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Abstract

Structured and grounded representation of text
is typically formalized by closed information
extraction, the problem of extracting an exhaus-
tive set of (subject, relation, object) triplets that
are consistent with a predefined set of entities
and relations from a knowledge base schema.
Most existing works are pipelines prone to error
accumulation, and all approaches are only ap-
plicable to unrealistically small numbers of en-
tities and relations. We introduce GenIE (gen-
erative information extraction), the first end-to-
end autoregressive formulation of closed infor-
mation extraction. GenIE naturally exploits the
language knowledge from the pre-trained trans-
former by autoregressively generating relations
and entities in textual form. Thanks to a new
bi-level constrained generation strategy, only
triplets consistent with the predefined knowl-
edge base schema are produced. Our experi-
ments show that GenIE is state-of-the-art on
closed information extraction, generalizes from
fewer training data points than baselines, and
scales to a previously unmanageable number of
entities and relations. With this work, closed
information extraction becomes practical in re-
alistic scenarios, providing new opportunities
for downstream tasks. Finally, this work paves
the way towards a unified end-to-end approach
to the core tasks of information extraction.

1 Introduction

The ability to extract structured semantic informa-
tion from unstructured texts is crucial for many AI
tasks such as knowledge discovery (Ji and Grish-
man, 2011; Trisedya et al., 2019), knowledge main-
tenance (Tang et al., 2019), symbolic representa-
tion, and reasoning (Ji et al., 2021). The interface
between free text and structured knowledge is for-
malized by knowledge base population (KBP; Ji
and Grishman, 2011), which proposes to represent
the information contained in text using (subject, re-
lation, object) fact triplets. In this work, we focus
on closed information extraction (cIE), the problem
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Figure 1: Overview of GenIE. We use a transformer
encoder-decoder model that takes unstructured text as
input and autoregressively generates a structured seman-
tic representation of the information expressed in it, in
the form of (subject, relation, object) triplets. GenIE
employs constrained beam search with: (i) a high-level
constraint which asserts that the output corresponds to
a set of triplets; (ii) lower-level constraints which use
prefix tries to force the model to only generate valid
entity or relation identifiers (from a predefined schema).

of extracting exhaustive sets of fact triplets express-
ible under the relation and entity constraints defined
by a Knowledge Base (KB) schema.

Traditionally, cIE was approached with pipelines
that sequentially combine named entity recogni-
tion (Tjong Kim Sang, 2002), entity linking (Milne
and Witten, 2008), and relation extraction (Miller
et al., 1998). Entity linking and relation extrac-
tion serve as grounding steps, matching entities
and relations to numerical identifiers in a KB, e.g.,
QIDs and PIDs for Wikidata (Vrandečić, 2012). Re-
cently, Trisedya et al. (2019) pointed out that such
pipeline architectures suffer from the accumulation
of errors and proposed an end-to-end alternative.
Nevertheless, existing methods are still only prac-
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tical for small schemas with unrealistically small
numbers of relations and entities.

Alternatively, some works have focused on a
simpler syntactic task: open information extrac-
tion (oIE), which produces free-form triplets from
texts. In this setup, the entities and relations are not
grounded in a KB and, usually, do not represent
facts (Gashteovski et al., 2020). As oIE triplets con-
tain only surface relations, they have ambiguous
semantics, making them hard to use in downstream
tasks (Broscheit et al., 2017) if not first aligned
with a KB (Gashteovski et al., 2020). Since, in
practice, oIE often consists of structured substring
selection, it has recently been framed as an end-
to-end sequence-to-sequence problem with great
success (Huguet Cabot and Navigli, 2021; Dognin
et al., 2021). Indeed, such autoregressive formula-
tions can exploit the language knowledge already
encoded in pre-trained transformers (Devlin et al.,
2019). For example, some tokens can be more
easily recognized as possible entities or relations
thanks to the pre-training information.

Inspired by recent successes in oIE, we propose
the first autoregressive end-to-end formulation of
cIE that scales to many entities and relations, mak-
ing cIE practical for more realistic KB schemas (i.e.
schemas with millions of entities).1 We employ a
sequence-to-sequence BART model (Lewis et al.,
2020), and exploit a novel bi-level constrained gen-
eration strategy operating on the space of possi-
ble triplets (from a fixed schema induced by Wiki-
data) to ensure that only valid triplets are generated.
Our resulting model, GenIE, performs Generative
Information Extraction and combines the advan-
tages of a known schema with an autoregressive
formulation. The high-level overview of GenIE
is provided in Fig. 1. The constrained generation
encodes the known schema and enables the autore-
gressive decoder to generate textual tokens but only
from the set of allowed entities or relations.

Contributions.
• We present the first end-to-end autoregressive

formulation of closed information extraction.

• We describe a constrained decoding strategy
that exploits the Wikidata schema to gener-
ate only valid fact triplets, demonstrating how
constrained beam search can be applied on
large, structured, and compositional spaces.

1Note that current methods, due to the atomic classification,
have high memory requirements, and suffer from performance
deterioration as the number of entities or/and relations grows.

• We propose a model that achieves state-of-the-
art performance on the cIE task and scales to
previously unmanageable numbers of entities
(6M) and relations (more than 800).

• We point out and address weaknesses in the
evaluation methodologies of recent previous
works stemming from their small scale and
the large imbalances in the available data per
relation. We demonstrate the importance of
reporting performance as a function of the
number of relation occurrences in the data.

• We release pre-processed data, pre-trained
models, and code within a general template de-
signed to facilitate future research at https:
//github.com/epfl-dlab/GenIE.

2 Background and Related Work

2.1 Closed Information Extraction
In this work, we address the task of closed infor-
mation extraction (cIE), which aims to extract the
exhaustive set of facts from natural language, ex-
pressible under the relation and entity constraints
defined by a knowledge base (KB).

Most of the existing methods address the prob-
lem with a pipeline solution. One line of work
starts by first extracting the entity mentions and
the relations between them from raw text. This
is followed by a disambiguation step in which the
entity and relation predicates are mapped to their
corresponding items in the KB. The sub-task of
extracting the free-form triplets was originally pro-
posed by Banko et al. (2007), and it is commonly
referred to as open information extraction (oIE)
or text-to-graph in the literature (Guo et al., 2020;
Castro Ferreira et al., 2020; Huguet Cabot and Nav-
igli, 2021; Shen et al., 2015). Another line of work
employs a pipeline of models for (i) named entity
recognition (NER) – detecting the entity mentions;
(ii) entity linking (EL) – mapping the mentions to
specific entities from the KB; (iii) relation classi-
fication (RC) – detecting the relations that are ex-
pressed between the entities (Galárraga et al., 2014;
Angeli et al., 2015b; Chaganty et al., 2017). Due to
their architecture, pipeline methods are plagued by
error propagation, which significantly affects their
performance (Mesquita et al., 2019; Trisedya et al.,
2019).

End-to-end systems that jointly perform the ex-
traction and the disambiguation of entities and re-
lations have been proposed to address the error
propagation (Trisedya et al., 2019; Sui et al., 2021;
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Liu et al., 2018). To mitigate the propagation of
errors, these systems are endowed with the abil-
ity to leverage entity information in the relation
extraction and vice-versa, which has resulted in sig-
nificant performance gains. Conceptually, for pro-
ducing the output triplets, existing methods all rely
on atomic, multi-class classification-based ranking
of relations and entities. Classification methods
particularly suffer from imbalances in the data. On
the contrary, our model, GenIE, is autoregressive
and copes better with imbalances.

While cIE requires the constituent elements of
the output triplets to be entities and relations asso-
ciated with the KB, the output triplets in oIE are
free-text. This makes the cIE task fundamentally
harder than oIE and renders the majority, if not all,
oIE methods inapplicable to the cIE setting. We
report an additional discussion on relevant, but not
fundamental, related work on oIE in Appendix A.

2.2 Autoregressive Entity Linking

The tasks of entity linking (EL) and entity disam-
biguation (ED) have been extensively studied in
the past (Huang et al., 2015; Wu et al., 2020; Le
and Titov, 2018; Kolitsas et al., 2018; Arora et al.,
2021). Most existing approaches associate enti-
ties with unique atomic labels and cast the retrieval
problem as multi-class classification across them.
The match between the context and the label can
then be represented as the dot product between the
dense vector encodings of the input and the entity’s
meta information (Wu et al., 2020). This general
approach has led to large performance gains.

Recently, De Cao et al. (2021a,b, 2022) have
suggested that the classification-based paradigm
for retrieval comes with several shortcomings such
as (i) the failure to capture fine-grained interactions
between the context and the entities; (ii) the neces-
sity of tuning an appropriately hard set of negative
samples during training. Building on these observa-
tions, they propose an alternative solution that casts
the entity retrieval problem as one of autoregressive
generation in which the entity names are generated
token-by-token in an autoregressive fashion. The
(freely) generated output will not always be a valid
entity name, and to solve this problem De Cao et al.
(2021b) propose a constrained decoding strategy
that enforces this by employing a prefix trie. Their
method scales to millions of entities, achieving
state-of-the-art performance on monolingual and
multilingual entity linking.

Inspired by the intuition that language models
are well suited for predicting entities, we propose
a novel approach for cIE by framing the problem
in an autoregressive generative formulation.

3 Method

In this section we formalize GenIE, an autoregres-
sive end-to-end model for closed information ex-
traction. Let us assume a knowledge base (KB) con-
sisting of a collection of entities E , a collection of
relations R, and a set of facts (s,r,o) ∈ E ×R×E
stored as (subject, relation, object) triplets. Ad-
ditionally, we assume that each entity e ∈ E and
relation r ∈ R is assigned to a textual label (cor-
responding to its name). The Wikidata KB (Vran-
dečić, 2012), with Wikipedia page titles as entity
names, and the Wikidata relation labels as relation
names satisfy these assumptions.

3.1 Model

We cast the task of information extraction as one of
autoregressive generation. More concretely, given
some text input x, GenIE strives to generate the
linearized sequence representation y of the exhaus-
tive set of facts expressed in x. The conditional
probability (parameterized by θ) assigned to the
output y is computed in the autoregressive for-
mulation: pθ(y | x) =

∏|y|
i=1 pθ(yi | y<i,x). This

can be seen as translating the unstructured text
to a structured, unambiguous representation in
a sequence-to-sequence formulation. GenIE em-
ploys the BART (Lewis et al., 2020) transformer
architecture. It is trained to maximize the target
sequence’s conditional log-likelihood with teacher
forcing (Sutskever et al., 2011, 2014), using the
cross-entropy loss. We use dropout (Srivastava
et al., 2014) and label smoothing for regulariza-
tion (Szegedy et al., 2016).

3.2 Output Linearization

To represent the output with a sequence of symbols
that is compatible with sequence-to-sequence ar-
chitectures, we introduce the special tokens <sub>,
<rel>, <obj> to demarcate the start of the subject
entity, the relation type and the object entity for
each triplet. The special token <et> is introduced
to demarcate the end of the object entity, which
is also the end of the triplet. We construct the se-
quence representation by concatenating the textual
representations of its constituent triplets. While the
sequence representation has an intrinsic notion of
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order, the output set of triplets does not. To mit-
igate the effects of this discrepancy, we enforce
a consistent ordering of the target triplets during
training. Concretely, whenever the triplets’ entities
are linked to the entity mentioned in the textual
input, we consider first the triplets for which the
subject entity appears earlier in the text. Ties are
resolved by considering the appearance position of
the object entity.

3.3 Inference with Constrained Beam Search

The space of triplets corresponds to T = E ×
R × E , and the target space, which consists of
triplet sets of arbitrary cardinality, is equivalent to
S =

⋃∞
i=0[E ×R×E ]i. At inference time, GenIE

tackles the task of retrieving the linearized repre-
sentation yS ∈ S of a set of facts S = {t1, . . . , tn}
constituted by triplets ti ∈T expressed in the input
text x. Ideally, we would consider every element
y ∈S in the target space, assign it a score pθ(y | x),
and retrieve the most probable y. Unfortunately,
this is prohibitively expensive since we are deal-
ing with a compositional target space whose size is
gigantic (e.g., if we consider a Wikidata entity cat-
alog of |E | ≈ 6M elements and a relation catalog
of |R| ≈ 1000 relations, that can express a total of
|T | ≈ 1015 triplets; even if we limit ourselves to
sentences that express only two facts, this provides
us with ≈ 1030 different output options).

On the other hand, the output needs to follow a
particular structure, and contain only valid entity
and relation identifiers. This does not necessarily
hold for an arbitrary generation from a sequence-
to-sequence model.

GenIE employs constrained beam search (BS;
Sutskever et al., 2014; De Cao et al., 2021b) to re-
solve both of these problems. Instead of explicitly
scoring all of the elements in the target space S ,
the idea is to search for the top-k eligible options,
using BS with k beams and a prefix trie. BS consid-
ers one step ahead – the next token to be generated
– conditioned on the previous ones. The prefix trie
restricts the BS to candidate tokens that could lead
to valid identifiers. However, for the cIE setting we
are interested in, the target space is prohibitively
large to pre-compute the necessary trie. Therefore,
we enforce a bi-level constraint on the output that
allows for compositional, dynamic generation of
the valid prefixes. More specifically, GenIE em-
ploys: (i) a high-level structural constraint which
asserts that the output follows the linearization

schema defined in Sec. 3.2; (ii) lower level validity
constraints which use an entity trie and a relation
trie to force the model to only generate valid entity
or relation identifiers, respectively – depending on
the specific element of the structure that is being
generated. This outlines a general approach for
applying BS to search through large compositional
structured spaces.

4 Experimental Setup

4.1 Knowledge Base: Wikidata

We use Wikidata2 (Vrandečić, 2012) as the tar-
get KB to link to, filtering out all entities that do
not have an English Wikipedia page associated
with them. The filtering guarantees that all entity
names are unique. Our final entity set E contains
5,891,959 items. We define our relation set R
as the union of all the relations considered in the
datasets described below, resulting in 857 relations.
For different datasets, we consider only the subset
of annotated relations to better compare with base-
lines. Although large, the number of entity (and
relation) names is not a memory bottleneck as the
generated prefix trie occupies ≈200MB of storage
(e.g., the entity linking system proposed by Wu
et al. 2020 needs >20 times more storage).

4.2 Datasets and Evaluation Metrics

In this work, we further annotate and adapt
REBEL (Huguet Cabot and Navigli, 2021) and
Wiki-NRE for training, validation and testing. Ad-
ditionally, we use Geo-NRE (Trisedya et al., 2019),
and FewRel (Han et al., 2018) for testing purposes
only. Appendix B contains descriptions of these
datasets and their statistics. We measure the per-
formance in terms of micro and macro precision,
recall and F1. See Appendix C for a detailed and
formal description of these metrics. We also re-
port a 1-standard-deviation confidence interval con-
structed from 50 bootstrap samples of the data.

4.3 Baselines

We compare GenIE against Set Generation Net-
works (SetGenNet; Sui et al., 2021) which is, to
the best of our knowledge, the strongest model on
Wiki-NRE and Geo-NRE. Note that the authors did
not release code or the model and there is no other
model from the literature trained and evaluated on
REBEL for cIE. SetGenNet (Sui et al., 2021) is an

2Dumps from 2019/08/01
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end-to-end state-of-the-art model for triplet extrac-
tion. It consists of a transformer encoder (Vaswani
et al., 2017) that encodes the input followed by a
non-autoregressive transformer decoder (Gu et al.,
2018). The decoder generates embeddings that are
used to predict entities and relations. SetGenNet
further uses candidate selection (Ganea and Hof-
mann, 2017; Kolitsas et al., 2018) to reduce the
output space and a bipartite matching loss that han-
dles different prediction orderings (i.e., it generates
a set). Note that there are weaker baselines (e.g.,
Trisedya et al. 2019) we could have used to com-
pare on REBEL, but we were not able to reproduce
their code. We report details on the effort made to
use these baselines in Appendix D.

We also implement a pipeline baseline, consist-
ing of 4 independent steps, namely: (i) named en-
tity recognition (NER), which selects the spans in
the input source likely to be entity mentions; (ii) en-
tity disambiguation (ED), which links mentions to
their corresponding identifiers in the KB; (iii) rela-
tion classification (RC), which predicts the relation
between a given pair of entities, and finally; (iv)
triplet classification (TC), which predicts whether
a given triplet is actually entailed by the context.
TC is necessary because the previous step (RC) pre-
dicts a relation for every pair of entities. Each step
needs to be trained independently with a specific ar-
chitecture tailored for the task, and we made an op-
timal choice for each step. For the NER component
we used the state-of-the-art tagger FLAIR3 (Akbik
et al., 2019), while for ED we used the GENRE
linker4 (De Cao et al., 2021b). These two models
were already trained, and we use them for inference
only. For RC and TC, we trained a RoBERTa (Liu
et al., 2019) model with a linear classification layer
on top (as these two sub-tasks are typically cast as
classification problems). Trisedya et al. (2019) also
proposed many other pipeline baselines but ours
outperforms them (see Table 5 in Appendix G for
comparison).

5 Results

5.1 Performance Evaluation

Models performing cIE can base their predictions
on different schemas. In this section, we distin-
guish between small and large evaluation schema.
The small evaluation schema is consistent with pre-

3https://github.com/flairNLP/flair
4https://github.com/facebookresearch/

GENRE

vious approaches where models only have to decide
between a small set of relations and entities (the
schema induced by Wiki- and Geo-NRE). In the
large evaluation schema, models use the schema
induced by REBEL. Models also use the large eval-
uation schema of REBEL when tested on FewRel,
as a high-quality and challenging recall-based eval-
uation. We consider 3 training setups for GenIE
and the pipeline baseline comprised of SotA com-
ponents: (i) the training set of Wiki-NRE (W) only,
(ii) the training set of REBEL (R) only, and (iii)
pre-training on REBEL and fine-tuning on Wiki-
NRE (R+W). The implementation details are given
in Appendix E. We report the macro and micro pre-
cision, recall, and F1 in Table 1. Unfortunately, as
the code for SetGenNet is not available, we cannot
compute its macro performance, thus we report the
micro scores only.

First, on Wiki-NRE (W), we observe a large and
significant F1 improvement of 8 and 28 absolute
points obtained by GenIE over SetGenNet and the
pipeline baseline, respectively, when trained on the
same dataset. Despite the much bigger schema em-
ployed by REBEL, pre-training on it and then fine-
tuning (R+W), improves the performance on Wiki-
NRE and Geo-NRE for 3% and 5%, respectively.
This highlights that: (i) GenIE can effectively trans-
fer knowledge across datasets/schemas; (ii) GenIE
can quickly adapt to new schemas. Due to its rigid,
monolithic relation classifier, the pipeline baseline
does not possess these qualities. However, the pre-
training does improve its macro scores.

Only the newly developed pipeline baseline and
GenIE can scale-up to the larger schema5, and as
expected, this setting is more challenging for both
models. However, GenIE still preserves a good
F1 score of 68 micro and 34 macro, which is a
relative increase of 60% and 320%, respectively,
over the baseline. While the pipeline has a steeper
drop from micro to macro scores, in general, a
significant difference between the two is observed
in every setting. This suggests that the models
perform better for relations associated with many
training examples and significantly worse for the
rest. These findings call for the fine-grained anal-
ysis of performance in Sec. 5.2 that partitions the
relations according to their occurrence count in the
training data. For completeness, we also provide
an analysis of performance as a function of the
number of relations considered, in Appendix F.1.

5See notes on reproducibility in Appendix D.
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Small Evaluation Schema Large Evaluation Schema
Wiki-NRE Geo-NRE REBEL FewRel

Precision Recall F1 Precision Recall F1 Precision Recall F1 Recall

Micro
SetGenNet (W) 82.75 ± 0.11 77.55 ± 0.27 80.07 ± 0.27 86.89 ± 0.51 85.31 ± 0.47 86.10 ± 0.34 – – – –
SotA Pipeline (W) 67.43 ± 0.28 54.22 ± 0.21 60.11 ± 0.22 64.60 ± 1.46 64.05 ± 1.46 64.32 ± 1.45 – – – –
SotA Pipeline (R) 50.78 ± 0.20 62.17 ± 0.24 55.90 ± 0.20 60.28 ± 1.45 60.78 ± 1.49 60.53 ± 1.45 43.30 ± 0.15 41.73 ± 0.13 42.50 ± 0.13 17.89 ± 0.24

SotA Pipeline (R+W) 65.17 ± 0.27 54.40 ± 0.20 59.30 ± 0.21 66.65 ± 1.47 66.22 ± 1.46 66.43 ± 1.45 – – – –

GenIE (W) 88.18 ± 0.13 88.31 ± 0.16 88.24 ± 0.13 86.46 ± 1.05 87.14 ± 1.03 86.80 ± 1.03 – – – –
GenIE (R) 27.98 ± 0.13 67.16 ± 0.20 39.50 ± 0.14 39.69 ± 1.65 59.01 ± 1.56 47.45 ± 1.62 68.02 ± 0.15 69.87 ± 0.14 68.93 ± 0.12 30.77 ± 0.27

GenIE (R+W) 91.39 ± 0.15 91.58 ± 0.14 91.48 ± 0.12 91.77 ± 0.98 93.20 ± 0.83 92.48 ± 0.88 – – – –

Macro
SotA Pipeline (W) 11.96 ± 0.72 10.73 ± 0.46 10.56 ± 0.43 24.82 ± 3.61 22.54 ± 3.67 20.39 ± 2.72 – – – –
SotA Pipeline (R) 19.39 ± 1.18 17.41 ± 0.99 15.93 ± 0.93 28.80 ± 3.86 30.24 ± 4.46 25.24 ± 3.21 12.20 ± 0.35 10.44 ± 0.22 9.48 ± 0.21 19.67 ± 0.26

SotA Pipeline (R+W) 24.12 ± 1.46 16.55 ± 1.00 17.76 ± 1.01 38.67 ± 5.72 34.49 ± 5.99 35.14 ± 5.09 – – – –

GenIE (W) 44.22 ± 2.40 36.79 ± 1.62 38.39 ± 1.71 57.13 ± 6.83 52.83 ± 6.84 52.79 ± 6.27 – – – –
GenIE (R) 30.63 ± 1.40 41.97 ± 1.92 29.27 ± 1.26 32.38 ± 5.86 40.39 ± 5.17 30.67 ± 5.23 33.90 ± 0.73 30.48 ± 0.65 30.46 ± 0.62 30.78 ± 0.26

GenIE (R+W) 52.55 ± 2.12 45.95 ± 1.67 47.08 ± 1.68 75.77 ± 7.80 71.60 ± 7.95 72.59 ± 7.32 – – – –

Table 1: Main results. “R” indicates training on REBEL, and “W” indicates training on Wiki-NRE.

REBEL FewRel
Precision Recall F1 Recall

Micro
GenIE 68.02 ± 0.15 69.87 ± 0.14 68.93 ± 0.12 30.77 ± 0.27

GenIE - PLM 59.32 ± 0.13 77.78 ± 0.12 67.31 ± 0.10 46.95 ± 0.27

GenIE - GENRE 64.14 ± 0.14 76.58 ± 0.11 69.81 ± 0.10 46.62 ± 0.25

GenIE unconstrained 65.30 ± 0.14 67.12 ± 0.12 66.20 ± 0.11 26.15 ± 0.27

Macro
GenIE 33.90 ± 0.73 30.48 ± 0.65 30.46 ± 0.62 30.78 ± 0.26

GenIE - PLM 30.66 ± 0.68 43.33 ± 0.63 33.85 ± 0.58 46.96 ± 0.25

GenIE - GENRE 32.02 ± 0.67 39.14 ± 0.68 33.40 ± 0.62 46.63 ± 0.24

GenIE unconstrained 32.25 ± 0.66 27.59 ± 0.53 28.20 ± 0.50 26.14 ± 0.24

Table 2: Ablation study on the weights initialization
and the constrained generation strategy.

Finally, on FewRel, recall is the only well-
defined metric (see Appendix B). In this setting
as well, GenIE greatly outperforms the baseline by
13 (micro) and 11 (macro) recall points (micro and
macro are close as the dataset is class-balanced).

Ablation study. In Table 2 we summarize the
results of an ablation study considering the pre-
training and the constrained generation. We con-
sider three different starting points: (i) a random
initialization; (ii) BART (Lewis et al., 2020) pre-
trained language model (PLM); (iii) a pre-trained
autoregressive entity retrieval model GENRE (De
Cao et al., 2021b). The pre-trained models are
better in terms of recall and exhibit a better out-
of-domain generalization on FewRel. In contrast,
they are slightly worse in terms of precision, which
translates to maximum improvement of a single
point in F1 on REBEL. Another salient advantage
of pre-training is reducing the training steps nec-
essary for achieving good results. Indeed, when
starting from GENRE, 3-5k steps are sufficient for
competitive performance; starting from a PLM ne-

cessitates 5-10k steps; while a random initialization
requires 40-50k steps for competitive performance.
Additionally, the pre-trained versions converge to a
lower validation loss (see Fig. 5 in Appendix G).

To quantify the benefits from the constrained
generation, we compare the results attained by the
randomly initialized model with and without con-
straints. In addition to ensuring a structure on the
output, the constrained generation strategy results
in an increase of 2-3 absolute points in terms of F1.

5.2 Analysis of Performance as a Function of
the Relation Occurrence Count

The datasets naturally present large imbalances,
where few relations occur a lot, but most relations
are rare. In the previous section, we already ob-
served a large difference between macro and micro
F1 scores of models, indicating that the number of
occurrences impacts model performances. Thus,
we now measure F1 scores after bucketing rela-
tions according to their number of occurrences in
the training dataset. In Fig. 2, we create buckets
i ∈ {0, . . . ,20}, where bucket i contains all the rela-
tions occurring at least 2i times and less than 2i+1

times in the REBEL dataset. The height of the
histogram for bucket i shows how many relations
are contained in this bucket. Finally, we report
the F1 scores of GenIE and the pipeline of SotA
components per bucket. Note that micro F1 from
Table 1 is equivalent to putting all relations in one
single bucket (equal weight to each data point), and
macro F1 is equivalent to averaging the F1 with one
bucket per relation (equal weight to each relation).

The histogram first confirms that most of the
relations occur in only a few triplets from the train-
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occurrences; bucket 2i contains relations occurring between 2i and 2i+1 times. The histogram shows the number
of relations per bucket. The line plots depict the F1 scores of GenIE and the baseline per bucket together with
confidence intervals computed per bucket with bootstrap resampling.

ing data. Models thus need to perform few-shot
learning for most of the relations. GenIE is sig-
nificantly better than the pipeline baseline for all
the buckets. Finally, it is important to highlight
that even though the performance of both meth-
ods, unsurprisingly, declines for relations that ap-
pear less often in the training data, GenIE already
performs well for relations with at least 26 = 64
occurrences. On the contrary, the baseline needs
214 = 16,384 samples to reach a comparable level
of performance, and scores better than GenIE does
for the 26 = 64 bucket only after seeing at least
219 = 524,288 samples. This confirms that GenIE
is not only better at macro and micro F1, but it
is also capable of performing fewer-shot learning
than the baseline. It further shows that, contrary
to the baseline, GenIE’s good scores do not come
solely from its ability to perform well on the few
most frequent relations.

5.3 Disentangling the Errors

The task of cIE, explicitly or implicitly, encom-
passes NER, NEL and RC as its subtasks. Failure
in any subtask directly translates to failure on the
original task. Therefore, to effectively compare dif-
ferent cIE models and accurately characterize their
behavior, we need to evaluate their performance on
each of the subtasks.

The separation of responsibility between the
pipeline components leads to a natural error attribu-
tion for the SotA pipeline model. To estimate the
NER error, we take the entity mentions predicted
by the NER component and compare them with the
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Figure 3: Attribution of error to each of the cIE
subtasks. The dashed lines equal the overall recall error
of the system. Lower is better.

corresponding mentions of the constituent entities
of the output triplets. All triplets that concern an
entity whose mention was not retrieved by the NER
component are considered erroneous. We differen-
tiate between two settings: (i) exact, which requires
that the generated mention exactly matches the tar-
get mention; and (ii) partial, for which any overlap
between the generated and the target triplet is suffi-
cient. The NEL error is calculated by considering
the output of the NEL component and comparing
the linked entities to those in the output triplets.
Again, all of the triplets that concern an incorrectly
linked entity are considered erroneous. Finally, for
the pipeline, every correctly predicted relation label
translates to a correctly extracted triplet. Therefore,
we calculate the RC error using the cIE definition
of recall given in Appendix C.

End-to-end systems tackle all of the sub-tasks
jointly, which makes the error attribution, in this
setting, less obvious. To estimate errors correspond-
ing to a particular target triplet, we need a reference
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triplet (among the predicted ones) for comparison.
We start by outlining a bipartite matching proce-
dure. Let each triplet be a node in a graph. We
add an edge between each target–prediction pair
of triplets. The edges are assigned a weight de-
termined as a function of the pair of triplets they
connect. Concretely, an edge e that connects the tar-
get triplet tT = (sT ,rT ,oT ) and the predicted triplet
tP = (sP,rP,oP) will be assigned a weight of: 1,
if the triplets are the same; 2, if they express the
same relation, but either the subject or the object
differ; 3, if they concern the same entities, but the
relation differs; 4, if they share only a single entity;
5, if they share only a single relation; 6 if they have
nothing in common. We construct the matching by
selecting edges in a greedy fashion until all of the
target triplets have been matched. The procedure
ensures that every target triplet is paired with its
closest (yet unpaired) match. Finally, we estimate
the NEL error as the portion of edges that were
assigned a weight w ∈ {2,4,5,6}, and the RC er-
ror as the portion of edges that where assigned a
weight w ∈ {3,4,6}.

The results of this analysis are summarized in
Fig. 3. Immediately, the NER component in the
pipeline method introduces an 18% error by com-
pletely missing on relevant entity mentions. An
additional 12 absolute points hinge on a partial
matching. The NEL component matches most of
the entity mentions that are retrieved, but at this
point, even with a (hypothetical) perfect RC, the
performance of the pipeline will be only on par
with GenIE. In practice, the RC component adds
30% to the inherited error, effectively doubling it.

On another note, the absolute error attributed to
NEL by the pipeline and GenIE differs in a few
absolute points only, while the difference for the
(non-inherited) error stemming from RC is less
than 10%. Adding these two together leaves us
much shorter than the actual gap of 28 absolute
points in performance on the cIE task. This gap
suggests a strong correlation between the perfor-
mance on NEL and RC for GenIE, which is fueled
by the increased flow of information between the
subtasks. The flow of information allows for more
fine-grained interactions between the entities, the
relations, and the context to be captured, conse-
quently improving the overall performance. Alter-
natively, whenever the model captures a misleading
correlation/interaction, it is amplified and hinders
the performance on both subtasks. This result is

echoed by the fact that the sum of the errors at-
tributed to NEL and RC is significantly smaller
than the error on the cIE task. Based on this obser-
vation, we hypothesize that any improvement on
NEL will overflow to the RC subtask – and vice-
versa – thereby directly translating to performance
gains on the overall task.

6 Discussion

Unifying the cIE spectrum. There is a full spec-
trum of tasks that are closely related to cIE and are
central to the field of information extraction. The
typical setup assumes a KB associated with enti-
ties and relations, and the goal is to either annotate
the text with information from the KB, or extract
structured unambiguous information from the text.
The tasks of entity linking and relation classifica-
tion, already discussed in Sec. 2 and Sec. 4.3, are
two such examples. Another example is slot filling
(SF), the task of extracting information for a spe-
cific entity and relation (e.g., entity Mick Jagger,
relation member of ) from natural language (Sur-
deanu, 2013; Petroni et al., 2021).

All of these problems rely on the same set of log-
ical tasks: identifying entities from the KB in text
and understanding how they interact. Therefore, it
would be beneficial to assume a single model, or
a set of models that share parts of the weights and
collectively solve all of the tasks. This would allow
for the information from a dataset collected for one
task (e.g., RC) to be leveraged for improving the
performance of another (e.g., SF or cIE).

Bridging the gap between oIE and cIE. In this
work, we only considered triplets for which both
entities are element in the entity catalog. However,
for many useful relations one of the objects is a
literal (Mesquita et al., 2019), e.g., date of birth,
length, size, number of employees or others. GenIE
can be readily extended to accommodate for this,
by adapting the decoding strategy allowing that for
specific relations the entity can be a substring from
the input. This is a subtle connection to oIE which
has thus far been treated as a separate problem.
Current state-of-the-art methods on the oIE task
address the problem in a similar autoregressive
formulation (see Appendix A for more discussion).

Real world implications. Generative models have
been shown to be very effective even in massive
multilingual settings—e.g., De Cao et al. (2022)
proposed mGENRE, a multilingual version of
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GENRE trained and tested on more than 100 lan-
guage. Our GenIE formulation would not need
substantial modifications to adapt to such setting.
Having a single model that works in hundreds of
languages would be extremely useful and a very
promising direction for future work.

While autoregressive models have a non-
negligible computation footprint, De Cao et al.
(2021a) show that autoregressive EL can be sped
up 70x with no cost on performance. The fact that
this solution can be adapted to GenIE makes the
practical impact of our method even greater.

7 Conclusion

This paper provides a new view on closed informa-
tion extraction (cIE) by casting the problem as au-
toregressive sequence-to-sequence generation. Our
method, GenIE, leverages the autoregressive for-
mulation to capture the fine-grained interactions
expressed in the text and employs a bi-level con-
strained generation strategy to effectively retrieve
the target representation from a large, structured,
compositional predefined space of outputs. Exper-
iments show that GenIE achieves state-of-the-art
performance on cIE and can scale to a previously
unmanageable number of entities and relations. We
believe that our autoregressive formulation of cIE,
coupled with constrained decoding, is a stepping
stone towards a unified approach for addressing the
core tasks in information extraction.
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A Additional Background and Related
Work

A.1 Generative Open Information Extraction
Early work had focused on pipeline architecture for
oIE. In general, these methods first detect the entity
mentions present in the text and then, for pair of
entities, in a classification setting, predict the ex-
istence of a relation between the two entities and
the relation type (Angeli et al., 2015a; Corro and
Gemulla, 2013). The advent of transformers (De-
vlin et al., 2019; Lan et al., 2020; Liu et al., 2019)
and pipeline architectures that allow for informa-
tion to flow between the two subtasks – usually
by sharing some parameters of the encoder – have
allowed these models to do well on the oIE task.
However, they do come with some general limita-
tions: (i) assuming the existence of a single relation
between a pair of entities; (ii) inability to capture
the interactions between triplets.

Much of the current research is focused on study-
ing the oIE problem in the autoregressive genera-
tive setting, which seamlessly mitigates the limita-
tions mentioned above (Huguet Cabot and Navigli,
2021; Dognin et al., 2021; Nayak and Ng, 2020).
For instance, ReGen (Dognin et al., 2021) signifi-
cantly improves upon published results and estab-
lishes state-of-the-art results on the dataset used
in the WebNLG 2020+ Challenge (Castro Ferreira
et al., 2020). REBEL (Huguet Cabot and Navigli,
2021), on the other hand, achieves state-of-the-art
performances across a suite of oIE benchmarks.
Moreover, both of these methods address the prob-
lem in a similar formulation that takes the text as in-
put context and generates the output triplets token-
by-token in an autoregressive fashion.

The output triplets in oIE are free-text, while
cIE requires the constituent elements of the output
triplets to come from the entity and relation sets
associated with the KB. This makes the cIE task
fundamentally harder than oIE, and renders these
methods not applicable to the cIE setting.

Finally, Taillé et al. (2020) make an effort to de-
scribe the many issues with the evaluation of oIE
systems in literature and call for a unified evalua-
tion setting for a fair comparison between systems.
These problems get only exacerbated in cIE where
the performance of a model would highly depend
on the entity and relation catalogue considered.
To alleviate some of these issues, we annotate the
REBEL dataset (Huguet Cabot and Navigli, 2021)
with unique textual entity identifiers and textual

relation labels, and propose a suite of meaningful
evaluation settings while considering an approxi-
mately 6 million long entity catalogue comprised
of all the entities in the English Wikipedia, and 857
long relation catalogue supported by the dataset.

B Datasets

Table 3 summarizes the statistics of all datasets
used in this work. For each dataset, we remove
datapoints containing triplets with entities that do
not have an associated Wikipedia page (i.e., entities
not associated to a unique name). This filtering
removes a negligible portion of the data in most
cases (i.e., <0.5%) except for REBEL where 3.4%
of datapoints were removed.

We evaluate the models in a standard setups for
Wiki-NRE and Geo-NRE. For these datasets, the
schema is unrealistically small: ≈300K entities
with 157 relations for Wiki-NRE and 124 entities
with 11 relations for Geo-NRE. Therefore, we scale
to previously unexplored schema sizes for cIE us-
ing the REBEL dataset ( ≈6M entities and 857
relations). We also use FewRel as a high-quality
dataset for recall evaluation using the large schema
from REBEL.

REBEL (Huguet Cabot and Navigli, 2021) is a
dataset created from Wikipedia abstracts. It con-
sists of an alignment between sentences, Wikipedia
hyperlinks and their corresponding Wikidata enti-
ties, and relations. REBEL proposed an alignment
expanding on Elsahar et al. (2018), a pipeline of
mention detection, coreference resolution, entity
disambiguation and then mapping triplets to each
sentence. Huguet Cabot and Navigli (2021) further
filtered false positives using an Natural Language
Inference (NLI) model to check if the relation was
truly entailed by the text. In this setting, we con-
sider the full ≈6M long entity and 857 long relation
catalog. We use this dataset for both training and
testing. Additionally, we employ REBEL to ana-
lyze the performance as a function of the number
of relations, by simulating different environments
pertaining to subsets of the top-n most frequent
relations.

Wiki-NRE (Trisedya et al., 2019) is a dataset cre-
ated from Wikipedia. Authors aligned hyperlinks
to Wikidata entities as in REBEL but they applied a
different filtering: they (i) extracted sentences that
contain implicit entity names using co-reference
resolution (Clark and Manning, 2016), and (ii) they
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Dataset Documents Triplets |E |† |R|†
training validation test training validation test

REBEL 1,899,331 104,960 105,516 5,147,836 284,268 284,936 1,498,143 857
Wiki-NRE 223,536 980 29,619 298,489 1,317 39,678 278,204 157
Geo-NRE – – 1,000 – – 1,000 124 11
FewRel – 26,892⋆ 27,650 – 26,892⋆ 27,650 64,762 80

Table 3: Statistics of the datasets. †With an abuse of notation here we indicate the amount of unique entities and
relations for each dataset and not the size of the Knowledge Base associated with it (see Section 4 for more details).
⋆ Note that we do not use the validation FewRel data in our experiment, but we release this split as well.

filtered and assigned relations to sentences using
paraphrase detection from different sources (Nakas-
hole et al., 2012; Ganitkevitch et al., 2013; Grycner
and Weikum, 2016). We used this dataset for both
training and testing.

Geo-NRE (Trisedya et al., 2019) is constructed
in the same way as Wiki-NRE but from a collec-
tion of user reviews on 100 popular landmarks in
Australia, instead of Wikipedia. Due to its small
size and to compare with the literature, we used
this dataset only for testing.

FewRel (Han et al., 2018) is also extracted from
Wikipedia where Wikidata is the KB. Contrary to
the other datasets, FewRel does not provide dis-
tant supervision but it is fully annotated by humans.
The dataset was first automatically constructed and
then filtered as annotators were asked to judge
whether the relations are explicitly expressed in
the sentences. Each input in FewRel is associated
with a single triplet only, and not all of the triplets
entailed by it. Therefore, this dataset can be used
for precisely measuring recall (but not precision
or F1). We employ it only for testing. To simu-
late a more realistic scenario, we train the models
on many relations, and leverage the high quality
FewRel data to calculate the performance metrics
for the subset of relations annotated.

C Performance Metrics

We measure standard precision, recall and F1 for
all settings. A fact is regarded as correct if the
relation and the two corresponding entities are all
correct. More precisely, we denote the set of all
predicted triplets of a document d ∈ D as Pd , and
the set of gold triplets as Gd . Then:

micro-precision =
∑

d∈D

|Pd ∩Gd |
/∑

d∈D

|Pd | , (1)

and

micro-recall =
∑

d∈D

|Pd ∩Gd |
/∑

d∈D

|Gd | . (2)

Micro scores are useful for measuring the overall
performance of a model but they are less informa-
tive for imbalanced datasets (e.g., when some enti-
ties or relations are disproportionately more present
in both training and test sets). Indeed, micro scores
assign equal weight to every sample while macro
scores assign equal weight to every class. Thus,
we also measure macro scores by aggregating per
relation type. If we denote P(r)

d and G(r)
d as the

predicted and gold set only containing the relation
r ∈ R of a document d, then macro-precision is
defined as:

1
R

∑

r∈R

(∑

d∈D

|P(r)
d ∩G(r)

d |
/∑

d∈D

|P(r)
d |
)

, (3)

and macro-recall as:

1
R

∑

r∈R

(∑

d∈D

|P(r)
d ∩G(r)

d |
/∑

d∈D

|G(r)
d |
)

. (4)

D Note on End-to-End Baselines

We invested a considerable amount of time trying
to use a strong end-to-end baseline to compare
GenIE with. Unfortunately, most works do not have
available or directly usable code. In particular, we
first concentrated on SetGenNet (Sui et al., 2021)
as, to the best of our knowledge, it is the strongest
model on the task of cIE. However, the authors do
not report a link to the code6 in neither the arXiv
nor the ACL Antology version of the paper. We
could not find any related repository on GitHub
either. For these reasons we were unable to use
their method as a baseline for REBEL.

6As of October 2021.
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We then focused on the work most similar to Set-
GenNet, that is the system proposed by Trisedya
et al. (2019). They released code and we were able
to run it. However, the code was incomplete: they
included code for training only a part of their sys-
tem. They start with pre-trained word, entity and
relation embeddings, but did not release code for
pre-training them. The closest solution we found
was using Wikipedia2Vec (Yamada et al., 2020),
which does not include relation embeddings. Be-
sides, the pre-trained word embeddings on the of-
ficial Wikipedia2Vec website7 do not match the
dimensionality used by Trisedya et al. (2019). Fi-
nally, the authors did not include code to train the
“triple classifier” of their model. The classifier is
instead directly loaded in their code. For these
reasons we were unable to use their method as a
baseline for REBEL.

E Implementation Details

Data. The train, test and validation splits are either
inherited from the original dataset (see Appendix B
for details) or sampled at random. To facilitate re-
producibility, we release the exact splits employed
in our experiments.

Additionally, we release the curated entity and
relation catalogs for both the large and the small
schema, in which the redirects have been resolved
and each of the QID/PID is paired with a unique, se-
mantically meaningful textual identifier. We hope
that this will allow for a fair comparison of future
work in which the same evaluation setup can be
maintained.

E.1 GenIE

Infrastructure. For training we used a single ma-
chine with 24 Intel(R) Xeon(R) CPU E5-2690 v4
@ 2.60GHz processor cores and 441 GB of RAM,
equipped with 4 Tesla V100-PCIE-16GB GPUs.

Training. The models were trained using the Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 3e-5, 0.1 gradient clipping and a varying
weight decay (cf. Table 4). The learning rate is
updated using a polynomial decay schedule with an
end value of 0. While most of the parameters were
left at their default values for BART, the rest were
tuned on the respective datasets’ validation set, and

7https://wikipedia2vec.github.io/
wikipedia2vec/pretrained

their corresponding optimal values are given in
Table 4.

Inference. At test time, we use Constrained Beam
Search with 10 beams. We restrict the input and the
output sequence to be at most 256 tokens, cutting
from the right side if the input is too long. We
normalize the log-probabilities by sequence length,
and allow for any number of n-gram repetition. The
other parameters are kept to their default values for
inference with BART.

E.2 SotA Pipeline
We described our SotA pipeline system baseline in
Sec. 4.3. We release code to both train and run infer-
ence with the proposed pipeline. The named entity
recognition and the entity disambiguation compo-
nents were not trained. The relation classification
module is a linear layer on top of RoBERTa (Liu
et al., 2019). We trained it learning rate 3e-4 us-
ing the Adam optimizer (Kingma and Ba, 2015).
We trained for a maximum number of steps using
early stopping on the validation sets. We restrict
the input sequence to be at most 128 tokens cutting
from the right side if the input is too long. All other
hyperparameters are reported in Table 4. The triple
classification module is also a linear layer on top
of RoBERTa (Liu et al., 2019) with the same hy-
perparameters of the relation classification module
but we trained for less steps.

F Additional Experiments

F.1 Analysis of Performance as a Function of
the Number of Relations

Previous works focus on small schemas meaning
that few relations were considered. Indeed, classifi-
cation problems on a large set of possible classes
become particularly difficult under large class im-
balances, which is the case here as shown by Fig. 2.
However, scaling up to larger schemas with more
relations is crucial for the models to be useful in
downstream tasks. To measure the scaling ability
of GenIE, we create different setups with variable
numbers of relations. To create such setups, we
start with the REBEL dataset and schema (857 re-
lations) and choose subsets of relations with their
associated training data. In Fig. 4, we report Ge-
nIE and the pipeline baseline F1 for schemas with
100, 400, and 857 relations. To choose a subset of
n relations, we take the n most frequent relations
to mimic the strategies used by previous works to
reduce the schemas (Sui et al., 2021).
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Max steps Warm-up steps Batch size Dropout Weight decay Training time

GenIE (W) 60,000 1,000 32 0.1 0.01 0.5 GPU days
GenIE (R) 100,000 5,000 384 0.1 0.01 18.5 GPU days
GenIE (R + W) 100,000 5,000 384 0.1 0.01 20.5 GPU days
GenIE - Genre 50,000 3,000 2,048 0.3 0.50 11 GPU days
GenIE - PLM 50,000 3,000 2,048 0.3 0.50 17 GPU days

SoTA Rel-class (W) 20,000 500 128 0.1 0.01 0.2 GPU days
SoTA Rel-class (R) 250,000 500 128 0.1 0.01 2.5 GPU days
SoTA Rel-class (R + W) 250,000 500 128 0.1 0.01 2.5 GPU days
SoTA Tri-class (R) 50,000 500 128 0.1 0.01 0.3 GPU days
SoTA Tri-class (W) 5,000 500 128 0.1 0.01 0.1 GPU days
SoTA Tri-class (R + W) 50,000 500 128 0.1 0.01 0.3 GPU days

Table 4: Hyperparameters for the different models.

100 400 857
Number of relations considered

0.0

0.2

0.4

0.6

0.8

1.0

F1

GenIE (REBEL)  Micro
GenIE (REBEL)  Macro
SotA Pipeline (REBEL)  Micro
SotA Pipeline (REBEL)  Macro

Figure 4: Impact of the number of relations in the
schema on REBEL. Micro and macro F1 of both Ge-
nIE and the pipeline of SotA components for 3 schema
sizes: 100, 400, and 857 relations. The schema is con-
strained at both training and testing time. Full results
(i.e., precision and recall) are reported in Table 6 in Ap-
pendix G.

We first observe that GenIE is always largely
better than the baseline. The baseline suffers from
the same difficulty as previous works; classifying
among a large set of relations is hard with large im-
balances. GenIE and the baseline have similar ab-
solute decrease in performance when the number of
relations increases, corresponding to a more consid-
erable relative decrease for the baseline. More con-
cretely, GenIE’s micro F1-score goes from 70.36 %
for the top 100 relations, to 68.82 % and 68.93 %
for the top 400 and 857 relation setups, respectively.
This translates to a relative decrease of 2 % only in
the first step. For the baseline, the absolute score
of 47.67 % first falls to 44.25 % and subsequently
to 42.5 % as the number of relations grows. This
in turn, is an overall relative drop of almost 11 %.

Notably, when looking at precision and recall
separately (cf. Table 6 in Appendix G), GenIE

has a slight proportional decrease of 1-2 absolute
points, both in precision and recall, which reflects
the increased difficulty of the task due to larger
number of relations. The baseline exhibits a similar
drop in precision, but a much more significant drop
in the recall of almost 10 absolute or 16 point rela-
tive. This suggests that the baseline simply ignores
most of the relations with lower occurrence counts,
which is consistent with the results in Sec. 2, and
the hypothesis that the relation classification task
is a bottleneck for effectively scaling the baseline
system to a large number of relations.

We already have to deploy several techniques to
help the baseline better deal with these issues (see
Sec. 4.3), while GenIE, thanks to its generative
autoregressive formulation, can effectively scale
and manage the inherent imbalances of the task
much more naturally.
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G Additional Results

Wiki-NRE Geo-NRE
Precision Recall F1 Precision Recall F1

Pipeline baselines
AIDA + MinIE 36.72 48.56 41.82 35.74 39.01 37.30
NeuralEL + MinIE 35.11 39.67 37.25 36.44 38.11 37.26
AIDA + ClauseIE 36.17 47.28 40.99 35.31 39.51 37.29
NerualEL + ClauseIE 34.45 37.86 36.07 35.63 37.91 36.73
AIDA + CNN 40.35 35.03 37.50 37.15 31.65 34.18
NeuralEL + CNN 36.89 35.21 36.03 37.81 30.05 33.49

Encoder-decoder baselines
Single Attention 45.91 38.36 41.80 40.10 39.12 39.60
Single Attention (+pre-trained) 47.25 40.53 43.63 43.14 43.11 43.12
Single Attention (+beam) 60.56 52.31 56.13 58.69 48.51 53.12
Single Attention (+triplet classifier) 73.78 50.13 59.70 67.04 53.01 59.21
Transformer 46.28 38.97 42.31 45.75 46.20 45.97
Transformer (+pre-trained) 47.48 40.91 43.95 48.41 48.31 48.36
Transformer (+beam) 58.29 50.25 53.97 61.81 61.61 61.71
Transformer (+triplet classifier) 73.07 48.66 58.42 71.24 57.61 63.70

Our pipeline baseline 67.43 54.22 60.11 64.60 64.05 64.32

Table 5: Baselines comparison. All results are taken from from Trisedya et al. (2019). Encoder-decoder baseline are
proposed by the authors and other pipeline baseline include an NER and an ED system AIDA (Hoffart et al., 2011)
or NeuralEL (Kolitsas et al., 2018) and then a relation extraction system CNN (Lin et al., 2016), MiniE (Gashteovski
et al., 2017), or ClausIE (Corro and Gemulla, 2013). Best results are highlighted in bold and second best are
underlined. Our pipeline baseline scores the best or on pair among these other methods.

REBEL (top 100 Relations) REBEL (top 400 Relations) REBEL (857 Relations)
Precision Recall F1 Precision Recall F1 Precision Recall F1

Micro
GenIE 68.76 ± 0.12 72.05 ± 0.13 70.36 ± 0.10 67.10 ± 0.13 70.62 ± 0.15 68.82 ± 0.12 68.02 ± 0.15 69.87 ± 0.14 68.93 ± 0.12

SotA Pipeline 44.76 ± 0.17 50.99 ± 0.17 47.67 ± 0.16 38.98 ± 0.13 51.18 ± 0.12 44.25 ± 0.11 43.30 ± 0.15 41.73 ± 0.13 42.50 ± 0.13

Micro
GenIE 52.26 ± 0.25 54.13 ± 0.27 52.75 ± 0.24 41.50 ± 0.66 38.53 ± 0.57 38.12 ± 0.51 33.90 ± 0.73 30.48 ± 0.65 30.46 ± 0.62

SotA Pipeline 27.41 ± 0.27 31.05 ± 0.18 25.87 ± 0.15 16.94 ± 0.63 19.00 ± 0.36 14.73 ± 0.37 12.20 ± 0.35 10.44 ± 0.22 9.48 ± 0.21

Table 6: Impact of the number of relations in the schema on REBEL. The schema is constrained at both training
and testing time.
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Figure 5: Training and validation loss curves for different initialization of our model. GenIE starts from a
random initialization, GenIE – PLM fine-tunes a BART pre-trained language model, while GenIE - GENRE is
initialized with a pre-trained autoregressive entity linking model by De Cao et al. (2021b).
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