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Abstract

The common practice for training common-
sense models has gone from—human—to—corpus—
to—-machine: humans author commonsense
knowledge graphs in order to train common-
sense models. In this work, we investigate
an alternative, from—machine—to—corpus—to—
machine: general language models author these
commonsense knowledge graphs to train com-
monsense models.

Our study leads to a new framework, Sym-
bolic Knowledge Distillation. As with prior
art in Knowledge Distillation (Hinton et al.,
2015), our approach uses larger models to teach
smaller models. A key difference is that we
distill knowledge symbolically—as text—in ad-
dition to the resulting neural model. We distill
only one aspect—the commonsense of a general
language model teacher, allowing the student
to be a different type of model, a common-
sense model. Altogether, we show that careful
prompt engineering and a separately trained
critic model allow us to selectively distill high-
quality causal commonsense from GPT-3, a
general language model.

Empirical results demonstrate that, for the first
time, a human-authored commonsense knowl-
edge graph is surpassed by our automatically
distilled variant in all three criteria: quantity,
quality, and diversity. In addition, it results in
a neural commonsense model that surpasses
the teacher model’s commonsense capabilities
despite its 100x smaller size. We apply this to
the ATOMIC resource, and will share our new
symbolic knowledge graph and commonsense
models'.

1 Introduction

Prior works have suggested that pre-trained lan-
guage models possess limited understanding of
commonsense knowledge (Merrill et al., 2021; Tal-
mor et al., 2021; Davis and Marcus, 2017) despite

"We will share this following the anonymity period. We
have permission from OpenAl to release GPT-3 generations
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Figure 1: Symbolic knowledge distillation extracts the
commonsense from the large, general language model
GPT-3, into 2 forms: a large commonsense knowledge
graph ATOMIC!%%, and a compact commonsense model
COMET}]}. The quality of this knowledge can be con-
trolled and improved by adding a critic model, making
GPT-3 a stronger teacher.
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otherwise stellar performance on leaderboards. As
a result, symbolic commonsense knowledge graphs
(Speer et al., 2017; Sap et al., 2019; Hwang et al.,
2021) and corresponding neural representations
(Bosselut et al., 2019; Hwang et al., 2021; Zhang
et al., 2020b) have supplemented past models with
commonsense capabilities. This has enabled di-
verse downstream applications, including interac-
tive learning through a conversational interface
(Arabshahi et al., 2021), persona- and affect-aware
conversation models (Kearns et al., 2020), figura-
tive language understanding (Chakrabarty et al.,
2020, 2021), story telling (Ammanabrolu et al.,
2021a) and fantasy games (Ammanabrolu et al.,
2021b).

The common practice for commonsense knowl-
edge graph construction sees humans spell out
as many pieces of knowledge as possible. This
pipeline goes from—human—to—corpus—to—machine,
with commonsense models trained from human-
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authored knowledge graphs. Yet, high-quality,
human-authored knowledge is expensive to scale,
limiting coverage; this motivates an alternative:
from—machine—to—corpus—to-machine. Prior ef-
forts toward automatic commonsense knowledge
graphs have resulted in considerably lower qual-
ity than human-written data (Hwang et al., 2021;
Zhang et al., 2020b), which in turn leads to less
reliable neural models (Hwang et al., 2021). Broad
literature consistently shows machine-authored
knowledge graphs underperform human-authored
graphs (Etzioni et al., 2011; Mitchell et al., 2015;
Bollacker et al., 2008).

In this work, we propose Symbolic knowledge
distillation, a new conceptual framework towards
high-quality automatic knowledge graphs for com-
monsense, leveraging state-of-the-art models and
novel methodology. Most prior art for automatic
knowledge graph construction extracts knowledge
from raw text (Bhakthavatsalam et al., 2020; Zhang
etal., 2020a; Zhou et al., 2020; Zhang et al., 2020b;
Li et al., 2020). In contrast, our approach is mo-
tivated by knowledge distillation (Hinton et al.,
2015) wherein a larger teacher model transfers
knowledge to a compact student model (§2.1). Our
method differs from prior knowledge distillation in
key ways: we distill a symbolic knowledge graph
(i.e., generated text) in addition to a neural model,
and we distill only a selective aspect of the teacher
model. This selectively allows the student model
to be of a different type (commonsense model),
compared to the teacher (general language model),
enriching the scope of distillation. An added ben-
efit is that knowledge distilled as text is human
readable: it can be understood and evaluated.

A general language model-GPT-3 in our case—is
an imperfect commonsense teacher on its own, and
the ability to evaluate distilled knowledge is useful
in improving it. We empirically demonstrate that,
by training a separate critic model to judge sym-
bolic generation quality, a more precise teacher can
be defined. Knowledge from this critical teacher
is higher quality—even exceeding human-authored
knowledge. Yet even before training a critic, our
study makes the unexpected finding that the student
model surpasses the commonsense of GPT-3, our
knowledge source.

To test symbolic knowledge distillation against
the human—to—corpus—to—machine paradigm, we
compare with ATOMIC39 (Hwang et al., 2021),
which is a human-authored commonsense knowl-

edge graph. We find that ATOMIC!%, our machine-
generated corpus, exceeds the human generated
corpus in scale, accuracy, and diversity with re-
spect to 7 commonsense inference types that we
focus on in this study. The resulting commonsense
model, COMETY | not only surpasses the human-
trained equivalent COMET2O, but is also smaller,
more efficient, and produces commonsense at a
higher accuracy than its own teacher—-GPT-3.

Symbolic knowledge distillation offers a promis-
ing new role for general language models, as com-
monsense knowledge sources, and humans, as
small-scale evaluators to train critic models rather
than authors of commonsense knowledge. Our
work demonstrates that humans and LMs can be
effective collaborators for curating commonsense
knowledge graphs and training efficient and perfor-
mant commonsense models.

2 Overview and Key Findings

Throughout our work, we describe the machine—
to—corpus—to—machine methodology of symbolic
knowledge distillation. We first go machine—to—
corpus (§3), by decoding from GPT-3, then im-
prove our knowledge with a specialized critic
model (§4), and finally distill this knowledge
into an efficient commonsense model (§5), going
corpus—to—machine. Throughout this process, we
evaluate against a human knowledge source, com-
paring our automatic knowledge graph ATomIc!¥
and commonsense model COMETY® to the human-
authored ATOMIC3) and resulting model COMET3)
(Hwang et al., 2021).

2.1 Symbolic Knowledge Distillation

Our proposed methodology parallels knowledge
distillation (Hinton et al., 2015), a method for com-
pressing a large or complicated teacher distribution
P, into a smaller/simpler student distribution Ps.
Key to knowledge distillation? is the notion of min-
imizing the cross-entropy between P, and Ps:

H(P, P,)=-> Py

yey

)log Py(y) (1)

Knowledge is transferred to the student by encour-
aging it to match teacher predictions. Hinton et al.
(2015) apply this to conditional classification: for

In its simplest case, with temperature set to 1.0
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Figure 2: Example automatically generated ATOMIC triples from our ATOMIC!®* commonsense knowledge graph.
Each example includes a generated event, relation (with natural language interpretation), and generated inference.

each training input, P; and P, are model predic-
tions over label set Y. Typically Y is a tractable set,
over which this sum can reasonably be calculated.

For distilling the knowledge of generative mod-
els, we can think of an unconditional language
model (LM e.g. GPT-3) as P;. This makes Y the
set of all strings, over which LMs define probability.
Unfortunately Y is an exponential set, intractable
to sum over in Eq 1. Kim and Rush (2016) address
this problem by simply taking the mode of P; over
Y, truncating most of the teacher distribution to the
most likely sequence and discarding information.

Instead, we consider a sampling-based interpre-
tation of the same objective:

H(P,Ps)= E
y~Pi(y)
which exactly equals the cross-entropy of Eq 1, at
the limit under pure sampling from P;.3
Yet distilling all knowledge from the teacher may
not be desirable—our work is specifically focused
on distlling commonsense knowledge from GPT-
3. The ideal teacher F; is a commonsense expert,
but GPT-3 can approximate such a teacher, off-the-
shelf, via prompting. This ability to select informa-
tion is one explicit benefit of the sampling-based
interpretation of Eq 2: while Eq 1 uses continu-
ous logits over existing data, sampling gives dis-
crete control over transferred information, by se-
lecting which samples are elicited and used. For
the general language model GPT-3, We encour-
age domain/quality with prompting, and sample
truncation (Holtzman et al., 2020). We call this
the loose teacher PF—knowledge is generated and
transferred from GPT-3, but without critical assess-
ment of correctness (§3).

[~ log Ps(y)] ()

3 A useful consequence of this framing is that access to the
full model distribution is not required. Our experiments (§3)
use GPT-3, for which the distribution is not available, thus
our method is applicable while knowledge distillation is not.

In fact, sampling knowledge in Eq 2 offers even
more control, as generations can be individually
interpreted and judged. Given an indicator function
A(z) for which knowledge x is correct, we can
define a stronger teacher model. Using a Product of
Experts (Hinton, 2002) between the loose teacher
PF and and the critic A(x), we define a critical
teacher:

Py(z) o< PF(z[p) - A(x) 3)

In practice, A(x) is a textual classifier learned on
human judgements, 1 for knowledge predicted to
be correct and 0 otherwise. Thus, the critic gives
control over the correctness and confidence of the
knowledge that is transferred (§4).

2.2 Key Findings

Applying symbolic knowledge distillation in prac-
tice results in promising and surprising findings:

1. Learning symbolic knowledge from language
models can be framed as a symbolic extension
to knowledge distillation. In §2.1, we describe
learning commonsense as a symbolic extension to
knowledge distillation, with GPT-3 a knowledge
source. We elaborate on this process with positive
results in §3,4, and 5.

2. Symbolic knowledge distillation constructs
a high quality knowledge graph at scale. Our
method naturally yields a machine-generated com-
monsense knowledge graph, which can achieve
impressive quality (§4), beyond that of human-
authored data. An effective critic which filters
incorrect generated knowledge is key.

3. A critical teacher results in a higher quality
student. In §4, we show that making the teacher
more critical results in higher quality knowledge,
even as it reduces the scale of knowledge trans-
ferred. This demonstrates that guality matters, not
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just quantity, as higher quality knowledge results in
a higher quality commonsense model in §5 despite
smaller scale data.

4. Critical teacher or not, a student can outper-
form the knowledge source. In §5, we show the
unexpected result that all student models exceed
the quality of GPT-3, the knowledge source.

5. Machines can win over humans for automatic
knowledge graph construction. In §4 and §5,
we show that machine generated knowledge and the
resulting commonsense model can outperform their
equivalents that use a human knowledge source.
Our symbolic knowledge exceeds humans at scale,
quality, and diversity. The resulting commonsense
model achieves the most accurate commonsense
KG completions.

3 Machine-to-Corpus Verbalization

Symbolic knowledge distillation begins by going
machine—to—corpus, i.e. generating many com-
monsense facts, which results in a commonsense
knowledge graph. §2.1 frames this as sampling
to estimate the knowledge distillation objective—a
student commonsense model learns from the gen-
erations of a teacher (GPT-3).

We start with a loose teacher, transferring knowl-
edge by prompted generation with truncated sam-
pling alone—this is in contrast to the critical teacher
(§4) which explicitly judges and filters the gen-
erated samples. The loose teacher uses few-shot
prompting as in Brown et al. (2020). We use a
few-shot template:

<TASK-PROMPT>
<EX;-INP><EX,-OUT>

<EXy_1—-INP><EX)_1-0UT>
<EXny—INP>

where <EX;—INP>/<EX;—OUT> are human-
authored, natural language ATOMIC entries,
and <TASK-PROMPT> is a description of the
problem. Given such a prompt, GPT-3 generates
the missing piece, output <EX —0UT> for input
<EXny-INP>, following the pattern of earlier
examples (1 to N-1). We find important aspects for
producing high-quality commonsense knowledge:

* Examples should be numbered. e.g.
<EX5—INP> might begin with "5)" to in-
dicate it is the 5th example.

e The format of <EX;—INP> and <EX;-OUT>
should linguistically imply the relationship be-
tween them. See below for examples.

* <TASK-PROMPT> can be used to give extra
specification to complicated problems.

3.1 Data: ATOMIC

We demonstrate symbolic knowledge distillation
on the ATOMIC if-then resource (Sap et al., 2019).
This follows an event-relation-inference (triple) for-
mat. The corpus links events (e.g. X attacks Y) to
relations, e.g. HinderedBy which describes what
might hinder an event. For a relation/event, the
goal is to generate a resulting inference, e.g. X
attacks Y HinderedBy X is restrained.

Of the 23 relations from the most recent version—
ATOMIC3)-we limit our investigation to 7 relations
that correspond to causal commonsense knowl-
edge: xAttr (how X is perceived after event), xRe-
act (how X reacts in response to event), xEffect
(what X does after event), xIntent (X’s intent in
event), xXWant (what X wants after event), xNeed
(what X needed for event to take place) and Hin-
deredBy. We describe how verbalization is ap-
plied to ATOMIC data in 2 steps: generating under-
lying events (heads), then full examples (inference
given event).

3.2 Event Generation

Events are context-free premises in ATOMIC
involving PersonX (and sometimes a second
PersonY)in various scenarios. These events form
heads in knowledge graph triples. We generate
events by filling in the elements of our template:

1. Event:
2. Event:

X overcomes evil with good
X does not learn from Y

10. Event:
11.

X looks at flowers

The format is simple, as events are generated un-
conditionally. We use 100 high-quality events from
the ATOMIC) corpus for our prompt, selected
to avoid grammatical or logical errors, and min-
imize semantic overlap. We randomly sample 10
of these seed events for each generation batch, re-
sulting in randomized prompts. We use nucleus
sampling (p = 0.9) (Holtzman et al., 2020), and
presence/frequency penalties of 0.5 from the GPT-
3 interface. We generate 165K unique events using
the 175B-parameter Davinci model* from Brown

*the largest available version of GPT-3

4605



et al. (2020) (human-authored ATOMIC%B contains
only 6.2K events).

3.3 Inference Generation

Generating ATOMIC inferences requires reasoning
about events and relations together. We design ver-
balization templates fo reach relation, with iterative
design and small-scale verification by the authors’
e.g. we prompt the xNeed relation as follows:

What needs to be true for this

event to take place?

Event <i>: X goes jogging

Prerequisites: For this to
happen, X needed to wear running

shoes

X looks at flowers
For this to

Event <N>:
Prerequisites:

happen,

The language of this template implies the relation-
specific task, both "Prerequisites:" and beginning
with "for this to happen" suggest the xNeed re-
lation. As well, we include an xNeed-specific
<TASK-PROMPT>. We use 10 few-shot examples
for each prompt.®

For each event/relation (165K X 7) we gener-
ate 10 inferences with the Curie GPT-3 model’
and earlier hyperparameters. Removing duplicate
and degenerate (e.g. fewer than 3 characters) gen-
erations yields 6.46M ATOMIC-style data triples
(examples in Figure 2). We call this ATomic!%%,
as it contains an order of magnitude more triples
than ATOMIC3) for the 7 relations we study.

3.4 Evaluating a Generated Commonsense
Knowledge Graph

Machine generation enables a large scale of unique
generations at a much lower cost than human-
authored knowledge (Table 1), but what kind of
examples are produced by GPT-3, and how does
it differ from knowledge produced by humans? In
this section, we conduct an in-depth analysis to
answer these questions.

5See Appendix D for full prompts.

®We also replace anonymous names (“X’) with sampled
generic names as this improved quality, See Appendix D. Once
generation is complete, we substitute in generic markers (“X”)
for the final dataset.

"for the largest, Davinci, 12M generations is computation-
ally/monetarily intractable.

Relation Aromic3) Aromic!™
HinderedBy 77,616 1,028,092
xNeed 100,995 760,232
xWant 109,098 730,223
xIntent 54,839 965,921
xReact 62,424 1,033,123
xAttr 113,096 884,318
xEffect 90,868 1,054,391
Total Count 608,936 6,456,300
Est Total Cost ~$40,000 ~$6,000
Est Cost Per Triple ~$0.06 ~$0.001

Table 1: Number of unique triples with the given
relation, |(-,relation,-)|. The estimated cost for
AtoMIC!% comes at a fraction of a conservative estima-
tion for ATOMIC3) crowdsourcing costs.

Lexical Differences: Diversity and Uniqueness
Recent work finds that machine generations can be
repetitive and lack diversity (Welleck et al., 2020;
Holtzman et al., 2020); one way generated knowl-
edge may differ from human-authored is less cre-
ative word choice, diversity, or more repetition.

To test this, we begin with lexical diversity
(i.e. unique words used, Table 2). While there
is variation by relation, the diveristy of ATomIC!¥
actually exceeds ATOMIC3) here, 5.2M unique
words to 1.5M. In addition, it contains significantly
more strictly unique generated inferences (Table 2,
unique tails).

BLEU Soft Uniqueness. Exact match (above)
fails to capture the notion of similar text. Follow-
ing the intuition of self-BLEU (Zhu et al., 2018),
we define soft uniqueness to describe diversity of
generations in a corpus. An inference x is softly-
unique if:

BLEU,(C,z) <05

where C' is the set of inferences for a given in-
put (in our case, event + relation), and 0.5 is an
empirical threshold. To find soft-uniqueness of a
corpus, we iteratively remove examples until all
are softly unique, i.e. low mutual lexical over-
lap; higher diversity means more such examples
(thus a larger softly unique corpus is preferable).
Softly-unique corpus sizes are given in Table 4
(“Size (div)”). AToMIC!%* has a smaller fraction
of softly-unique examples than ATOMIC3), yet it
contains many more such examples. ATomIC!%%
contains 4.38M such examples (full size 6.5M) vs.
ATOMIC3), which has 560K (full size 600K).
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Unique Unique

Length Tokens (K) Tails (K)

A%g A10x A%g A10x A%g Al()x

xWant 469 5.16 322 784 69 152
xAttr 1.42 273 15 21 11 8
xEffect 3.92 4.66 216 864 55 185
xIntent 459 592 136 800 30 135
xNeed 451 597 289 1378 64 231
xReact 403 1.77 48 5 12 2
HinderedBy 7.93 749 522 1775 290 874
Events 520 5.32 109 881 62 165

Table 2: Average length, total unique tokens and total
unique examples (in K, i.e. 1000s) by relation type
and in events (bottom row) from ATOMIC§8 (Agg) and
ATOMICI (A10%),

Entropy ‘ KL Divergence
H(D1) =1.27| H(D1,Ds) =9.31 | Dxr(D1||D2) =8.04

H(D>) =7.80 | H(D2, D1) = 41.48 | Dic(D2||D1) = 33.68

Cross Entropy |

Table 3: Entropy, cross-entropy, and divergence of
ATOMIC3) (D7) and ATOMIC!* (D).

Model-based Diversity Measurement. Lexical
notions of diversity reward differences in surface
form, which may not always reflect diversity of
information, only format. Thus, we next study
information-theoretic measures for diversity. In-
tuitively, diverse information should be less pre-
dictable, or higher entropy. With GPT-2 XL mod-
els finetuned on ATOMIC3) and AToMIC!'* (§5)
we estimate entropy—roughly, how difficult it is
for a model to capture the corpus information (Ta-
ble 3). This is 4 times higher for ATomIC!?%,
suggesting more content from a modeling per-
spective. We also estimate cross-entropy—how
well a model trained on one corpus describes the
other. From Atomic!% to ATOMIC%S, this is 9.31,
only 2 points higher than its entropy suggesting
ATOMIC3) is describable with information from
AtomIc!®, In reverse, this is 41.48 suggesting
much of AToMIC!%% is not captured by ATOMIC39—
Atomic!% is surprising given only information
from ATOMIC3).

Human Evaluation of Quality. Perhaps most
importantly, we study the quality of knowledge in
each corpus. We conduct human evaluation with
Amazon Mechanical Turk. 3 annotators rate each
triple resulting in “accepted”, “rejected” or “no
judgement”. We evaluate 3000 examples® from

8this ensures at least 1000 after filtering by the critic §4)

Corpus | Accept Reject N/A | Size | Size (div)
Atomicsy | 868 113 19 [0.6M | 0.56M
Aromic!™ 785 187 28 | 65M | 4.38M
884 95 21 |5IM| 3.68M
(criticiow) 91,5 68 1.7 |44M| 3.25M
953 3.8 1.0 |3.0M| 233M
(critichign) 964 27 08 |25M| 2.00M
+GPT-J 720 276 04| - -
+T5-11BLM | 717 269 14| - -

Table 4: Attributes of AToMIC!®* and ATOMIC!™ (row
2) including the critic model (§4, rows 3 - 6) with var-
ious filtering cutoffs. Accept and Reject are by ma-
jority human vote unless any mark N/A. Size is in
unique examples®. The highest precision corpus is
AtoMIC!®™ with (criticyg), but multiple versions sur-
pass ATOMIC30. We also include alternate models (GPT-
J and T5-11B) as the loose teacher.

AtoMic!%, and 1000 from ATOMIC3] (Table 4).
We find Fleiss’ kappa (Fleiss, 1971) of 40.8 indicat-
ing moderate agreement (Landis and Koch, 1977),
and 90.5% accuracy agreement. We require work-
ers meet an Amazon Mechanical Turk qualification
for annotation quality based on past commonsense
evaluations. We compensate workers $0.17 per
task, which we estimate require 30 seconds. Fur-
ther details and task template are in appendix §A.

For the loose teacher, consider the top row of
AtoMmic!% in Table 4 (other rows add the critic
§4). AToMIC!% exceeds ATOMIC3) in scale, but
is somewhat less acceptable by human raters—by
roughly 8 percentage points. Yet, the larger scale of
AtoMIc!® implies a significantly higher number
of accurate examples. Increasing the proportion of
these is the main objective of the critic (§4).

How do Knowledge Sources Compare? To un-
derstand the robustness of our approach, we assess
other language models as the knowledge source
(i.e. loose teacher): GPT-J (Wang and Komat-
suzaki, 2021) and T5-11B adapted for language
modelling (Lester et al., 2021). We substitute both
for GPT-3 as in §3.2,3.3, generating a small-scale
corpus to evaluate. We conduct human evaluation
on 1000 examples as above (Table 4). Both mod-
els attain roughly 72% accuracy, 6 points below
GPT-3 (78.5). This suggests strong potential, but
higher quality from GPT-3. We explore this further
in Appendix B.

°Size of ATOMICZ) is given as the number of comparable

datapoints, i.e. those with the same relations as AtoMmic!*,

4607



4 Making the Teacher More Critical

Symbolic knowledge distillation requires a strong
teacher model to maximize the quality of the gener-
ated knowledge graph and resulting student model
(85). While the loose teacher (GPT-3 alone) re-
sults in a viable commonsense knowledge graph,
evaluation shows this isn’t a perfect commonsense
teacher. Thus, we multiply in a critic model, to fil-
ter lower-quality knowledge, correcting the teacher
(§2.1). With modest supervision (a small-scale hu-
man evaluation) we train a classifier to predict and
discriminate unacceptable examples. We multiply
this with the loose teacher §3, creating a critical
teacher product of experts. In practice this means
filtering ATOMIC!%X to create new corpora that are
higher quality, yet still larger scale than human-
authored ATOMIC3).

Training a knowledge critic We gather a train-
ing set of correct vs. incorrect human judgments
on a randomly-sampled set of 10K entries of
AtomIc!% as in §3.4 but with one annotation per
example. We take a (random) train/dev/test split of
8k/1k/1k. While this step requires human annota-
tion, humans take on the role of high-level supervi-
sors here—critiquing a small number of generations
rather than authoring the entire knowledge graph
as in previous work. Indeed, the cost/complexity
of this step is similar to a typical human evaluation,
making it far cheaper/easier than eliciting human-
authored knowledge in past work.

We train binary classifiers (critics) for human ac-
ceptability using RoOBERTa-Large (Liu et al., 2019).
We find pretraining on MNLI results in the best
model in terms of precision and recall, and we sug-
gest this technique for future studies. We give more
detail in Appendix C, including baselines. Our best
model vastly improves the accuracy of ATomIc!%*
(Table 4), demonstrating that a small amount of
human supervision can consistently help to correct
GPT-3’s mistakes.

Size-accuracy trade-off Using our critic to fil-
ter knowledge results in a natural trade-off be-
tween size and accuracy. We test several cut-
offs for AtomIc!®®, ie. confidence at which
the critic rejects examples. We report human-
measured accuracy (Accept/Reject column Ta-
ble 4) following §3.4. We compare the loose
teacher (unfiltered) to critical teachers. Discard-
ing 20% of instances that the critic judges as least
acceptable (reducing corpus size from 6.5M to

EMAP Full
87.1 94.0

Event

86.2

‘Random Inf
AP | 793 819

Table 5: Average Precision for ablated critic models.
The critic not only filters awkward phrasings which can
be identified by either the event (Event) or inference
(Inf) in isolation (EMAP only identifies these), but also
logical misalignments, which require modeling interac-
tions between event/inference, i.e. the full critic (Full).

5.1M), AToMIc10%°g accuracy rises 78.5 — 88.4;
human-authored ATOMIC3) contains 600K entries
at 86.8% accuracy. Reducing to total size to 2.5M
examples (38% of full size), we attain 96.4% accu-
racy, nearly 10 points above ATOMIC§8 while still
4X larger.

What gets filtered out? We qualitatively identify
two types of filtered triples: 1) logical misalign-
ments, events/inferences joined in an inconsistent
manner. Recognizing these requires understand-
ing events-inference interactions, e.g., X cannot
find his shirt as a result X is wearing a shirt; 2)
awkward phrasings, in which events/inferences are
individually incoherent e.g. PersonX has a fire in
the bath—resulting triples are invalid as the event is
implausible.

To understand what is filtered, we ablate the
critic (Table 5): our full model is compared to a
random predictor, event-only model, and inference-
only model. We also compare to an EMAP (Hessel
and Lee, 2020) version, i.e. an ensemble of event
and inference-only, without interactions between
event/inference (needed for logical misalignments).

We find GPT-3 produces both independent
awkwardly-phrased events/inferences (filtered by
X-only models) and logical misalignments. The
classifier, trained on validated knowledge triples,
helps in both cases. The EMAP of our full model
(identifies only awkward phrasings) achieves 87%
AP, and our full model (which additionally identi-
fies logical misalignments) improves to 94% AP.

Does filtering hurt diversity? One concern is
that the critic may keep only similar “safe” ex-
amples, lacking novelty. We repeat our diversity
analysis (§3.4) for critical corpora (Table 4, “Size
(div)”, higher=better). As we filter, we surprisingly
observe proportionally more diverse examples: full
ATOMIC!®* has a diverse subset 68% of its size:
rising to 80% with the most extreme filtering. One
possibility is that GPT-3 gravitates towards com-
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CKG Completion Train Corpus

Model Acc Accept Reject N/A
GPT2-XL zero-shot - 45.1 503 4.6
GPT-3 - 73.3 241 26
COMET3) 86.8 815 163 22
COMETH; 78.5 78.4 192 24
+-critiCiow 91.5 82.9 149 22
+-critichign 96.4 87.5 102 23

Table 6: Model performance on knowledge base com-
pletion, measured by human judgement. Inferences are
generated on held-out events from ATOMIC39. Models
besides GPT-3 use GPT-2 XL architecture. COMETR|}
with a strong critic (+critichign) achieves the highest
acceptance rate overall-87.5.

mon sentence structures for inconsistent knowl-
edge. These would be recognizable to the critic,
and removing them would increase both quality
and diversity. This surprising result warrants fur-
ther study.

5 Corpus-to-Machine: Distillation

The final step of symbolic knowledge distillation
trains a compact model on the generated natural
language knowledge graph. Our base model is
GPT2-XL trained on all of AToMIC!%: we denote
this model by COMETD. We additionally train the
model on critical versions of ATOMIC*—crit)oy,
denotes training on the corpus achieving 91.5% ac-
curacy, and critpiep on the 96.4% accuracy corpus.
Models are trained for 1 epoch, with default param-
eters using the Huggingface Transformers library
(Wolf et al., 2019).

5.1 Evaluating a Symbolically Distilled Model

Evaluation follows past work (Hwang et al., 2021;
Bosselut et al., 2019; Sap et al., 2019) testing the
ability of models to do knowledge base completion,
i.e. generating inferences for test events, specif-
ically from the ATOMIC3) test set. We use hu-
man evaluation'® following Section 3.4, on 1000
inputs (event + relation), with results in Table 6. We
compare to the GPT2-XL-based COMET3) model
trained on human-generated ATOMIC3)), and GPT-
3 using the same generation method as §3—in ef-
fect, comparing the student COMETY]? to the loose
teacher GPT-3. We omit the critical teacher (GPT-
3 + critic), which is not assured to produce an in-

%We find Fleiss’ kappa (Fleiss, 1971) of 47.1 for accep-
tance, indicating moderate agreement. (Landis and Koch,
1977), and accuracy agreement of 88.7%.

ference for each input, as the critic may reject all
tails for some inputs. We also compare to zero-shot
GPT2-XL (Radford et al., 2019) using the same
methodology (Table 6).

How does COMET?|; compare to GPT-3? In
knowledge distillation, the student model often de-
teriorates in performance (Hinton et al., 2015; Kim
and Rush, 2016) compared to its teacher. Compar-
ing our base teacher—GPT-3—to the simplest version
of COMETR}® (top-row COMET®® of Table 6) sur-
prisingly shows the student surpasses GPT-3, the
model that generates its training data'!. We posit
that the superior performance of COMETY may
have to do with mistakes of GPT-3 being filtered by
verbalization and training of GPT-2, and possibly
the focus of COMETR!? on one commonsense do-
main while GPT-3 covers a more general domain.
We leave further study of this effect for future work.

How does COMET?]? compare to human knowl-
edge? While COMETRS without the critic is
slightly outperformed by COMET3] in terms of ac-
curacy, this reverses with the critic. For both cutoffs
tested, COMETR!® surpasses COMET30, with more
filtering resulting in a wider gap.

Usefulness of COMETS?  For on-demand infer-
ence, where a single high quality inference for
some input event/relation is required, COMETZ}}
is the best available model: the most performant
version surpasses COMET%% by 5 points and GPT-3
by over 10. The critical teacher (GPT-3 + critic)
yields a more accurate corpus, but may filter all

inferences for an input, giving no output.

Limits and Future Work The success of
symbolic knowledge distillation is a first step—
demonstrating superior performance to human au-
thoring on the commonsense relations tested here.
No aspect of our approach is specific to these rela-
tions, yet further work is needed to explore the fea-
sibility of generation for other aspects of common-
sense and knowledge, beyond these relations, to
concepts like physical or temporal commonsense.

6 Related Work

Commonsense Knowledge Graphs (CKG)
CKGs provide knowledge for commonsense rea-
soning. Some are manually constructed, e.g.

""The slight difference in acceptability for GPT-3 from
Table 4 is likely due to variance in raters between rounds of

evaluation, and a different distribution of events—Table 4 uses
generated events while Table 6 uses events from ATOMIC3S.
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ATOMIC (Sap et al., 2019; Hwang et al., 2021).
ConceptNet (Speer et al., 2017) contains taxonomy
and physical commonsense, authored by humans
or compiled from such sources. Some CKGs are
automatically constructed: TransOMCS (Zhang
et al., 2020a) extracts 18.48M tuples from syntactic
parses and CausalBank (Li et al., 2020) extracts
314M cause-effect pairs by pattern-matching. In
contrast, we generate commonsense.

Extracting Knowledge from LMs Past work
uses models for automatic knowledge graph com-
pletion (Bosselut et al., 2019; Hwang et al., 2021;
Li et al., 2020). Yet, models are trained on existing
resources; ATOMIC!™ is generated without these.
Other works mine factual/commonsense knowl-
edge directly from off-the-shelf LMs (Petroni et al.,
2019; Davison et al., 2019; Xiong et al., 2020), but
not resulting in the quality at scale of ATomIC10%,

Knowledge Distillation Other works use knowl-
edge distillation (Hinton et al., 2015) for genera-
tion. (Sanh et al., 2019) follow a label smoothing
formulation, while Kim and Rush (2016) follow a
similar formulation to us (§2.1), use the mode of
the teacher distribution rather than sampling. Our
work is unique in distilling specific information
(commonsense) from a general language model.

Data Generation While manual dataset creation
is expensive and complex (Schwartz et al., 2017;
Agrawal et al., 2018; Tsuchiya, 2018; Bras et al.,
2020),crowdsourcing is the most popular method
for goal-oriented, high quality/coverage datasets.

Past automatic data mainly use extractive ap-
proaches, e.g. syntactic parsing (Zhang et al.,
2020a) or pattern matching (Li et al., 2020) from
unstructured text (Lehmann et al., 2015; Buck et al.,
2014). These scale, but are noisy and limited in
format—ATOMIC knowledge will not appear simply
in natural text. Some works explore automatic data
synthesis/expansion by finetuning LMs on existing
labeled data (Anaby-Tavor et al., 2020; Papaniko-
laou and Pierleoni, 2020; Kumar et al., 2020; Yang
et al., 2020), but are limited by data quality.

7 Conclusions

We introduce symbolic knowledge distillation, a
machine—to—corpus—to—machine pipeline for com-
monsense that does not require human-authored
knowledge—instead, using machine generation.
Knowledge is transferred from a large, general
model to a compact commonsense model, through

a commonsense corpus—yielding a commonsense
knowledge graph and model. Our resulting sym-
bolic knowledge graph has greater scale, diversity,
and quality than human authoring. symbolic knowl-
edge distillation offers an alternative to human-
authored knowledge in commonsense research.
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Ethical Considerations

One aspect of our work with the potential for ethi-
cal pitfalls is large-scale generation from pretrained
language models, in constructing ATOMIC!%*, Re-
cent work (Bender et al., 2021) has highlighted the
risks of models trained on massive text resources,
as GPT-3 (Brown et al., 2020) is, which we use
for generation. Indeed, open generations from pre-
trained language models can often contain harmful,
biased, or offensive aspects. We argue here that
this risk is largely mitigated in our work, mainly
due to the narrow and constrained nature of our
generations. The goal of our work is characterising
simple and generic anonymous situations, specifi-
cally in terms of commonsense causes and effects.
We ensure generations are focused on these top-
ics through careful prompting, which we found to
be quite effective at keeping these generations on-
topic. As such, the potential for harmful generation
is very low; indeed, in a manual inspection of 100
generated examples, we found none that were sig-
nificant harmful, besides one that contained adult
content.

A related concern is the potential for large mod-
els and training sets to make automated oppression
or exploitation possible, for instance in surveillance
or generating fake news. As above, we argue that
the generic, commonsense nature of our data and
models makes this concern less relevant here. Our
data does not contain any information directly re-
lated to these harmful domains (e.g. social media
or fake news generation). While our data may as-
sist machines in understanding basic situations, this
is unlikely to be useful for harmful models given
the simplicity of our data and still-flawed com-
monsense capabilities of even the most advanced
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models.

Finally, we note that we ensure fair and gener-
ous compensation for all human evaluators we hire
through Amazon Mechanical Turk. Based on our
estimates of time required per task, we ensure that
the effective pay rate is at least $15 per hour.

References

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and
Aniruddha Kembhavi. 2018. Don’t just assume; look
and answer: Overcoming priors for visual question
answering. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4971—
4980.

Prithviraj Ammanabrolu, Wesley Cheung, William
Broniec, and Mark O. Riedl. 2021a. Automated sto-
rytelling via causal, commonsense plot ordering. In
AAAL

Prithviraj Ammanabrolu, Jack Urbanek, Margaret Li,
Arthur D. Szlam, Tim Rocktaschel, and Jason Weston.
2021b. How to motivate your dragon: Teaching goal-
driven agents to speak and act in fantasy worlds. In
NAACL.

Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,
Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2020. Do not have
enough data? deep learning to the rescue! Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34:7383-7390.

Forough Arabshahi, Jennifer Lee, Antoine Bosselut,
Yejin Choi, and Tom. Mitchell. 2021. Conversa-
tional multi-hop reasoning with neural commonsense
knowledge and symbolic logic rules. In EMNLP.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT 21, page 610-623, New York, NY,
USA. Association for Computing Machinery.

Sumithra Bhakthavatsalam, Chloe Anastasiades, and
Peter E. Clark. 2020. Genericskb: A knowledge base
of generic statements. ArXiv, abs/2005.00660.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structuring
human knowledge. In SIGMOD Conference.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, A. Celikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for auto-
matic knowledge graph construction. In ACL.

Ronan Le Bras, Swabha Swayamdipta, Chandra Bha-
gavatula, Rowan Zellers, Matthew E. Peters, Ashish

Sabharwal, and Yejin Choi. 2020. Adversarial filters
of dataset biases. In ICML.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Christian Buck, Kenneth Heafield, and Bas Van Ooyen.
2014. N-gram counts and language models from the
common crawl. In LREC, volume 2, page 4. Citeseer.

Tuhin Chakrabarty, Debanjan Ghosh, Smaranda Mure-
san, and Nanyun Peng. 2020. R"3: Reverse, retrieve,
and rank for sarcasm generation with commonsense
knowledge. In ACL.

Tuhin Chakrabarty, Xurui Zhang, Smaranda Muresan,
and Nanyun Peng. 2021. MERMAID: Metaphor gen-
eration with symbolism and discriminative decoding.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 4250-4261, Online. Association for Computa-
tional Linguistics.

Ernest Davis and Gary Marcus. 2017. Causal genera-
tive models are just a start. Behavioral and Brain
Sciences, 40.

Joe Davison, Joshua Feldman, and Alexander M Rush.
2019. Commonsense knowledge mining from pre-
trained models. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1173-1178.

Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, et al. 2011. Open information
extraction: The second generation. In Twenty-Second
International Joint Conference on Artificial Intelli-
gence.

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378.

Jack Hessel and Lillian Lee. 2020. Does my multimodal
model learn cross-modal interactions? it’s harder to
tell than you might think! In EMNLP.

Geoftrey Hinton, Oriol Vinyals, and Jeffrey Dean. 2015.
Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning
Workshop.

Geoffrey E Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural com-
putation, 14(8):1771-1800.

4611


https://doi.org/10.1609/aaai.v34i05.6233
https://doi.org/10.1609/aaai.v34i05.6233
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
http://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2021.naacl-main.336
https://doi.org/10.18653/v1/2021.naacl-main.336
http://arxiv.org/abs/1503.02531

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras,
Jeff Da, Keisuke Sakaguchi, Antoine Bosselut, and
Yejin Choi. 2021. Comet-atomic 2020: On symbolic
and neural commonsense knowledge graphs. AAAIL

William R. Kearns, Neha Kaura, Myra Divina,
Cuong Viet Vo, Dong Si, Teresa M. Ward, and
Weichao Yuwen. 2020. A wizard-of-oz interface
and persona-based methodology for collecting health
counseling dialog. Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing
Systems.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015.
A method for stochastic optimization.
abs/1412.6980.

Adam:
CoRR,

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. In Proceedings of the 2nd Workshop
on Life-long Learning for Spoken Language Systems,
pages 18-26, Suzhou, China. Association for Com-
putational Linguistics.

J Richard Landis and Gary G Koch. 1977. The mea-
surement of observer agreement for categorical data.
biometrics, pages 159-174.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
D. Kontokostas, Pablo N. Mendes, Sebastian Hell-
mann, M. Morsey, Patrick van Kleef, S. Auer, and
C. Bizer. 2015. Dbpedia - a large-scale, multilingual
knowledge base extracted from wikipedia. Semantic
Web, 6:167-195.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In EMNLP.

Zhongyang Li, Xiao Ding, Ting Liu, J. Edward Hu,
and Benjamin Van Durme. 2020. Guided generation
of cause and effect. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

William Merrill, Yoav Goldberg, Roy Schwartz, and
Noah A. Smith. 2021. Provable limitations of acquir-
ing meaning from ungrounded form: What will future
language models understand? Transactions of the
Association for Computational Linguistics, 9:1047—

1060.

Tom Michael Mitchell, William W. Cohen, Estevam R.
Hruschka, Partha P. Talukdar, Bo Yang, Justin Bet-
teridge, Andrew Carlson, Bhavana Dalvi, Matt Gard-
ner, Bryan Kisiel, Jayant Krishnamurthy, N. Lao,
Kathryn Mazaitis, Thahir Mohamed, Ndapandula
Nakashole, Emmanouil Antonios Platanios, Alan Rit-
ter, Mehdi Samadi, Burr Settles, Richard C. Wang,
D. Wijaya, Abhinav Gupta, Xinlei Chen, Abulhair
Saparov, Malcolm Greaves, and Joel Welling. 2015.
Never-ending learning. Communications of the ACM,
61:103 - 115.

Yannis Papanikolaou and A. Pierleoni. 2020. Dare:
Data augmented relation extraction with gpt-2.
ArXiv, abs/2004.13845.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2463-2473.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
3027-3035.

Roy Schwartz, Maarten Sap, Ioannis Konstas, Leila
Zilles, Yejin Choi, and Noah A. Smith. 2017. The
effect of different writing tasks on linguistic style:
A case study of the ROC story cloze task. In Pro-
ceedings of the 21st Conference on Computational
Natural Language Learning (CoNLL 2017), pages
15-25, Vancouver, Canada. Association for Compu-
tational Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 31.

Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bha-
gavatula, Yoav Goldberg, Yejin Choi, and Jonathan
Berant. 2021. Commonsenseqa 2.0: Exposing the
limits of ai through gamification.

Masatoshi Tsuchiya. 2018. Performance impact caused
by hidden bias of training data for recognizing tex-
tual entailment. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and

4612


https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://www.aclweb.org/anthology/2020.lifelongnlp-1.3
https://www.aclweb.org/anthology/2020.lifelongnlp-1.3
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://doi.org/10.18653/v1/K17-1004
https://www.aclweb.org/anthology/L18-1239
https://www.aclweb.org/anthology/L18-1239
https://www.aclweb.org/anthology/L18-1239

Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-
ral text generation with unlikelihood training. In
International Conference on Learning Representa-
tions.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112—-1122. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Wenhan Xiong, Jingfei Du, William Yang Wang, and
Veselin Stoyanov. 2020. Pretrained encyclopedia:
Weakly supervised knowledge-pretrained language
model. In International Conference on Learning
Representations.

Yiben Yang, Chaitanya Malaviya, Jared Fernandez,
Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang,
Chandra Bhagavatula, Yejin Choi, and Doug Downey.
2020. Generative data augmentation for common-
sense reasoning. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
1008-1025, Online. Association for Computational
Linguistics.

Hongming Zhang, Daniel Khashabi, Y. Song, and
D. Roth. 2020a. TransOMCS: From linguistic graphs
to commonsense knowledge. In IJCAL

Hongming Zhang, Xin Liu, Haojie Pan, Y. Song, and
C. Leung. 2020b. Aser: A large-scale eventuality
knowledge graph. Proceedings of The Web Confer-
ence 2020.

Ben Zhou, Qiang Ning, Daniel Khashabi, and Dan Roth.
2020. Temporal common sense acquisition with min-
imal supervision. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7579-7589, Online. Association for
Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval,
pages 1097-1100.

4613


https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=SJeYe0NtvH
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://openreview.net/forum?id=BJlzm64tDH
https://doi.org/10.18653/v1/2020.findings-emnlp.90
https://doi.org/10.18653/v1/2020.findings-emnlp.90
https://doi.org/10.18653/v1/2020.acl-main.678
https://doi.org/10.18653/v1/2020.acl-main.678

A Human Evaluation Details

We conduct human evaluations on Amazon Me-
chanical Turk using the template of Figures 4,5.
Workers are presented with ATOMIC-style triples,
replacing relations with natural language templates
(e.g. HinderedBy becomes “can be hindered by”).
3 annotators rate each triple, with options for ac-
ceptability: “always/often”, “sometimes/likely”,
“farfetched/never”, “invalid”, or “too unfamiliar to
judge”. The first two are considered “accepted”,
the second two “rejected” and the final is “no judge-
ment”. For reporting acceptance rates, and training
a critic model, we only distinguish between “ac-
cepted” and not “accepted”.

Workers are compensated $0.17 per task (i.e.
completing all questions in the evaluation template
Figures 4,5). We estimate an upper bound of 30s to
complete a single task, which gives an hourly rate
of $20.4. Workers are selected based on an Amazon
Mechanical Turk qualification, specifically filtering
for workers with high accuracy on past knowledge
base triple evaluations. We follow the same setup
for all evaluations, besides number of annotators.
This setup is shown to result in consistent and reli-
able annotations, with an inter-annotator agreement
given by Fleiss’ kappa (Fleiss, 1971) of 40.8 when
evaluating with 3 annotators, in §3.4.

B Using Alternate Models as Knowledge
Sources

One natural question that arises from the strong
performance of symbolic knowledge distillation is
whether other sources of knowledge (i.e. language
models) would similarly benefit from this method.
In this section, we particularly measure the capacity
of other language models to serve as the “loose
teacher” which generated the base knowledge of
the resulting corpus.

We expand our study beyond GPT-3 here (the
model used in our work), to include 2 contempo-
rary large language models, GPT-J (Wang and Ko-
matsuzaki, 2021) and T5-11B (Lester et al., 2021)
finetuned for language modelling. For knowledge
generation (verbalization) we follow the same pro-
cedure as §3 along with simple adjustments to im-
prove quality. We are investigating the effect of
the critic on knowledge precision here, so we also
include ATOMIC3) to probe the usefulness of auto-
matic filtering for human-authored knowledge.

For each knowledge source, we follow the hu-
man evaluation setup in §3.4 to obtain quality an-

notations of 2000 examples, with 1 annotation per
example. This follows a similar setup to §4—indeed,
we are replicating the earlier critic experiments but
at a smaller scale (2000 annotations vs. 10000)
to allow for more knowledge sources. For each
knowledge source, we randomly split into sizes of
1400/300/300 for train, dev, and test sets. We fol-
low §4 to train a critic model for each knowledge
source.

We plot different thresholds (% of corpus fil-
tered) against the resulting precision (proportion
of corpus that is judged to be “valid” knowledge)
in Figure 3, and give numbers at various sizes
in Table 7. One striking aspect is that a critic
model can raise the precision of any of these knowl-
edge sources to approximately 90% while retaining
30% of the original corpus size. While this dis-
cards a significant portion of the original generated
knowledge, it raises the exciting prospect of using
more cost-effective models at a large scale to gener-
ate strong commonsense corpora like ATom1c!%%,
GPT-J and T5-11B can both be run locally by
researchers, unlike GPT-3 which uses a pay-per-
generation API. Thus, one can imagine producing
a large and high-quality corpus like AToMIC!%% at
a lower cost by instead generating a larger volume
of knowledge from such an accessible model, and
simply filtering to a greater extent.

Another interesting aspect is how the various
knowledge sources diverge. Under little to no criti-
cal filtering (i.e. corpus size = 1.0), the precision
of various knowledge sources is widely spread. Be-
fore applying a critic, quality of knowledge source
is very important. Indeed, precision is ordered
by cost of generation: human ATOMIC) has the
highest precision while being the most expensive,
followed by GPT-3 (used here) which is pay-per-
generation, and finally the two publicly available
models. Another point of divergence is for extreme
filtering (at approximately 20% of the original cor-
pus size. All knowledge sources but GPT-3 plateau
at approximately 90% accuracy, while GPT-3 rises
towards 100%. Indeed, this supports our use of
GPT-3 in this work, as a high-quality automatic
knowledge source.

C Critic Model

We train binary classifiers (critics) for human ac-
ceptability using RoBERTa-Large (Liu et al., 2019),
fine-tuning all parameters, along with a 2-layer
MLP on the [CLF] representation. We conduct
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Knowledge Source | 100 90 80 70

Precision at Corpus Size (%)

60 50 40 30 20 10

ATOMIC3) 84.0 863 879 89.0
GPT-J 71.7 767 81.7 838
T5-11B 64.7 66.7 70.8 74.8
GPT-3 curie 79.3 815 85.0 862

88.3
86.7
79.4
88.3

88.7 91.7 90.0 90.0 90.0
88.0 883 87.8 933 900
84.7 89.2 922 917 933
90.7 91.7 90.0 983 100.0

Table 7: Knowledge precision at various corpus sizes (from 100% to 10%) based on filtering by the critic model.
Precision is calculated by human annotation of valid or invalid knowledge. We consider 4 knowledge sources, as
described in Appendix B. This corresponds to the data plotted in Figure 3.

100 4 —— ATOMIC2020

GPT-)
—— T5-11B
—— GPT-3 curie

95 A

90 A

85 A

80 A

precision (%)

75 A

70 A

65

(‘) 2‘0 4‘0 6‘0 8‘0 1(‘)0
corpus size (%)

Figure 3: Precision resulting from the critic step from
§4, with various thresholds. We include corpora gen-
erated by GPT-3 (AtoMIc!%™), GPT-J, T5-11B, and
humans (ATOMIC3)). Without filtering (corpus size =
1.0), different corpora have a variety of precisions. As
more examples are filtered by the critic, precision rises
significantly demonstrating the strong value of the critic
step.

a small grid search on the validation set finding
batch size 128, dropout .1, and Adam (Kingma
and Ba, 2015) learning rate Se-6 to be effective.
We use early stopping and decay learning rate on
validation performance plateauing, to maximize
R@80% on the validation set. We find RoOBERTa
pretrained on MNLI (Williams et al., 2018) effec-
tive, outperforming other options. As well, we
substitute randomly-sampled names in for person
designations “X”/*“Y”. We include as a baseline an
unsupervised filtration metric inspired by (Davison
et al., 2019): they propose a model estimate of
PMI to score mined commonsense triples. In our
case, we use Negative Log-Likelihood (NLL) and
token-mean-NLL from GPT-3 itself.

The validation precision/recall of our best per-
forming model, the baselines, and the in-optimal
hyperparameter configurations are given in Fig-
ure 6. Once fixing our model, we applied it to the
test set (also in Fig 6), verifying that it generalizes
to ATOMICY%* entries. Overall, our trained critic
model is more effective than the baselines in iden-
tifying high and low quality teacher generations at
all levels of precision and recall. This result demon-
strates that a small amount of human supervision
can consistently help to correct GPT-3’s mistakes.

D Artomic!™* Generation Prompts

We include example prompts for all generations
we do, from Table 8 to 15. Note that elements
of generation prompts are randomized for each
batch. For event generation, the few-shot examples
and order are randomly sampled from a seed set
of 100 high-quality examples from ATOMIC3) in
each batch. For inference generation, the natural
names used for PersonX and PersonY are randomly
sampled from a small predefined set of names.
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Instructions (click to expand/collapse)

(WARNING: This HIT may contain adult content. Worker discretion is advised.)
Thanks for participating in this HIT!
If the data is good, it's good. If bad, then bad. Please annotate as you see not worrying about how many of each label

you find yourself assigning! If you understand the words but the Phrases or the complete assertation makes poor
sense, please mark as INVALID. Thank you!

You will evaluate how often assertions are true. Each assertion is comprised of 3 parts: Phrase A, Relation,
Phrase B

Phrase A, Phrase B Short phrases. May describe objects, object properties, events, actions, etc.
Relation How A relates to B.

For each assertion, determine how true it is:

always/often Always or quite often true.

sometimes/likely Sometimes is true or true for some people. -or- Likely true.
farfetched/never False or farfetched, at best. -or- Unlikely to be true.

invalid This assertion makes no sense (i.e., "what does this even mean?!").

too unfamiliar to judge Cannot make a fair evaluation. Unfamiliar with one or both of the phrase.

If you see "nothing in particular" for Phrase B, assess Phrase B in context:
e Sometimes certain actions can simply be responded to by doing nothing!
e Other times, doing nothing in particular is simply a weird or unlikely reaction to something.

e See examples under tricky relations tagged with

Please report any prejudiced or inappropriate language:
e Profane or offensive content (NSFW, R-rated material etc)

e Prejudiced assumptions or derogatory language that villainizes people.
HOWEVER, please note, not all negative content is derogatory especially if Phrase B is intrinsically what Phrase
A means. For example:
criminals are characterized by committing crime is OK.
b This isn't necessarily villianizing people since "criminal” means "a person who has commited a crime".
homeless are characterized by being lazy is prejudiced.
b There are many reason a person is rendered homeless. This is a gratuitous prejudice about homelessness.

e Material that people may find disturbing, off-putting, or improper
A couple NOTES:

e Please be forgiving of spelling or grammatical errors

e |f the terms are too obscure or you don't know the truth of the fact at the top of your head, it is okay to mark is
"too unfamiliar to judge". If you can answer (e.g., based on likelihood), please provide a response.

Tricky Relations (click to expand/collpase)

Examples (click to expand/collapse)

Figure 4: Page 1 of template used for human evaluation.
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1) PersonX approaches PersonY's aunt, as a result, PersonX feels, awkward
How often does the assertion hold true?
always/often sometimes/likely = farfetched/never invalid too unfamiliar to judge
This fact is true but outdated

I would count this as an inappropriate, prejudiced or offensive material

2) PersonX asked PersonY out on a date, can be hindered by, PersonX is still dating Sarah
How often does the assertion hold true?
always/often  sometimes/likely = farfetched/never invalid too unfamiliar to judge
This fact is true but outdated

I would count this as an inappropriate, prejudiced or offensive material

3) PersonX fails to go home, as a result, PersonX, is grounded
How often does the assertion hold true?
always/often sometimes/likely = farfetched/never invalid too unfamiliar to judge
This fact is true but outdated

I would count this as an inappropriate, prejudiced or offensive material

4) PersonX makes her own clothes, as a result, PersonX feels, artistic
How often does the assertion hold true?
always/often  sometimes/likely = farfetched/never invalid too unfamiliar to judge
This fact is true but outdated

I would count this as an inappropriate, prejudiced or offensive material

5) PersonX notices PersonY's response, can be hindered by, PersonX is distracted by the music
How often does the assertion hold true?
always/often  sometimes/likely = farfetched/never invalid too unfamiliar to judge
This fact is true but outdated

I would count this as an inappropriate, prejudiced or offensive material

(Optional) Please let us know if anything was unclear, if you experienced any
issues, or if you have any other fedback for us.

Figure 5: Page 2 of template used for human evaluation.
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1. Event: PersonX unwraps PersonY’s hands

2. Event: PersonX overcomes evil with good

3. Event: PersonX is fed up with the present situation
4. Event: PersonX breaks PersonX’s back

5. Event: PersonX calls no one

6. Event: PersonX never gets angry

7. Event: PersonX does not learn from PersonY

8. Event: PersonX refuses to touch PersonY’s hands
9. Event: PersonX looks at flowers

10. Event: PersonX unloads an atomic bomb

11. Event:

Table 8: Prompt for head generation.

1.00
0.95
0.90
C
Qo085
0
8 0.80
s 0.75 —— Best Model Val
0.70 —— Best Model Test
—— GPT-3 NLL
0.65 —— GPT-3 mean NLL
0.60
0.0 0.2 0.4 0.6 0.8 1.0

recall

Figure 6: Precision vs. recall of our critic model on
the human labelled validation set. The best trained
models are labelled, and other hyper-parameter settings
are shown as faded lines. We also include generation
negative log-likelihood (nll) and token-wise mean nll
as cutoff measures—these perform much worse than the
supervised model.
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Next, how are people seen in each situation? Examples:

Situation 1: Devin bullies Jean.

Devin is seen as dominant.

Situation 2: Jamie moves to another city.
Jamie is seen as adventurous.

Situation 3: Sydney changes Ryan’s mind.
Sydney is seen as influential.

Situation 4: Lindsay writes a story.
Lindsay is seen as creative.

Situation 5: Rowan covers Pat’s expenses.
Rowan is seen as wealthy.

Situation 6: Lee takes time off.

Lee is seen as carefree.

Situation 7: Riley advises Noel.

Riley is seen as informed.

Situation 8: Adrian bursts into tears.
Adrian is seen as depressed.

Situation 9: Hunter deals with problems.
Hunter is seen as responsible.

Situation 10: Sam follows Charlie.

Sam is seen as suspicious.

Situation 11: Alex makes Chris wait.

Alex is seen as

Table 9: Prompt for generating xAttr.
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Next, what do situations make people do? Examples:

Situation 1: Devin gets a divorce.

As a result, Devin dates someone new.
Situation 2: Jamie lifts weights.

As a result, Jamie has sore muscles.
Situation 3: Sydney takes Ryan to a bar.
As a result, Sydney gets drunk.
Situation 4: Lindsay decides to hire a tutor.
As aresult, Lindsay gets better grades.
Situation 5: Rowan buys Pat drinks.

As aresult, Rowan is thanked by Pat.
Situation 6: Lee hears bad news.

As aresult, Lee begins to cry.

Situation 7: Riley buys a chocolate bar.
As aresult, Riley gets change.

Situation 8: Adrian does a lot of work.
As aresult, Adrian gets mental fatigue.
Situation 9: Hunter attends a concert.
As a result, Hunter hears a new song.
Situation 10: Sam gets the job done.

As aresult, Sam gets more responsibilities.
Situation 11: Alex makes Chris wait.

As aresult, Alex

Table 10: Prompt for generating xEffect.

4620




For each situation, describe the intent. Examples:

Situation 1: Devin gets the newspaper.
Devin intends to read the newspaper.
Situation 2: Jamie works all night.

Jamie intends to meet a deadline.

Situation 3: Sydney destroys Ryan.
Sydney intends to punish Ryan.

Situation 4: Lindsay clears her mind.
Lindsay intends to be ready for a new task.
Situation 5: Rowan wants to start a business.
Rowan intends to be self sufficient.
Situation 6: Lee ensures Ali’s safety.

Lee intends to be helpful.

Situation 7: Riley buys lottery tickets.
Riley intends to become rich.

Situation 8: Alex makes Chris wait.

Alex intends

Table 11: Prompt for generating xIntent.
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Next, we will discuss what people need for certain situations. Examples:

1. Before Devin makes many new friends, Devin has to spend time with people.
2. Before Jamie gets a date, Jamie has to ask someone out.

3. Before Sydney changes Ryan’s mind, Sydney has to think of an argument.

4. Before Lindsay gets a job offer, Lindsay has to apply.

5. Before Rowan takes a quick nap, Rowan has to lie down.

6. Before Lee tries to kiss Ali, Lee has to approach Ali.

7. Before Riley rides Noel’s skateboard, Riley has to borrow it.

8. Before Adrian eats the food, Adrian has to prepare a meal.

9. Before Hunter watches Netflix, Hunter has to turn on the TV.

10. Before Sam has a baby shower, Sam has to invite some friends.

11. Before Alex makes Chris wait, Alex has

Table 12: Prompt for generating xNeed.
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Next, how do people feel in each situation? Examples:

Situation 1: Devin lives with Jean’s family.
Devin feels loved.

Situation 2: Jamie expects to win.

Jamie feels excited.

Situation 3: Sydney comes home late.
Sydney feels tired.

Situation 4: Lindsay sees dolphins.
Lindsay feels joyful.

Situation 5: Rowan causes Pat anxiety.
Rowan feels guilty.

Situation 6: Lee goes broke.

Lee feels embarrassed.

Situation 7: Riley has a drink.

Riley feels refreshed.

Situation 8: Adrian has a heart condition.
Adrian feels scared about their health.
Situation 9: Hunter shaves Avery’s hair.
Hunter feels helpful.

Situation 10: Sam loses all of Charlie’s money.
Sam feels horrible.

Situation 11: Alex makes Chris wait.

Alex feels

Table 13: Prompt for generating xReact.
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Next, what do people want in each situation? Examples:

Situation 1: Devin mows the lawn.
Devin wants to take a shower.

Situation 2: Jamie is going to a party.
Jamie wants to take an Uber home.
Situation 3: Sydney bleeds a lot.
Sydney wants to go to the ER.
Situation 4: Lindsay works as a cashier.
Lindsay wants to find a better job.
Situation 5: Rowan gets dirty.

Rowan wants to do a load of laundry.
Situation 6: Lee stays up all night studying.
Lee wants to rest.

Situation 7: Riley gets Noel’s autograph.
Riley wants to tell some friends.
Situation 8: Adrian sees Taylor’s point.
Adrian wants to agree with Taylor.
Situation 9: Hunter leaves Avery’s bike.
Hunter wants to keep the bike safe.
Situation 10: Sam wants a tattoo.

Sam wants to find a tattoo design.
Situation 11: Alex makes Chris wait.

Alex wants

Table 14: Prompt for generating xWant.
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Next, what can hinder each situation? Examples:

Situation 1: Devin makes a doctor’s appointment,

This is hindered if Devin can’t find the phone to call the doctor.
Situation 2: Jamie rubs Wyatt’s forehead,

This is hindered if Jamie is afraid to touch Wyatt.

Situation 3: Sydney eats peanut butter,

This is hindered if Sydney is allergic to peanuts.

Situation 4: Lindsay looks perfect,

This is hindered if Lindsay can’t find any makeup.

Situation 5: Rowan goes on a run,

This is hindered if Rowan injures her knees.

Situation 6: Lee takes Ali to the emergency room,

This is hindered if Ali has no health insurance to pay for medical care.
Situation 7: Riley spends time with Noel’s family,

This is hindered if Noel’s family doesn’t like spending time with Riley.
Situation 8: Adrian moves from place to place,

This is hindered if Adrian can’t afford to move.

Situation 9: Hunter protests the government,

This is hindered if Hunter is arrested.

Situation 10: Sam has a huge fight,

This is hindered if Sam does not like confrontation.

Situation 11: Alex makes Chris wait,

This is hindered if

Table 15: Prompt for generating HinderedBy.
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