.34+0.75 | 64.08+£1.04  63.77+1.18 | 62.10+£0.67 61.6540.62
z SpanBERT 58.39+0.46  58.61+1.14 | 62.68+0.60  63.404+0.93 | 61.0240.35  61.56+0.81
ﬁ JobBERT 59.8140.75  59.36+0.90 | 64.57+042  63.154+0.94 | 62.69+0.40  61.6740.90
JobSpanBERT 60.09+1.43  59.48+0.61 | 63.40+£1.51  63.23+0.64 | 62.09+0.85 61.80+0.54
Z BERThyse 58.45+0.68 57.67+1.01 | 60.44+058  59.98+0.75 | 59.354+0.46  58.72+0.48
§ SpanBERT 58.534+0.33  58.60+0.83 | 58.89+049  59.21+0.78 | 58.69+0.36  58.88+0.64
= | JobBERT 60.05£0.70  59.69+0.62 | 60.66:0.43° 59.15+1.07 | 60.32:£0.39° 59.440.81
< JobSpanBERT 60.07+0307  59.51+£0.68 | 59.47+131  59.04+£0.65 | 59.79+£0.53  59.29+0.43
- BERTase 54344074  54.2040.68 | 62.43+041  61.66+0.83 | 58.16+047  57.73+0.66
4 JobBERT 56.114049  55.46£0.75 | 63.88:0.28" 63.35+£0.30 | 59.73+0.387  59.18+0.37
=

JobSpanBERT 56.64:0.83"  56.27+0.55 | 61.060.99 61.8740.55 | 58.724+0.69 58.90+0.48

Table 5: Performance of Models. We test the models on skills, KNOWLEDGE, and COMBINED (MTL). We
report the span-F1 and standard deviation of runs on five random seeds on the development set (AVERAGE, in gray).
Results on the fest set are below in the TEST rows (in cyan). STL indicates single-task learning and MTL indicates
the multi-task model. Bold numbers indicate best performing model in that experiment. A () means that it is
stochastically dominant over all the other models. (*) denotes almost stochastic dominance (€, < 0.5) over—at
minimum—one other model.

| Evaluation — | SKILL \ KNOWLEDGE \ MULTI

Src. ‘ J} Model ‘ Precision Recall ‘ Precision Recall ‘ Precision Recall

BERTase 57.09+£1.70 62.27+1.28 | 43.954+4.17 60.00+1.65 | 52.63+1.32 62.19+0.87
v SpanBERT 58.28+0.59 61.36+0.68 | 45.804+2.89 56.8243.39 | 54.02+1.81 62.63+2.60
=] JobBERT 57.904+1.25 63.5940.99 | 43.454+1.98 59.8443.44 | 51.13+£048 63.74+0.79

JobSpanBERT | 58.39+1.03 62.0941.85 | 38.5543.12 54.76+3.18 | 52.22+0.35 61.75+1.22
o BERT} e 55.95+2.46 57.7940.67 | 52.8440.65 57.42+2.76 | 51.65+1.11 59.28+2.07
2 SpanBERT 56.70+1.59 58.44+1.16 | 49.87+257 54.49+3.09 | 52.27+0.64 58.25+1.50
é JobBERT 58.16+1.30 61.56+1.53 | 51.184+2.18 59.37+1.34 | 53.72+1.57 62.56+1.47

JobSpanBERT | 59.04+0.85 60.99+2.58 | 51.3642.70 60.8441.19 | 53.91+0.77 60.79+0.54

BERT} e 58.28+1.30 59.89+1.39 | 60.79+1.89 67.79+1.20 | 58.19+1.12 65.55+0.75
E SpanBERT 58.62+0.32 58.164+0.76 | 59.43+121 66.35+1.18 | 58.34+0.97 65.17+1.41
ﬁ JobBERT 58.81+1.38 60.88+1.51 | 61.38+1.11 68.14+1.36 | 57.69+0.93 66.254+0.90

JobSpanBERT | 59.86+3.07 60.40+0.68 | 59.78+2.43 67.57+197 | 58.26+082 65.82+091
5 BERTase 57114165 59.90+0.95 | 56.86+1.33 64.544+1.31 | 55.02+0.85 62.98+0.93
z SpanBERT 57.85+0.65 59.23+0.52 | 55.65+1.09 62.58+1.56 | 55.61+£0.61 62.58+1.25
E JobBERT 58.2941.08 61.9441.16 | 56.73+1.41 65.224+1.03 | 55.03+0.84 64.62+0.77
< JobSpanBERT | 59.114+1.59 61.1241.49 | 55.1142.41 64.66+1.38 | 55.64+0.56 63.4640.69
o BERTpasc 56.02+£1.50  52.79+1.18 | 59.09+0.85 66.20+1.69 | 55.824+1.03 59.79+0.87
4 JobBERT 55.94+1.19 56.2940.49 | 60.03+1.13 68.30+1.46 | 55.87+0.29 62.89+0.56
= JobSpanBERT | 57.57+1.24 55.77+1.65 | 57.83+£1.03 64.71+2.10 | 57.06+0.74 60.89+0.42

Table 6: Precision and Recall of Models. We test the models on skills, knowledge, and multi-task setting. We
report the average precision, recall and standard deviation of runs on five random seeds on the development set
(AVERAGE). Results on the fest set are below in the TEST rows.
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Source — BIiG HOUSE TECH

J Model SKILLS (#) KNOWLEDGE (#) \ SKILLS (#) KNOWLEDGE (#) \ SKILLS (#) KNOWLEDGE (#)
ANNOTATIONS 4.16 (634) 2.03 (242) 3.81 (637) 1.91 (350) 3.92 (459) 1.69 (834)
BERThase 4.4240.11 (628) 2.1740.06 (307) | 3.89+0.11 (615) 1.98+0.04 (461) | 4.4340.06 (449) 1.75+0.02 (885)
SpanBERT 4.50+0.04 (621) 2.14+0.03 (298) | 3.92+0.04 (597) 2.03+0.03 (441) | 4.3340.06 (444) 1.76+0.03 (869)
JobBERT 4.3840.11 (670) 2.1040.06 (313) | 3.97+0.08 (650) 1.99+0.04 (470) | 4.4240.10 (479) 1.7240.03 (932)
JobSpanBERT | 4.5140.09 (629) 2.08+0.05 (313) | 3.95+0.11 (623) 2.01+0.06 (452) | 4.48+0.12 (439) 1.71+0.03 (875)
Longformer 4.4540.14 (653) 2.2240.04 (298) | 3.90+0.17 (639) 1.97+0.03 (483) | 4.4040.10 (472) 1.80+0.05 (864)

Table 7: Average Length of Predictions of Single Models. We show the average length of the predictions versus
the length of our annotated skills and knowledge components on the fest set and the total number of predicted skills

and knowledge tags in each respective split (#).
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Figure 7: Almost Stochastic Order Scores of the Development Set. ASO scores expressed in ep;,. The significance
level a = 0.05 is adjusted accordingly by using the Bonferroni correction (Bonferroni, 1936). Read from row to
column: E.g., STL-JobBERT (row) is stochastically dominant over STL-BERT},. (column) with €p,;, of 0.00.
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Knowledge

Src. | Train Development Test
english full uk driving licence strategic planning
driving license sap energy assessments english
excel right to work in the uk cscs card
cscs card sen pms
< maths acca/aca reservation systems
R ppc professional kitchen keynote
service design cra calculations illustrator
uk/emea policies email marketing aba
bachelor’s degree qualitative and quantitative social research methods sen
computer science care setting full driving license
english english english
engineering supply chain danish
computer science project management business
= product management powders java
2 python machine learning marketing
é finance phd degree plm
project management  muscle models with learning and adaptation production
agile walking robots supply chain
danish model rules economics
javascript capacity development excel
javascript java java
python javascript python
java aws .net
m agile docker financial services
o financial services node.js c#
= node.js typescript javascript
english react cloud
kubernetes linux english
cloud amazon-web-services reactjs
docker devops automation

Table 9: Most Frequent Knowledge in the Data. Top—10 knowledge components in our data in terms of frequency.
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