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Abstract

We examine the extent to which, in principle,
different syntactic and semantic graph repre-
sentations can complement and improve neural
language modeling. Specifically, by condition-
ing on a subgraph encapsulating the locally rel-
evant sentence history, can a model make better
next-word predictions than a pretrained sequen-
tial language model alone? With an ensem-
ble setup consisting of GPT-2 and ground-truth
graphs from one of 7 different formalisms, we
find that the graph information indeed improves
perplexity and other metrics. Moreover, this ar-
chitecture provides a new way to compare dif-
ferent frameworks of linguistic representation.
In our oracle graph setup, training and evalu-
ating on English WSJ, semantic constituency
structures prove most useful to language mod-
eling performance—outpacing syntactic con-
stituency structures as well as syntactic and
semantic dependency structures.

1 Introduction

Linguistic theories posit that humans can take ad-
vantage of hierarchical structure related to some
notion of compositionality to produce and com-
prehend utterances with complex meanings. Yet
explicit representations of this kind of structure are
harder to come by than raw text, and large-scale
pretrained neural language models (e.g., Devlin
et al., 2019; Radford et al., 2019) have managed
to perform strikingly well at contextually encoding
and predicting words from distributional evidence
alone. At the same time, there are good reasons to
doubt that these models can be said to understand
language in any meaningful way (Trott et al., 2020;
Bender and Koller, 2020; Merrill et al., 2021). To
address this conundrum, people have started to ex-
plore probing pretrained models (Liu et al., 2019;
Tenney et al., 2019a, inter alia) and supplement-
ing training data with linguistic structure guidance
(Strubell et al., 2018; Swayamdipta et al., 2018;
Peng et al., 2019; Wu et al., 2021, inter alia).

A question that has received less attention is
which kind of symbolic linguistic representation
(SLR) is most conducive to guiding neural lan-
guage models (LMs). Numerous domain-general
candidates exist (Abend and Rappoport, 2017;
Oepen et al., 2019, 2020; Žabokrtský et al., 2020;
Müller, 2020): some are focused on syntactic struc-
ture, others on semantics (§2; big grey example
graphs in the left panels of figure 1). Frameworks
vary along several dimensions, with different label
inventories and treatments of specific constructions.
Formal differences include the type of structure (de-
pendency or constituency, one or multiple parents,
projectivity) and its relation to the input string. In
general, different design choices may aim to cap-
ture different kinds of generalizations or facilitate
different kinds of processing, and may make pars-
ing raw text easier or harder. It is often not obvious
which framework should be chosen for best results
on an external task—or indeed, how to even per-
form a controlled comparison across frameworks.

In this paper we investigate whether structurally
guided language modeling can serve as a bench-
mark task for directly comparing linguistic repre-
sentations. Specifically, we evaluate on next-word
prediction—a relatively neutral task in that it does
not rely on any artificial test suite, nor does it tar-
get a specific downstream application where one
linguistic framework may have an advantage.1

We devise a method for selecting and encoding
partial views of linguistic graphs over the preced-
ing context relevant to predicting the next token
(§3 and §4).2 We call these views slices (small
per-token graphs and dashed lines in figure 1).
Our neuro-symbolic encoder statically allocates
distinct vector dimensions for different structural

1Our findings are limited to a particular language (English)
and domain (financial news) in which gold graphs from multi-
ple frameworks are available for the same sentences, but such
annotations could be obtained for other samples in the future.

2Our code is available to the research community at https:
//github.com/jakpra/LinguisticStructureLM.
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UD: Syntactic dependency tree with functional labels PTG: Deep syntactic / quasi-semantic argument structure
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Figure 1: Contrasting GPT-2’s incremental attention mechanism (top right) with incremental context slices obtained
from linguistic graphs (left four panels) of four different formalisms (§5.2). As shared tokenization we use GPT-2’s
byte-pair encoding. Slice nodes are color-coded by local relation type (black: target, cyan: parent, blue: child,
green: coparent, yellow: sibling, purple: grandparent, brown: aunt). Dashed lines indicate the token anchoring of
original (big grey) graph nodes and, correspondingly, which previous tokens (empty circles) are accessible for each
next-token prediction. In the bottom right we visualize how different models arrive at their prediction (§3 and §4.3).

relations within each slice, which in the incremen-
tal setting is much faster and more flexible than
computation-intensive deep graph encoders. Using
this encoding, we compare 7 SLR formalisms by
virtue of their incremental language modeling ca-
pability in an controlled experimental setup (§5) on
jointly annotated ground-truth data (Oepen et al.,
2019, 2020). The results (§6) suggest that linguistic
graphs are indeed informative for next-word predic-
tion, complementing what is learned in pretraining.
This invites future research quantifying different
formalisms’ design choices (§7).

2 Background: Symbolic Linguistic
Representation

Following a long tradition in formal linguistics,
graph-structured representations of language quali-
tatively describe grammatical and logical relations
among words. The SLR paradigm has recently seen
a revival in the form of larger-scale treebanking and
sembanking for training neural parsers.

Formally, an SLR instance is a directed acyclic
graph (DAG) � = ��,�,��, with vertices �, la-
beled edges �, and an anchoring function � � � �� that maps each vertex to a (potentially empty)
subset of tokens in the sentence. We broadly distin-
guish SLR frameworks along two dimensions:3

3See Abend and Rappoport (2017); Koller et al. (2019);
Prange et al. (2019b) for more detailed taxonomies.

Scope. A main goal of syntactic representations
is to explain distributional patterns in word or-
der; they tend to be rooted trees with often pro-
jective anchoring functions. Semantic formalisms
are meaning-oriented, aiming to capture the higher-
level logic expressed in a sentence; thus, they may
have more complex structures, including reentrant
edges and discontiguous anchors.

Structure. SLRs can further be subdivided into
dependency and constituency structures. The for-
mer are relatively shallow, while the latter contain
abstract nodes with no or multiple word anchors.

3 Overview: Language Modeling with
Linguistic Graphs

Our main goal is to quantify the predictive power
of different SLRs by combining them with a pre-
trained language model and measuring how this
affects next-token generation performance. A lan-
guage model (LM) assigns probabilities to sen-
tences and can be used to both process existing
sentences and generate new ones. As is standard
practice, we treat sentences as length-� sequences
of word tokens, � = ��0,�1, … ,���1�. An incre-
mental LM factorizes the joint probability of the
sentence in terms of the probability of each word�� conditioned on previous tokens �<�; eq. (1).

Here we describe at a high level how we process
(oracle) SLR graphs for use in this language mod-
eling scenario, i.e., to obtain context-conditional

4376



vocabulary distributions from them. In contrast to
sequential LMs, contexts are now graph-structured,
and which context tokens to select as well as in
what way they are related to the target token is de-
termined by the underlying SLR graph �; eq. (2).

���(�) = ��1�
�=0 ���(����<�) (1)����(�) �= �(���) (2)

This general idea is closely related to syntactic
language modeling (Pauls and Klein, 2012; Gub-
bins and Vlachos, 2013, inter alia). We extend this
line of work to arbitrarily complex syntactic and
semantic DAG structures and, in doing so, take par-
ticular care to restrict conditioning contexts from
accessing not only future words but also future sub-
graphs, so effectively top-down and left-to-right.
Our procedure is as follows:

First, we select for each token position � to be
predicted a subgraph ��, called the token’s slice.
Slices are both admissible in the language model-
ing setting, i.e., they do not violate the left-to-right
conditioning order, and relevant to the token predic-
tion according to some criteria—here we consider
criteria based on structural relationships generally,
without relying on formalism-specific labels (§4.1).
Consider the small colored subgraphs for each to-
ken in figure 1: the EDS-slice for the target ‘re-
ported’, for example, starts at node 3, and extends
to the ARG2-child 2, ARG1-coparent 1, and BV-
coparent 0, which are anchored, respectively, in the
spans ‘injuries’, ‘Numerous’, and ‘Numerous in-
juries’). Recall from §2 that context words �<� are
contained in ��, to the extent that they are anchored
in a node reachable from ��. Inspired by Markov
assumptions of independence in generative model-
ing and Markov blankets in causal networks, SLR
graph slicing thus allows us to factorize �(���) as

�(���) �= ��1�
�=0 �(�����). (3)

Next, we encode each graph slice as a fixed-
sized vector. Prior approaches to encoding linguis-
tic graphs for neural modeling have involved seri-
alization, e.g., as parser transition sequences (Qian
et al., 2021, inter alia), recursive auto-encoders
(Tai et al., 2015; Roth and Lapata, 2016), and graph-
convolutional networks (GCNs; Yang and Deng,
2020; Wu et al., 2021). However, transition se-
quences for non-tree graphs are subject to spurious

ambiguity; and we find that graph-structured neural
networks are impractical in the incremental setting
(§6.5). Instead, we propose a computationally inex-
pensive method for statically and deterministically
projecting slices into a high-dimensional space by
vector concatenation (§4.2).

Finally, we compute output distributions�(�����) from the vector representations (§4.3).

4 Modeling Details

4.1 Slicing Graphs

A slice �� is a connected subgraph of � that cap-
tures��’s linguistically structured context, masking�� itself (or else estimating �(�����) would be triv-
ial). �� always minimally consists of ��’s direct
anchor node �� = Select({� � �� � �(�)}). Start-
ing from ��, we traverse the graph and add vertices
and edges that are connected to �� via paths of a
few specific relative types, REL. Here we settle on
6 types: parents, siblings, grandparents, parents’
siblings, children, and coparents. The vertices ��
and edges �� for slice �� = ���,��,�� consist then
of the union of these sets.4

To prevent information leakage from future to-
kens, we discard from �� all nodes {� � �(�) =��, � > �} which are only anchored in tokens fol-
lowing ��. E.g., in figure 1, the UD-slice for the
token ‘were’ does not contain the parent node 3
because that is anchored only in the following to-
ken ‘reported’ (and thus the sibling 1 cannot be
accessed either). If a node’s anchors contain or
overlap with �� (i.e., the node is a non-terminal
above ��), we retain the node and its edges but
remove its token anchors.

4.2 Vectorizing Graph Slices

Because slices can be large, we partition each
slice’s nodes by structural relative type, in order to
aggregate them into a fixed-length summary vec-
tor. Specifically, we allocate capacities for each
relative type: �rel = 2 for parents, siblings, aunts,
and children, and 1 for grandparents and coparents.
Up to � � 1, relative nodes �rel are added ‘with
high resolution’, maintaining their identity and or-
der; beyond the capacity, relatives are aggregated
‘with low resolution’; eq. (4). Within each rela-
tive type, precedence � is given to relatives whose
token anchors are sequentially closer to ��.

4See appendices A.1 and A.2 for details.
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HiRes�,rel = ��rel,� � � < �rel
�

LoRes�,rel = {�rel,� � � � �rel} (4)

Next we look up the relatives’ edge label and
word vector encodings5 ��� and ��� and collate them
into a single vector ���,rel per relative type. High-
resolution vectors are concatenated

�
and low-

resolution vectors are averaged; eq. (5). Finally,
we concatenate all of these (zero-padded) relative-
vectors to obtain the final vector representation of
the whole slice, ���; eq. (6). At a high level, this vec-
tor essentially specifies a deterministic, structured,
typed, discrete self-attention over the token history.

��HiRes�,rel = �
��HiRes�,rel

����; ����
��LoRes�,rel = �

��LoRes�,rel

����; �����LoRes�,rel�+ (5)

��� = �
rel�REL

���HiRes�,rel ; ��LoRes�,rel

�
(6)

4.3 Predicting Emission Distributions
We compute model posteriors for next-token pre-
dictions as��(�� = ��� context�,�) = Sof tMax(logits�,�)[�],
where � is either a pure SLR model or LM, or an
ensemble of the two (bottom right of figure 1).
SLR only. As described above, we definecontext�,��� as ��, which is encoded as ���. We
obtain ���� by letting the slice-vectors serve as
inputs to a �-multilayer perceptron (MLP) with
a final softmax layer over the vocabulary, which
yields the estimated token emission distributions.logits�,��� = MLP�( ���)MLP�(�) = �(�) �…�(1)(�)�Emb�,
where Emb is an embedding matrix.
LM + SLR. Since we want to measure whether
and how much the information contained in the
SLR can contribute to state-of-the-art language
models, our primary experimental condition is a
combined setup �Ensemble, where logits obtained

5See appendix A.3 for details.

Sentences Tokens Vocabulary
Train 26,325 658,475 27,344

Train (EarlyStop) 23,692 591,829 26,422
Dev (EarlyStop) 2,633 66,646 10,073

Eval 921 22,596 5,364

Table 1: Data statistics.

from slice-encodings are added to a base neural
LM’s logits before taking the softmax:logits�,Ensemble = logits�,��� + logits�,�� ,

with logits�,�� = LM(�<�).
LM only. ��� , i.e., the bare LM without any
exposure to SLR graphs, serves as a baseline.

5 Experimental Setup

All models are implemented in PyTorch and exper-
iments are run on 1 NVIDIA Tesla T4 GPU. Model
hyperparameters are reported in appendix A.5.

5.1 Data
Our dataset consists of the intersection of Wall
Street Journal (WSJ; English financial news) sen-
tences that have been annotated with syntactic trees
in the Penn Treebank (PTB; Marcus et al., 1993;
Hovy et al., 2006)6 as well as a range of seman-
tic representation formalisms for the MRP 2019
& 2020 shared tasks (Oepen et al., 2019, 2020).
Summary statistics are shown in table 1. Our pre-
processing steps are described in appendix B.

5.2 SLR Formalisms
The 7 (versions of) linguistic representation frame-
works examined in this study are listed in table 2,
along with their classifications along the scope and
structure dimensions. We draw the structural de-
pendencies vs. constituencies distinction (described
at a high level in §2) based on specific properties
of the MRP shared task data: a framework is con-
sidered a dependency framework if all edges are
only between pairs of individual word anchors at a
time; if there are any unanchored7 nodes or nodes
anchored in more than one linguistic word token,
it is considered a constituency framework.8 Below
we give a brief description of each framework.

PTB trees specify hierarchically nested syntactic
constituents. We consider two labeling variants: ba-
sic phrase structure (-phr) and phrase types refined
with functional specifications (-fxn).

6https://catalog.ldc.upenn.edu/LDC2013T19
7Not including “ROOT” nodes in UD.
8See appendix A.4 for details.
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Universal Dependencies (UD; Nivre et al., 2016,
2020; de Marneffe et al., 2021) is a syntac-
tic dependency representation with coarse, cross-
linguistically applicable edge labels.

DELPH-IN MRS Bi-Lexical Dependencies
(DM; Ivanova et al., 2012) and Elementary De-
pendency Structures (EDS; Oepen and Lønning,
2006) are derived from underspecified logical
forms computed by the English Resource Grammar
(Flickinger, 2000; Copestake et al., 2005).

Prague Semantic Dependencies (PSD; Hajič
et al., 2012) and Prague Tectogrammatical Graphs
(PTG) are syntactico-semantic predicate–argument
structures converted from the Prague Functional
Generative Description (Sgall et al., 1986; Böh-
mová et al., 2003; Hajič et al., 2012).

5.3 Language Model

The base language model we use in all our experi-
ments is GPT-2 (Radford et al., 2019, as distributed
in the huggingface-transformers PyTorch library).
GPT-2 is a Transformer model (Vaswani et al.,
2017) pretrained on a diverse collection of web
texts. In contrast to other widely-used Transform-
ers like BERT (Devlin et al., 2019), which optimize
bidirectional masked language modeling, GPT-2
is incremental, i.e., next-word decisions only take
into account the preceding context.

5.4 Training

We train all models for 10 epochs with the AdamW
optimizer (Loshchilov and Hutter, 2019), minimiz-
ing cross-entropy between the model posterior and
the ground truth at each token position.

We perform early stopping with the last 10% of
the original training corpus set aside for develop-
ment scoring after each epoch.9 We keep the model
state that achieves the best perplexity on the dev set.
Peak development performance is reached after �3
epochs for SLR models, whereas finetuning GPT-2
by itself takes between 7 and 9 epochs.

5.5 Evaluation

We compute model perplexity (PPL) as the most
standard language modeling evaluation measure,
as well as accuracy (Acc) and confidence (Conf) of
a model’s top-ranked guess, mean reciprocal rank
of the correct answer (MRR), and entropy of the

9The R-GCN baseline (table 6) is always trained for the
full 10 epochs, but to ensure fairness, it is also only compared
to concatenation-based encoders that have been trained for the
full 10 epochs, too.

model’s token prediction posterior (H). All metrics
are reported as microaverages over the evaluation
data at the BPE token level.10

6 Findings

6.1 Main Results

The most striking observation in terms of overall
model performance (table 2) is that ground-truth
linguistic graphs of all investigated linguistic for-
malisms improve vanilla GPT-2 by a large margin,
in all metrics. This improvement holds up when
compared to a version of GPT-2 that is exposed
to the raw WSJ text without the graphs; with this
condition we control for mere domain differences
between our evaluation data and the data GPT-2
was trained on originally (‘+Domain’ in table 2).
The large performance gap suggests that at least
a subset of the oracle knowledge about linguistic
structure is not yet encoded in the base language
model, which learns from only raw text.

We observed that if we keep training for the
entirety of 10 epochs, rather than early stopping
based on development performance, we somewhat
overfit to the training set. While accuracy itself
is not affected very much by this, the models be-
come increasingly overconfident (overall confidence

overall accuracy
,

which gets up to 8–12%, compared to �4% with
the vanilla GPT-2 model and in most cases even
slightly less than that with the early-stopped SLR
models). This leads to overall worse perplexity.

6.2 Differences between Formalisms

Comparing across rows in table 2, we find a con-
siderable performance spread. The general trend,
which is relatively consistent in all metrics,11 is
indicated by the order of rows, with UD having
the smallest (though still respectable) improvement
over the baseline, and PTG and EDS the largest.

Interestingly, there are two marked separations:
a primary one between dependency and con-
stituency formalisms, and a secondary one between
syntactic (i.e., more surface-oriented) and semantic
(more abstract) formalisms. This is summarized

10We compute average PPL over
all sentences � by exponentiating last:exp � 1�� �w� � ����w� ��1�=0 � log�� ���� = �����context��,���

11The multitude of metrics might thus seem redundant. But
since each measurement emphasizes different properties of
model performance, we consider it a a very interesting result
(and, potentially, a success of our modeling technique and
experimental setup) to achieve this broad consistency.
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Training Efficiency Language Model Quality

Model Scope/Struct #Labels Speed ↑ Size ↓ PPL ↓ H [nats] ↓ Acc [%] ↑ Conf [%] ↑ MRR ↑
GPT-2 – 124.4M 59.3 4.09 30.0 31.2 .403
+ Domain 15 45.9 ±.09 3.64 ±.008 33.3 ±.02 34.9 ±.07 .435 ± .3e-3

*** ***
+ UD syn dep 39 14 +54.1M 32.7 ±.18 3.30 ±.013 39.1 ±.15 40.1 ±.14 .486 ±1.2e-3

*** �
+ DM sem dep 59 15 +54.4M 31.4 ±.08 3.24 ±.026 38.9 ±.10 40.2 ±.37 .491 ± .6e-3

*** �
+ PSD sem dep 90 16 +54.9M 30.7 ±.09 3.21 ±.014 39.1 ±.11 40.9 ±.11 .491 ± .5e-3

** ***
+ PTB-phr syn const 38 14 +54.1M 29.8 ±.18 3.14 ±.029 41.2 ±.19 42.8 ±.42 .507 ±1.3e-3

*** *
+ PTB-fxn syn const 537 14 +62.7M 29.0 ±.28 3.07 ±.049 42.0 ±.30 43.8 ±.60 .514 ±1.8e-3

*** *
+ PTG sem const 72 15 +54.6M 26.8 ±.26 3.03 ±.041 43.1 ±.12 44.6 ±.51 .522 ± .9e-3

*** �
+ EDS sem const 10 15 +53.6M 24.7 ±.28 2.92 ±.048 43.1 ±.17 45.0 ±.55 .527 ±1.3e-3

Table 2: Main results: performance of language models combined with 7 SLR formalisms of different scope,
structure, and label set (each corresponding to a �Ensemble in §4.3), compared to vanilla GPT-2 and a version
of GPT-2 that has been domain-finetuned on the raw text of the SLR training corpus (���). We report each
quality metric as mean ± stdev over 3 random seeds. We also report model size in #parameters (all non-baseline
models as absolute difference to baseline) and training speed in sentences per second as measures of efficiency.
Statistical significance of the PPL and Acc differences to the next-best model (always adjacent rows) is reported
as ***� < .0001 / **� < .001 / *� < .005 / �not significant (approximate randomization test as described in
Riezler and Maxwell (2005), with � =10,000 shuffles). We only consider a difference significant if � < � for all
three random model initialization seeds. Best results in each column are bolded. For confidence, ‘best’ means
best-calibrated, i.e., the smallest relative difference to accuracy.

Dep Const Avg

Syn 32.7 (1) *** 29.4 ±0.6 (2) 30.5 ±2.0 (3)
*** *** �

Sem 31.0 ±0.5 (2) *** 25.7 ±1.5 (2) 28.4 ±3.2 (4)

Avg 31.6 ±1.0 (3) ** 27.6 ±2.3 (4) 29.3 ±2.8 (7)

Table 3: Model perplexity (lower is better) summarized
in terms of two SLR dimensions: Scope (syntax vs. se-
mantics) and structure (dependency vs. constituency). �± � (�) over frameworks per condition. Statistical signif-
icance of the difference between the two closest SLRs
of each pair of conditions is reported as ***� < .0001 /
**� < .001 / *� < .005 / �not significant (approximate
randomization test with � =10,000 shuffles).

in table 3. A limiting factor for dependency rep-
resentations in the incremental LM setting is that
relations between the target token and subsequent
tokens are entirely ignored, whereas constituency
graphs can back off to higher-level structures. Fur-
ther, the syntactic graphs we use are always trees,
so they never populate the coparent capacity in the
slices. Semantic constituency representations, with
their abstract and meaning-oriented labeling and
structure schemes, jump out as being especially
predictive of the underlying text, as compared to
both syntax and shallow semantics.

We note that the function-enhanced PTB label

set has a slight advantage over the basic phrase-
structure labels; and that, among the two closely
related pairs of formalisms (DM/EDS and PSD/
PTG, which each are dependency and constituency
versions converted from the same underlying gram-
mars), the constituency versions always work better
than the dependency versions in our setting. There
is, however, no consistent ranking between DM/
EDS on one hand and PSD/PTG on the other. In
terms of perplexity, EDS works better than PTG,
and PSD better than DM, but these differences are
not significant for accuracy.

6.3 Differences between Word Classes

To better understand where particular strengths
and weaknesses of the baseline LM and linguis-
tically enhanced models lie, we analyze subsets of
tokens by part-of-speech (POS) tag (table 4, see
appendix C for more details). Across all models
there is a clear and expected separation between
rather predictable function words, more perplex-
ing content words, and numbers, punctuation, and
miscellaneous tokens somewhere in the middle.

Average perplexity of the tested SLR models is
better than baseline GPT-2 in all POS classes but
one. The one exception is the noun class, where
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both the SLR macro-average and UD in particular
do not raise performance. Only EDS and DM show
perplexity improvements on nouns; PTB even has a
noticeable negative impact. We conjecture that this
may have to do with relatively deep NP nesting in
PTB (compared to the other formalisms), such that
the current slicing hyperparameters (relative types
and capacities) are too strict and hide informative
signals like modifiers and verb attachment.

Some formalisms seem to be particularly well-
suited for the prediction of certain POS: UD for
verbs; PTB and PTG for adpositions and subordi-
nating conjunctions; EDS for pronouns, determin-
ers, and numbers; PTG, PSD, and EDS for coor-
dinating conjunctions. The advantage of EDS and
DM on nouns, pronouns, determiners, and numbers
can likely be attributed to their explicit representa-
tion of variable binding/quantification. Similarly,
PTG and PSD have detailed categories for coordi-
nation, distinguishing, e.g., con- and disjunction.

For nouns and modifiers, the spread across for-
malisms is particularly wide, which suggests that
SLRs diverge quite a bit on these types of words
(e.g., whether adjectives and certain nouns can
count as predicates) and that this diversity has a
strong effect on utility for language modeling.

6.4 Model Ablations

The linguistically enriched models consist of a
substantial number of newly learned parameters—
around 50–60M each, an additional �50% the size
of vanilla GPT-2. Although model size does not
seem to be correlated with performance among the
SLR-enriched models, it could still be that the ad-
ditional capacity allows the models to store more
information about the words’ distributions than the
baseline GPT-2 model, without ever truly using the
concrete linguistic structures.

We check this by randomly shuffling (�) two
core graph properties: (i) the assignment of edge la-
bels, and (ii) the anchoring mapping between graph
nodes and word tokens in each graph. If the mod-
els are largely independent of the correct label and
structure assignments, these changes should have
a very small effect on performance (Dubossarsky
et al., 2018; Hewitt and Liang, 2019).

But on the contrary, we find that performance
worsens considerably in the ablated settings com-
pared to the full combined models of each formal-
ism (table 5, see appendix C for more details). This

12https://universaldependencies.org/u/pos/

Eval
Toks

Train
Vocab

Perplexity↓

POS GPT-2 UD EDS SLR Avg
All 22,596 27,344 45.9 32.7 24.7 29.3 ± 2.8

co
nt

en
t noun 7,731 18,435 142.5 122.0 98.0 122.6 ±13.9

verb 2,639 7,100 128.8 80.4 85.9 84.9 ± 4.5
mod 2,235 6,292 228.7 158.8 98.6 124.4 ±22.6

fu
nc

tio
n

aux 582 95 17.6 11.1 5.9 9.1 ± 2.1
adp 1,957 232 10.1 7.3 5.5 5.3 ± 1.6
part 645 27 3.7 2.0 1.6 1.9 ± 0.3
sconj 268 96 15.4 12.3 6.8 6.8 ± 3.9
cconj 548 35 13.0 7.4 1.9 4.1 ± 2.1
det 1,726 91 9.4 7.8 4.4 6.0 ± 1.3
pron 868 149 22.9 17.5 5.4 11.0 ± 4.0
num 719 1,059 72.6 57.1 47.5 54.1 ± 4.6
punct 2,527 68 4.9 2.3 2.7 2.6 ± 0.3
misc 151 183 7.0 4.6 4.0 4.5 ± 0.8

Table 4: Breakdown by Universal POS,12 in terms of
PPL of domain-trained GPT-2, two exemplary SLR-
combined models, and the macro-average ± stdev over
all SLR-combined models. Best results (within the vari-
ance) in each row are bolded. We show token counts
and observed vocabulary size for reference.

Ablation Applied in DM PTB SLR Avg
Full 31.4 29.0 29.3 ± 2.8� Labels testing +4.7 +73.9 +28.3 ±28.3� Anchors testing +34.8 +223.1 +106.0 ±73.1� Both testing +33.4 +207.4 +95.9 ±68.9� Labels training +1.4 +9.0 +4.2 ± 3.3� Anchors training +8.5 +17.5 +13.3 ± 4.6� Both training +7.8 +18.3 +13.4 ± 5.0� Labels both +1.3 +9.3 +4.3 ± 3.4� Anchors both +7.9 +17.5 +13.5 ± 5.0� Both both +7.3 +18.1 +13.6 ± 5.2� SLR both +14.5 +16.9 +16.6 ± 2.8

Table 5: Ablations measured in �PPL for two exem-
plary SLR-combined models and the macro-average ±
stdev over all SLR-combined models. Full and �SLR
correspond, respectively, to table 2’s rows 4 (DM) / 7
(PTB-fxn) and row 2 (GPT-2 +Domain).

confirms that the models really do acquire—and
are quite sensitive to—the graph-encoded linguistic
signals, relying to a large part on this new informa-
tion in making their predictions.

Shuffling only edge labels while leaving the
rest of the graphs unchanged has a smaller ef-
fect than changing how tokens are anchored in
the graph structure. This suggests that the linguis-
tic graphs’ entire structural arrangement of labels
and attention-like selection of context words play
a crucial role—more so than knowing the type of
each individual (correctly attached) grammatical
relations. Note that the � Anchors setting, too,
changes which edge labels are used in the predic-
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Training Efficiency LM Quality

Model �Speed ↑ �Size ↓ �PPL ↓ �Acc ↑
UD �50% �1.9M +2.9 ±.08 �0.4 ±.02
DM �47% +2.5M +1.6 ±.35 +0.1 ±.14
PSD �56% +9.1M +3.6 ±.23 �0.9 ±.15
PTB-phr �43% �1.9M +6.8 ±.39 �1.7 ±.11
PTB-fxn �86% +107.7M +10.5 ±.21 �2.7 ±.15
PTG �53% +5.9M +6.2 ±.22 �3.5 ±.03
EDS �47% �8.5M �0.2 ±.07 +0.1 ±.03

Table 6: Performance differences between R-GCN slice
encoder baseline and our concatenation-based encoder
(table 2). Relative differences (�) for speed in sentences
per second; absolute differences (�) otherwise. Means± stdev over 2 runs without early stopping.

tion of a given token, resulting in a smaller differ-
ence between � Anchors and � Both.

If a model has learned to rely on correct labels
and structure during training, then perturbing these
properties at test time has a highly adverse effect,
confusing the model and leading to a drastic de-
crease in performance—even worse than not con-
sulting SLR graphs at all! Given previous findings
that syntactic structure is to some extent already
learned in pretraining (Linzen et al., 2016; Tenney
et al., 2019b), we conjecture that this representa-
tional capacity gets offloaded to the graphs at train-
ing time, and thus test-time permutations fool the
PTB model to a much greater extent than DM.

As expected, exposing models to shuffled graphs
at training time renders the additional model pa-
rameters practically neutral, resulting in similar
perplexity as the base LM. In this case, it also does
not matter whether test-time graphs are correct or
random (training vs. both in column 2)—either way,
the model learns to mostly disregard the random
structure as noise.

6.5 Comparison with R-GCN Encoding

As an additional strong baseline, we compare our
concatenation-based slice vector encoding to a
graph neural network from the literature. We
choose relational graph-convolutional networks
(R-GCN; Schlichtkrull et al., 2018; Kipf and
Welling, 2017) as a suitable representative of this
type of model, which has been used successfully
by Wu et al. (2021) to encode DM graphs.

Results are shown in table 6. Contrasting with
table 2, there is a big difference in training speed:
our simple encoder is on average roughly twice as
fast as the computation-heavy alternative, whose
time and space complexity is dominated by the

number of labels.13

We observe at best similar LM quality as with
our concatenation method (EDS and DM), but for
most formalisms performance degrades. We follow
Schlichtkrull et al. and Wu et al. in using 2 R-GCN
layers with basis matrix regularization. Possible
disadvantages of this for encoding linguistic graphs
are the fixed path length (2 layers exclude parent’s
siblings; but 3 layers would include a lot of irrel-
evant information) and that many of the trained
parameters are shared between different relations.
In contrast, our concatenation encoding forces the
MLP input layer to learn distinct parameters for
each structural relative type and edge label.

7 Discussion

7.1 Related Work
Researchers have long been interested in scaffold-
ing sequential language models with linguistic-
structure-based inductive biases. Syntactic lan-
guage modeling dates back to the pre-neural era,
when Pauls and Klein (2012) and Gubbins and Vla-
chos (2013) generalized Markov assumptions from
word n-grams to syntactic subtrees. These ideas
have since been adapted to recurrent neural network
(RNN) LMs (Mirowski and Vlachos, 2015) and ex-
panded on (Dyer et al., 2016; Choe and Charniak,
2016; Shen et al., 2018, 2019). Ek et al. (2019)
condition RNN-LMs on predicted syntactic and
semantic (unstructured) tags, interestingly finding
less or sometimes no benefit, especially on the se-
mantic side. They hypothesize this might be due to
tagging errors—an issue our oracle setup avoids.

In the era of attention-based neural modeling of
language dominated by pretrained Transformers,
models are often finetuned for and evaluated on
specific NLP tasks—like semantic role labeling,
machine translation, natural language inference,
graph-to-text generation, or the GLUE benchmark
(Wang et al., 2019)—rather than language mod-
eling in its own right, which makes it difficult to
compare them directly to our findings. There have
been two main directions: One group of approaches
continues the old syntactic language modeling tra-
dition by incrementally generating words and SLRs
with either joint (Peng et al., 2019; Qian et al.,
2021; Sartran et al., 2022) or iteratively-coupled
LM and parser models (Choshen and Abend, 2021).
The second group assumes parsed input sentences,

13And this is a very optimistic estimate of R-GCN training
speed in practice; see appendix A.6.
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which are then used to guide the model, e.g. by di-
rectly optimizing Transformers’ attention weights
to reflect linguistic graph structures (Strubell et al.,
2018; Bai et al., 2021; Slobodkin et al., 2021).
Rather than controlling the existing sequential at-
tention, Hajdik et al. (2019) process serialized
graphs directly with a sequence-to-sequence model,
and Wu et al. (2021) extend a pretrained Trans-
former with an additional graph encoder. Notably,
Wu et al. (2021) and Slobodkin et al. (2021) exper-
iment with a few different semantic and syntactic
SLRs, while all other studies we have looked at are
limited to either syntax or very shallow semantics.

Another relevant line of work employs probing
tasks in investigating to what extent grammar and
meaning are already encoded in neural language
models trained predominantly on raw text with lit-
tle to no linguistic supervision (Linzen et al., 2016;
Tenney et al., 2019a,b; Hewitt and Manning, 2019;
Liu et al., 2019; Kim et al., 2019; Wu et al., 2020;
Geiger et al., 2021, inter alia). Among the probing
literature, the works of Kuznetsov and Gurevych
(2020) and Kulmizev et al. (2020) are noteworthy in
that they investigate subtle differences between dif-
ferent (versions of) frameworks roughly covering
the same representational scope, namely, semantic
roles and syntactic dependencies, respectively.

Orthogonal approaches to comparing SLR de-
signs have involved measuring how well different
frameworks complement each other for joint pars-
ing or can be merged or converted into one another
(Prange et al., 2019a; Hershcovich et al., 2020).

7.2 Limitations and Future Work
While the use of oracle graphs has both theoreti-
cal advantages (measuring an upper bound without
needing to account for potential errors or uncer-
tainties) and practical ones (saving the computa-
tional overhead from training and running a parser),
ground-truth SLR graphs are a very limited re-
source and generally assumed to only be available
at training time. There is no guarantee our results
translate to the non-oracle setting. For instance, it
could be that the most helpful abstract semantic
information is also the hardest to predict. And de-
spite segmenting the existing sentence-level graph
into token-level slices, the human annotator who
created the graph in the first place has seen and an-
alyzed the whole sentence, thus already resolving
crucial ambiguities and simplifying the task based
on knowledge ‘from the future’. In subsequent
work, we plan to parse graph slices incrementally,

which will both relax the conditional modeling as-
sumption into a more broadly interpretable joint
model and enable test-time use of the full system
on datasets without linguistic annotations.

We also only test formalisms that are explicitly
anchored in linguistic units, roughly corresponding
to LM (sub-)word tokens. This prevents us from
applying the same paradigm to some other widely-
used unanchored formalisms like AMR (Banarescu
et al., 2013) without some changes to the setup.

7.3 Broader Impact

Our experiments yield evidence which—at least
in the case of encoding contexts for next-word
prediction—supports the thesis of Bender and
Koller (2020), Trott et al. (2020), and others that
linguistic meaning goes beyond form. Computa-
tional models of language that exclusively learn
from even very large amounts of raw text are thus
generally expected to hit a ceiling14 which can only
be overcome with access to higher-level structures
and mechanisms of understanding.

It further seems to matter in which manner and
shape linguistic graph structure is drawn. Assum-
ing a perfect incremental parser, deeper structure
and semantic categorization seems to be particu-
larly beneficial for integration with a standard lan-
guage model. This is in line with previous findings
by, e.g., Tenney et al. (2019b) that while pretrained
LMs tend to encode shallow syntactic structure,
abstract relations are more difficult to probe for.

We thus see a promising research direction in
moving towards linguistic scaffolding of language
models with representations that are more complex
than tags or dependencies and that capture mean-
ingful relations beyond surface structure.

8 Conclusion

We have presented evidence that symbolic linguis-
tic representations of various frameworks have the
potential to aid a pretrained incremental Trans-
former in task-neutral next-word prediction. To
this end, we have proposed a framework-agnostic
neural encoding scheme for linguistic graphs and
applied it to an English dataset jointly annotated
with 7 different formalisms. The results highlight
the importance of appreciating complex linguistic
structure and handling its computational represen-
tation with nuance.

14See also Merrill et al. (2021) for formal proofs.

4383



Acknowledgements

We would like to thank Katrin Erk and Chris Dyer;
members of the Georgetown NERT/GUCL and
HKU NLP labs; the organizers, reviewers, and au-
dience of MASC-SLL 2022; as well as the anony-
mous ARR reviewers for their extremely insightful
feedback and suggestions.

References

Omri Abend and Ari Rappoport. 2017. The state of
the art in semantic representation. In Proc. of ACL,
pages 77–89, Vancouver, Canada.

Jiangang Bai, Yujing Wang, Yiren Chen, Yaming Yang,
Jing Bai, Jing Yu, and Yunhai Tong. 2021. Syntax-
BERT: Improving pre-trained transformers with syn-
tax trees. In Proc. of EACL, pages 3011–3020, On-
line. Association for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proc. of LAW-ID, pages 178–186,
Sofia, Bulgaria.

Emily M. Bender and Alexander Koller. 2020. Climbing
towards NLU: On meaning, form, and understanding
in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5185–5198, Online. Association for
Computational Linguistics.
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A Additional Modeling Details

A.1 Selecting Anchor Nodes

In case there are multiple anchoring options (see,
e.g., EDS nodes 0 vs. 1 for first token in figure 1),
we use the following tie-breaker heuristics: Select
the anchor node with the most parents and children;
if still a tie, select the anchor with the highest node
ID (tends to be hierarchically lower, i.e., vertically
closer to the token anchor).

A.2 Relative Types��� = ��,�,�,�,�,��, namely, parents ��, sib-
lings ��,�, grandparents��,�, aunts ��,� (all indexed
by parent �), children ��, and coparents ��,� (in-
dexed by child �). This is the anchor node’s Markov
blanket, plus siblings, grandparents, and aunts. We
chose this set of relations based on general no-
tions of linguistic hierarchy (predicate-argument,
head-dependent) and preliminary experiments, but
without tuning for specific formalisms. Precise def-
initions are given in table 7. Relative nodes are
permanently associated with the label of the edge
that got them selected.

A.3 Representing Tokens and Labels

We use GPT-2’s pretrained global embeddings
(from the lowest layer, before any local contex-
tualization) to obtain embeddings for relative token
anchors in the slice-vector. When a token anchor
in a linguistic graph consists of multiple BBPE to-
kens, we average their embeddings. We reuse the
transpose of the same embedding matrix again to
project the last hidden state of the token-emission
MLP into the vocabulary.

SLR edge labels are encoded as one-hot vectors
in the slice vectors, which lowers the potential for
unnecessary random initialization variance of from-
scratch embeddings.

A.4 Distinguishing Dependencies from
Constituencies

While this distinction—as defined in §5.2 in terms
of the anchoring mapping between graph nodes
and word tokens—can be subtle for individual
sentences, it nonetheless affects slice encoding.
In PSD, for example, auxiliaries are unanchored,
whereas in PTG they are grouped with their main
predicate (figure 2).

rel Name Definition ��� parent {� � (�, ��) � �} 2��,� sibling {� � (�, �) � �} �� � �� 2��,� grandparent {� � (�,�) � �} �� � �� 1��,� aunt {� � (�, �) � � � � � ��,�} 2�� � ���� child {� � (�� , �) � �} 2��,� coparent {� � (�, �) � �} �� � �� 1

Table 7: Relative types and capacities.

A.5 Model Hyperparameters
We report our model and training hyperparameters
in table 8. We did not perform explicit hyperparam-
eter tuning, besides some manual testing early in
development on a subset of the MRP shared task
data. Those data are annotated with SLR frame-
works other than the ones we compare here, and we
ended up excluding them from our experiments for
lack of overlap with most of the other frameworks’
annotations.

A.6 Efficient Batching for R-GCN
In our incremental setting we need to apply the
R-GCN to each token-level slice, which would lead
to multiple days15 of training for each model if
done naively. We achieve a considerable speedup
by exploiting the oracle graphs at training and eval-
uation time to pre-compute slices and running the
R-GCN only once per sentence batch.

B Data Preprocessing

B.1 Sentence Filtering
To establish a common ground for comparison, we
take the intersection of sentences occurring in the
annotated datasets of all linguistic formalisms.

In a first step, we discard two sentences whose
linguistic graph in at least one formalism is
empty.18 We then select only those 35,513 train-
dev / 1,401 eval sentences that appear in both the
MRP 2019 and 2020 datasets (the 2019 corpus con-
tains 143/1,958 more in train-dev/eval).19 Next,

15Projected timeline based on a few iterations, which is
confirmed by Yang and Deng (2020).

16For label set �. The factor 16 arises from the capacities
chosen (table 7), and the extra embedding allocation is for
averaged preceding unanalyzable/within-anchor tokens.

17For bidirectional label set ��, which is twice as big as �.
18The sentence “It is.” in DM and a ‘sentence’ consisting

of the @-symbol in PTG.
19‘train-dev’ refers to the data split that was used as training

data in both the MRP and 2019 tasks, and which we split 90%/
10% into our training and development data. ‘eval’ refers to
the data that was used as evaluation data in MRP 2019 and as
development data in MRP 2020, and which we evaluate our
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Figure 2: Example of subtle differences in constituency
(PTG) and dependency (PSD) versions of the same un-
derlying formalism, the Prague Functional Description.
PTG has an abstract PRED node as well as a multiword
anchor where PSD does not, which results in diverging
slice representations for the last two tokens.

we take the intersection of these sentences and
OntoNotes 5.0, which contains the gold PTB syn-
tax annotations. 26,719/929 sentences remain in
the train-dev/eval set. The MRP graph format oper-
ates on raw-text character offsets, while PTB and
UD trees operate on word tokens. We are able re-
construct offset-based text anchors for PTB and
UD from the raw text strings used in the MRP data
for all but 394 train-dev / 8 eval sentences, which
leaves us with the final 26,325 train-dev and 921
eval sentences.

In a few cases, where the linguistic graph has
no edges, we add an artificial edge with a dummy
label.

B.2 Tokenization

We follow the sentence segmentation of the Penn
Treebank corpus. Within sentences, we obtain
token boundaries from GPT-2’s pretrained byte-
level byte-pair encoding (BBPE) tokenizer. The
BBPE tokens are then aligned with the formalism-
dependent SLR node anchors via raw-text charac-
ter offsets. Tokens that are continuations of mul-
tiword anchors in the graph (‘ reported’ in PTG,
figure 1); subword tokens of a single graph an-
chor (‘N-umerous’); or are unanchored in the graph
(‘ were’ in EDS), are treated as unanalyzable, i.e.,
their slice consists of a copy of the preceding to-

models on.

GPT-2

Embedding dim 768
Vocabulary 50,257
Activation GELU
Dropout 0.1
Learning rate 1e-6

MLP

Input dim 16 � ��� + 17 � 76816

Layers 2
Hidden dims 1,024; 768
Activation ReLU
Dropout 0.2
Learning rate 1e-4

R-GCN

Input dim 768
Layers 2
Hidden dims 768; 768
Activation ReLU
Basis matrices �0.1 � �����17

Learning rate 1e-4

Other training settings

Epochs 10
Batch size 8

Table 8: Model and training hyperparameters

ken’s slice, plus the preceding within-anchor to-
kens.

B.3 UD Conversion

Quasi-gold UD 2.0 trees are obtained from
the UD converter released with the Java Stan-
ford Parser v4.2.0 (https://nlp.stanford.edu/
software/lex-parser.html) on the PTB trees.

B.4 PTB Labels

By convention, phrasal and functional labels in
PTB are node labels. To match the labeled-edges-
unlabeled-nodes format of the other formalisms,
we losslessly convert them to edge labels (namely,
on each node’s single incoming edge), discarding
the preterminal nodes’ POS labels. In preliminary
experiments we saw that including the POS tags is
much more beneficial than phrase structure only;
but since we do not include word-level tags in any
of the other conditions, this would be an unfair
comparison. We focus here on sentence-level struc-
ture and leave studies of word-level tags to future
work.

B.5 Data Splits

We split the corpus into training/development and
evaluation data following the MRP task setup.
Specifically, we evaluate on the data split that was
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used as evaluation data in MRP 2019 and as de-
velopment data in 2020, as only for this data gold
annotations in all formalisms have been released.
We do not perform empirical hyperparameter tun-
ing. In early development, a small subset of the
data was used.

C Detailed Results

We report detailed results without early stopping
(table 9), breakdowns by POS-class (table 10
and appendix C.1), as well as ablation experi-
ments (table 11) for all SLR formalisms. In ta-
bles 4 and 10 and figure 3 we merge the POS tags
{NOUN, PROPN} into ‘noun’, {ADJ, ADV} into
‘mod’, and {INTJ, SYM, X} into ‘misc’.

C.1 Lexico-Semantic or Syntactic
Knowledge?

In §6.3 we have found part-of-speech-specific pat-
terns of model performance. But whenever, for a
certain syntactic word class �, a formalism � is
more conducive to next-word prediction than a for-
malism �, it is not clear whether this is the case
because the choices get narrowed down to � itself
or whether it is caused by either complementary
or completely independent signals, perhaps at the
lexical or semantic-structure levels.

We investigate this by rerunning the experiment
with each token’s UPOS tag as an additional input.
If this is more or less the same information as is
gained—to different extents—from the SLRs, then
the results should be similar to before, and SLR-
conditional differences should disappear.

A few particularly interesting POS subsets are
shown in figure 3. We discuss them in order.

Among content words, nouns and verbs are sim-
ilar both in terms of baseline performance and in
how much easier it becomes to select the correct
lexical item if the part-of-speech is known. At the
same time, the individual SLR formalisms differ
quite a lot in how much information they contribute
about the POS class itself and about lexical choice
within the part-of-speech. The respective best for-
malisms (EDS for nouns, PTB and UD for verbs)
approximate oracle POS knowledge by themselves
and still contribute substantial complementary in-
formation when the actual POS tag is revealed. In
contrast, PTB does not seem to provide any useful
signal about nouns to the incremental LM—neither
independently nor in conjunction with the POS.

Modifiers (adjectives and adverbs) display a

rather interesting behavior: the fact that a word
of this type is coming next is very hard to predict
from just the preceding raw context, which makes
sense since they tend to add optional meaning on
top of the (obligatory) logical and grammatical
content. However, once the decision to modify has
been made, the contextual choice becomes much
easier than that for nouns or verbs. In both cases,
all SLRs are quite helpful, with UD on the lower
end and EDS leading the field.

We find similar tendencies among auxiliaries
(�function verbs) and pronouns (�function nouns)
as with (content) verbs and (content) nouns, but
naturally at a much smaller scale. Despite their
functional-grammatical distribution and behavior,
the semantic frameworks EDS and PTG consis-
tently outperform the syntactic ones UD and PTB
even on these ‘small’ words. A possible explana-
tion for this interaction with auxiliaries in particular
could be that EDS and PTG do not analyze them
separately at all, but rather group them, respec-
tively, with the preceding context20 or their main
predicate. The models might be able to leverage
this to focus on things like subject-verb agreement,
local cohesion, or anticipating the main predicate.
More explicit syntactic analyses of auxiliaries (in-
crementally inaccessible forward-pointing depen-
dencies in UD; VP-nesting in PTB), in contrast,
may restrict the model from directly making these
connections. Adding POS information in the input
decreases SLR-dependent differences.

For ‘subordinators’ in the broad sense, i.e., sub-
ordinating conjunctions at the clausal level and
adpositions for nominal complements, PTB and
PTG are particularly well-suited. By themselves
they are already at least as informative as POS, and
they still add a small but noticeable complementary
signal when the POS is revealed.

Determiners and coordinating conjunctions,
which both already show extremely low perplexity
with some SLR models (namely, EDS, PSD, and
PTG), entirely lose any reliance on particular SLRs
when their POS is known.

20EDS, like PSD, actually has no anchors for auxiliaries;
we attach them to the preceding semantic unit by default.
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Training Efficiency Language Model Quality

Model Scope/Struct #Labels Speed ↑ Size ↓ PPL ↓ H [nats] ↓ Acc [%] ↑ Conf [%] ↑ MRR ↑
GPT-2 – 124.4M 59.3 4.09 30.0 31.2 .403
+ Domain 15 45.8 ±.03 3.61 ±.002 33.4 ±.05 35.3 ±.02 .436 ± .3e-3

+ UD syn dep 39 14 +54.1M 35.2 ±.24 3.09 ±.014 39.2 ±.11 42.3 ±.18 .488 ± .8e-3

+ DM sem dep 59 15 +54.4M 34.2 ±.32 3.05 ±.019 38.8 ±.15 42.5 ±.26 .490 ±1.0e-3

+ PSD sem dep 90 16 +54.9M 34.1 ±.43 2.96 ±.014 39.2 ±.17 44.0 ±.17 .491 ±1.4e-3

+ PTB-phr syn const 38 14 +54.1M 33.5 ±.30 2.97 ±.026 40.3 ±.09 43.9 ±.34 .500 ± .6e-3

+ PTB-fxn syn const 537 14 +62.7M 32.4 ±.37 2.92 ±.030 41.1 ±.18 44.8 ±.36 .507 ±1.3e-3

+ PTG sem const 72 15 +54.6M 29.6 ±.20 2.68 ±.028 43.4 ±.08 48.8 ±.32 .524 ± .5e-3

+ EDS sem const 10 15 +53.6M 26.6 ±.09 2.78 ±.024 43.1 ±.10 46.6 ±.24 .527 ± .8e-3

Table 9: Main results without early stopping: performance of language models combined with 7 SLR formalisms
of different scope, structure, and label set (each corresponding to a �Ensemble in §4.3), compared to vanilla GPT-2
and a version of GPT-2 that has been domain-finetuned on the raw text of the SLR training corpus (���). We report
each quality metric as mean ± stdev over 5 random seeds. We also report model size in #parameters and training
speed in sentences per second as measures of efficiency. Best results in each column are bolded. For confidence,
‘best’ means best-calibrated, i.e., the smallest relative difference to accuracy.
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Figure 3: Model perplexity (lower is better) with UPOS as additional input. Top left: nouns, verbs, and modifiers; top
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