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Abstract 
Little attention has been paid on EArly Rumor 
Detection (EARD), and EARD performance 
was evaluated inappropriately on a few datasets 
where the actual early-stage information is 
largely missing. To reverse such situation, we 
construct BEARD, a new Benchmark dataset 
for EARD, based on claims from fact-checking 
websites by trying to gather as many early 
relevant posts as possible. We also pro-
pose HEARD, a novel model based on neural 
Hawkes process for EARD, which can guide a 
generic rumor detection model to make timely, 
accurate and stable predictions. Experiments 
show that HEARD achieves effective EARD 
performance on two commonly used general ru-
mor detection datasets and our BEARD dataset. 

1 Introduction 

The proliferation of online rumors has aroused 
widespread concerns. Many studies have been con-
ducted for automatic rumor detection in social me-
dia and achieved high detection accuracy (Ma et al., 
2016, 2017; Yu et al., 2017; Ruchansky et al., 2017; 
Ma et al., 2018; Guo et al., 2018; Bian et al., 2020). 
However, these generic detection methods lack in-
depth modeling of temporality, which can cause 
tremendous delay in detection given the instanta-
neous and sporadic nature of rumor propagation. 

While a few EArly Rumor Detection (EARD) mod-
els have been proposed (Liu and Wu, 2018; Zhou 
et al., 2019; Song et al., 2019; Xia et al., 2020), they 
have been designed with oversimplifcation and 
evaluated inappropriately using the datasets con-
structed for generic rumor detection. Widely used 
rumor detection datasets, such as TWITTER (Ma 
et al., 2016) and PHEME (Zubiaga et al., 2016), 
are generally limited in covering relevant posts in 
the early stage as there was no mechanism ensur-
ing to gather information that is further away from 
the offcial debunking time of a rumor. For this 
reason, the generalizability of EARD cannot be 

Time Post 

2015-07-07 Translucent butterfy - beautiful!
T.ORG. 

2015-10-01 #Snopes Translucent Butterfy URL 

2013-02-08 Ever see a translucent butterfy? 
2013-06-24 fake...like bubbles 

T.REC. 
2014-09-03 ...fake, a Worth1000 Photoshop contest entry 
2014-10-06 Multiple repeat fakes 

01-08 00:00 . . . courtesy of Banksy. 
P.ORG. 

01-08 14:39 ...it is not by Banksy its by @LucilleClerc 

01-07 20:09 Banksy for Charlie... 
01-07 23:48 That’s not Banksy though, just someone fan page 

P.REC. 01-08 00:14 . . . I don’t think that Banksy Insta is offcial is it? 
01-08 08:33 The person (not B.) shared it from another source.
01-08 09:55 Not Banksy btw. It’s @LucilleClerc 

Table 1: A rumor in TWITTER dataset claiming "A but-
terfy with translucent wings" and another from PHEME 
claiming "A street artist Banksy posted an illustration 
on the Instagram as tribute to Charlie Hebdo". T. (P.) de-
notes TWITTER (PHEME) dataset, and ORG. (REC.) 
denotes the original (recollected) set of posts. The earli-
est post in each set is in Italic. 

effectively trained nor be genuinely refected using 
a general rumor detection dataset. As an exam-
ple, we showcase two rumors from TWITTER and 
PHEME datasets in Table 1. We manually trace 
Twitter conversations about each claim and recol-
lect as many early posts relevant to it as we could. 
It is observed that the original posts in both datasets 
are clearly delayed as compared to our recollected
posts. Also, the rumor indicative patterns in the rec-
ollected posts unfold differently, where dissenting 
voices, a common indicator of rumor, appear much 
earlier and may last for many hours or even years, 
evolving from vaguely opposing the claim (e.g., 
‘like bubbles’, ‘someone’) to frmly refuting it with 
evidence (e.g., ‘Photoshop contest’). The origi-
nal “early” posts in PHEME clearly fail to cover 
such useful patterns refecting the early dynamics, 
and the posts in TWITTER do not cover any early 
indicative signals before the rumor was offcially 
debunked by Snopes. Given the unavailability of 
EARD-specifc dataset, it is necessary to construct 
a Benchmark dataset for EARD (BEARD) consid-
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ering the earliness of relevant posts to gather. 

Meanwhile, EARD methods have not been well 
studied either in the literature. Prior works claimed 
as being able to do early detection can be divided 
into two categories, both of which are sub-optimal: 
1) Methods that are unable to automatically de-
termine a time point for confrming the detec-
tion (Zhao et al., 2015b; Nguyen et al., 2017; Wu 
et al., 2017; Liu and Wu, 2018; Xia et al., 2020). 
Typically, such methods apply a generic rumor 
detection model to report a decision of classif-
cation (e.g., rumor or non-rumor) at each of the 
pre-determined checkpoints while leaving the de-
termination of the best detection point to human 
judge. This is subject to a delayed decision as 
the results at the later checkpoints also need to be 
examined. 2) Methods that are trained to automat-
ically determine an early detection point, but can-
not guarantee the stability of decision (Zhou et al., 
2019; Song et al., 2019). For example, CED (Song 
et al., 2019) decides an early detection point using 
a fxed probability threshold to assess if the current 
prediction is credible or not. However, prediction 
probability does not really refect model’s conf-
dence (Guo et al., 2017), and such decision without 
properly modeling the uncertainty beyond the de-
cision point may fail to give a timely and reliable 
detection because the prediction could fip over and 
over again afterwards with new posts fow in. 

In this work, we propose a new method called 
Hawkes EArly Rumor Detection (HEARD) to 
model the stabilization process of rumor detection 
based on a Neural Hawkes Process (NHP) (Mei 
and Eisner, 2017), which can automatically deter-
mine when to make a timely and stable decision of 
detection. The basic idea is to construct a detection 
stability distribution over the expected future pre-
dictions based on a sequence of prior and current 
predictions, such that an optimal time point can be 
fxed without any delay for awaiting and checking 
the upcoming data beyond that point. Our main 
contributions can be summarized as follows1: 

• We introduce BEARD, the frst EARD-oriented 
dataset, collected by covering as much as pos-
sible the early-stage information relevant to the 
concerned claims. 

• We propose HEARD, a novel EARD model 

1Dataset and source code are released at https:// 
github.com/znhy1024/HEARD 

based on the NHP to automatically determine 
an optimal time point for the stable decision of 
early detection. 

• Extensive experiments show that HEARD 
achieves more effective EARD performance as 
compared to strong baselines on BEARD and two 
commonly used general rumor detection datasets. 

2 Related Work 

2.1 Early Rumor Detection 

Despite extensive research on general rumor de-
tection, early detection has not been studied well. 
Many studies claimed that their general detection 
models can be applied to early detection by simply 
fed with data observed up to a set of pre-determined 
checkpoints (Ma et al., 2016; Yu et al., 2017; Ma 
et al., 2017, 2018; Guo et al., 2018; Bian et al., 
2020). Nevertheless, how to determine an opti-
mal early detection point from many checkpoints 
is missing and non-trivial, as deciding when to stop 
often needs to check the data or model’s outputs 
after the current checkpoint, causing delays of de-
tection. 

Some methods were claimed further as designed 
for early detection. Zhao et al. (2015b) proposed to 
gather related posts with skeptical phrases, and per-
formed detection with cluster-based classifers over 
real-time posts. Nguyen et al. (2017) developed a 
hybrid neural model for post-level representation 
and credit classifcation, which were incorporated 
with the temporal variations of handcrafted features 
for detecting rumors. Wu et al. (2017) clustered rel-
evant posts and selected key features from clusters 
to train a topic-independent classifer for reveal-
ing emergent rumors. Xia et al. (2020) employed 
burst detection to segment an event into sub-events 
and trained an encoder for each sub-event repre-
sentation for incremental prediction. None of the 
above methods really address the key issues of 
early detection as they lack mechanisms enforcing 
the earliness, and they cannot automatically fx an 
optimal detection point either. 

ERD (Zhou et al., 2019) used deep reinforcement 
learning to enforce model to focus on early time 
intervals for the trade-off between accuracy and ear-
liness of detection, and is the frst EARD method 
that can automatically decide to stop or continue at 
a checkpoint. Song et al. (2019) proposed another 
EARD method called Credible Detection Point 
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(CED) using a fxed probability threshold to de-
termine if detection process should stop depending 
on the credibility of current prediction. However, 
these models are unstable or of low confdence be-
cause the uncertainty of future predictions is not 
taken into account in training. 

2.2 Rumor Detection Datasets 
Quite a few rumor detection datasets based 
on social media posts relevant to a set of 
claims were released, such as TWITTER (Ma 
et al., 2016), PHEME (Zubiaga et al., 2016), 
RumourEval-2017/19 (Derczynski et al., 2017; 
Gorrell et al., 2019), FakeNewsNet (Shu et al., 
2020), etc.. RumourEval-2017/19 are minor vari-
ants of PHEME while FakeNewsNet is never used 
for EARD. These datasets were built for general 
detection of rumors without much consideration 
on the earliness of information. Thus, the actual 
early-stage social engagements may not be cov-
ered by different data collection mechanisms used, 
such as applying a rigid time cut-off in Search API 
or launching a real-time gathering with Streaming 
API after a news outbreak. To our best knowledge, 
there is no dataset specifcally built for early rumor 
detection task. 

3 BEARD Corpus Construction 

We scrape the text of title, claim, debunking 
time and veracity label in the articles on the fact-
checking website snopes.com. Our goals are 
two-fold: 1) The collected posts are not only rele-
vant to the claim but can diversely cover copious 
variations of relevant text expressions; 2) The col-
lection can cover posts of early arrival, possibly 
ahead of the pertinent news exposure on the main-
stream media. 

To this end, we frstly construct high-quality search 
queries for Twitter search. An original query is 
formed from the title and claim of each article, 
with stop words removed. Since the lengthy query 
might harm the diversity of search results, we uti-
lize some heuristics to obtain a substantial set of 
variants of each query potentially with better result 
coverage in Twitter search: i) We preform synonym 
replacement to create a set of variants of the query; 
ii) We shorten each variant by removing its words 
one by one with carefully crafted rules to maintain 
useful information, e.g., named entities, for good 
search quality, while keeping the remaining words 
after each removal as a new variant. As a result, we 

obtain a substantial set of variants of the original 
query and merge the Twitter search results of each 
query and all its variants. 

To cover early posts, each Twitter search is per-
formed in an iterative fashion. To avoid ground-
truth leakage, we frst obtain the possible earli-
est offcial debunking time of the given claim by 
cross-checking its similar claims in a range of fact-
checking websites (see Appendix A.1). From the 
earliest debunking time, we search backward for 
the relevant posts within M days prior to debunk-
ing, and then push back further N days earlier than 
before in each iteration until the number of newly 
gathered posts in an iteration becomes less than 1% 
of the posts obtained from the previous iteration. 

Finally, for each retrieved post, we use its conver-
sation ID to fnd the root post of the conversation it 
is engaged in. We utilize Sentence-BERT (Reimers 
and Gurevych, 2019) to retain those root posts with 
cosine similarities to the claim being higher than an 
empirical threshold. Thus far, we have obtained a 
set of conversation IDs for each claim which are led 
by different root posts (see Appendix A.4 for post-
processing). Then we fetch from Twitter all the 
posts in the detected conversations along with the 
root posts into our fnal collection as an instance, 
and label the conversation as rumor if the corre-
sponding claim is from the “Fact Checks” category 
on the Snopes or non-rumor if it is from the “News” 
category. 

Due to space limit, we provide the details of search 
queries construction in Appendix A.2, and the set-
tings of iterative Twitter search in Appendix A.3. 

4 Problem Defnition 

Let C = {C} denote a set of instances, 
where each C = {y, S} consists of the 
ground-truth label y ∈ {0, 1} and a set of 
relevant posts in chronological order  � S = 	
(m1, τ1), ..., (mi, τi), ..., (m|S|, τ|S|) . y indi-

cates C is a rumor if y = 1 or a non-rumor oth-
erwise. |S| is the number of relevant posts in S. 
Each tuple (mi, τi) ∈ S includes the text content 
mi and the timestamp τi of the i-th post, where τi 
is defned as the time difference between the frst 
and the i-th post, such that τ1 = 0 and τi−1 ≤ τi 
for i > 1. In other words, τi can be regarded as the 
elapsed time relative to the earliest post so that the 
timelines of different instances are aligned. 
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Figure 1: The architecture of HEARD. When the current observation arrives at time ti, rumor detection predictions
from LSTM ŷi and ŷi−1 are used to update PI count I(ti). Then the intensity function λ(t) is computed by CTLSTM
for t > ti. HEARD will determine ti as the earliest time point with stable prediction ŷi and stop if the stability
prediction Î(t∞) equals to I(ti), or continue otherwise.

Following the pre-processing method in most prior
studies (Ma et al., 2016; Song et al., 2019; Zhou
et al., 2019), we divide each posts sequence into
a sequence of intervals to avoid excessively long
sequence. We chop a sequence S into intervals
based on three strategies: 1) fixed posts number,
2) fixed time length and 3) variable length in each
interval (Zhou et al., 2019). Hence S is converted
to X = {(xi, ti)}|X|

i=1, where |X| is the number
of intervals, xi = {mi,1,mi,2, ...,mi,|xi|} and
ti = τi,|xi| which is the timestamp of the last post
mi,|xi| in the i-th interval. Then, we merge the
posts falling into the same interval as a single post.

We define the EARD task as automatically deter-
mining the earliest time t̂ ∈ {ti}, such that the
prediction ŷ ∈ {0, 1} at t̂ for a given claim is accu-
rate and remains unchanged afterwards with time
goes by. It is worthwhile to mention that since ti
relates to the granularity of intervals, it might af-
fect the precision of a decision point based on the
formed intervals. In practice, however, we will try
to make the intervals small for keeping such impact
marginal.

5 HEARD Model

Figure 1 shows the architecture of HEARD, which
contains two components: 1) the rumor detection
component predicts rumor/non-rumor label at each
time step/interval; 2) the stabilization component
models the prediction stabilization process and de-
termines when to stop at the earliest detection point.

We will describe them with detail in this section.

5.1 Rumor Detection Modeling

A standard LSTM cell (Hochreiter and Schmid-
huber, 1997) followed by a fully-connected layer
is utilized for rumor detection in each interval.
For any (xi, ti) ∈ X , xi can be turned into a
vector ei by a text representation method, e.g.,
TF-IDF (Salton and Buckley, 1988), CNN (Kim,
2014), BERT (Devlin et al., 2019), etc.. Taking
ei as input, the LSTM cell gets the hidden state
hi = LSTM(ei) and forwards it through the fully-
connected layer to perform prediction. The pre-
dicted class probability distribution of an instance
at ti is calculated as pr

i = σ(Whi + b) and thus
the predicted class is ŷi = argmax(pr

i ), where σ(·),
W and b are sigmoid function, weight matrix and
bias, respectively.

5.2 Stabilization Process Modeling

Prediction Inverse (PI). Our rumor detection com-
ponent keeps observing the posts stream and out-
puts a prediction sequence ŷ1, ŷ2, ŷ3, . . . along the
time steps. During the process, newly arrived posts
may provide updated features rendering the next
decision of rumor detection to invert from rumor
to non-rumor or the other way round. Presumably,
the predictions would get stabilized when sufficient
clues are accumulated over time. By modeling such
a process, we aim to fix the earliest time ti when
the model can produce a stable prediction, meaning
that there will be no expected inverses of prediction
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occurring from ti onward. Thus, we need to train 
the model for learning the expected future PIs to 
maximize its stability of prediction. 

As a future PI can occur unforseeably at any time, 
we introduce I(t) as a cumulative count of PIs up 
to any time point t in a continuous time space to 
accommodate the uncertainty. Then a PI counts 
sequence I(t1), I(t2), I(t3) . . . can be obtained 
from the prediction sequence. Clearly, we have 
I(t1) = 0, and I(ti) = I(ti−1) + 1 if ŷi = ŷi−1 

or I(ti) = I(ti−1) otherwise. Additionally, we de-
note Hti = {(I(t1), t1), . . . , (I(ti−1), ti−1)} the 
history of PI counts up to t ∈ (ti−1, ti], and de-
note ∆I(ti, tj ) = I(tj ) − I(ti) the difference of 
PI counts between ti and tj for j > i. 

̸

Neural Hawkes Process (NHP). General Hawkes 
process (Hawkes, 1971) is a doubly stochastic point 
process for modeling sequence of discrete events 
in continuous time, which has been successfully 
applied in social media research, such as model-
ing the popularity of tweets (Zhao et al., 2015a), 
rumor stance classifcation (Lukasik et al., 2016), 
fake retweeter detection (Dutta et al., 2020), and 
extracting temporal features for fake news detec-
tion (Murayama et al., 2020). Given a sequence 
of events E1, E2, E3, . . . which occur at the corre-
sponding time points t1, t2, t3, . . . and N(t) that is 
the number of events occurring up to time t, a uni-
variate Hawkes process with a conditional intensity 
that indicates expected arrival rate of future events 
at t is defned as (Yang and Zha, 2013): 

Z t 
λ(t) = µ + κ(t − s)dN(s) (1) 

−∞ 

where µ ≥ 0 is the base intensity of event and 
κ(·) is a manually specifed monotonic kernel func-
tion that shows how the excitation from history de-
cays with time. It assumes that arrived events can 
temporarily raise the probability of future events 
but the infuence monotonically decays over time. 
However, this assumption is very strong which 
limits its ability for modeling complex dynamic 
point processes. In rumor diffusion, prediction in-
verse is the event infuenced by many factors, such 
as what users express in historical and upcoming 
posts, which may bring tremendous uncertainty 
of prediction invalidating the monotonic decay as-
sumption. Thus, we propose to adopt an NHP (Mei 
and Eisner, 2017) to capture the complex effects by 
utilizing a RNN with continuous-time LSTM (CTL-

STM) to learn the intensity function. CTLSTM ex-
tends the vanilla LSTM with an interpolation-like 
mechanism so that its hidden state for controlling 
intensity can be updated discontinuously with each 
event occurrence and also evolves continuously as 
time elapses towards the next upcoming event. 

Intensity Function Estimation. We use NHP to 
model the dynamics of PI (i.e., event) and approxi-
mate a detection stability distribution over the ex-
pected future predictions based on the sequence 
of historical and current predictions. As shown in 
Figure 1, CTLSTM reads the current observation 
(I(ti), ti) to obtain λ(t) for any t > ti, so that 
the distribution over the expected PI counts can 
be approximated. The intensity function λ(t) is 
controlled by a hidden state he(t) as follow: 

λ(t) = f(Wf · he(t)) (2) 

where Wf  is a weight matrix and f(x) = β log(1 + 
exp(x/β)) is the softplus function to obtain a pos-
itive intensity with a scale parameter β (Mei and 
Eisner, 2017). 

To model the unknown future for t > ti based 
on historical representation he(ti), a new hidden 
cell vector ec(t) is introduced to control how he(t) 
continuously evolves over time. Specifcally, I(ti) 
is frstly transformed to a vector at ti by a fully-
connected layer to join the updates in CTLSTM. 
Then, CTLSTM updates the hidden state he(t) that 
has been evolving towards he(ti) based on ec(t) for 
t ∈ (ti−1, ti]. Thus, a richer representation of 
history can be learned by taking into account the 
dynamics of impact between the two consecutive 
observations. Meanwhile, to model the expected 
future PI count, ec(t) is updated to a new state with 
the current cell input, which is analogous to how 
vanilla LSTM updates hidden cell2, and from the 
new state, ec(t) begins to continually approximate a 
target state that is defned by CTLSTM to represent 
an expected state of ec(t) for t →∞. 

Expected Stabilization. λ(t) indicates the ex-
pected instantaneous rate of future PIs from t on-
ward. We can predict the value of I(t∞) (t∞ 

denotes t → ∞) and further determine an ex-
pected earliest stabilized observation (I(ti∗ ), ti∗ ), 
such that ti∗ = min{ti | ∆I(ti, t∞) = 0, i ∈ 
{1, . . . , |X|}}. Hence, ti∗ indicates the expected 

2The difference is that vanilla LSTM updates the hidden 
cell based on that of the previous time step while the update 
here is based on ec(t) for t → ti. 
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i 
Le = |∆Î  − ∆I| − log 1 − (6)i |X| 

earliest time that the predictions remain unchanged 
after it. We approximate ∆I(ti, t∞) by

Z ∞ 

∆Î(ti, t∞) = λ(t)dt (3) 
ti 

where Î(·) constantly denotes a predicted PI count. 
We use Monte Carlo trick to handle all integral 
estimations (Mei and Eisner, 2017). Given ti∗ , 
HEARD fnally outputs ŷi∗ as the stable prediction 
for early rumor detection. 

5.3 HEARD Model Training 
We utilize a next observation (I(ti+1), ti+1) pre-
diction task to train CTLSTM. With PIs as the 
indicator of model stability, CTLSTM aims to ft 
the sequence of observations Hti+1 obtained from 
the predictions of the rumor detection module. 

Specifcally, Î(ti+1) can be obtained from I(ti) + 
ˆ∆I(ti, ti+1), and the difference value ˆ∆I(ti, ti+1) 

is either 1 or 0 which can be predicted as 
ˆ∆I(t c c

i, ti+1) = argmax(pi ), where we infer pi  = 
σ(W ′ he(ti) + b′  ) with trainable parameters W ′ 

and b′  . For predicting ti+1, a density pi(t) is for-
mulated as 

� Z �t 

pi(t) = λ(t) exp − λ(s)ds (4) 
ti 

Then we use the minimum Bayes risk predictor for 
time prediction (Mei and Eisner, 2017):

Z ∞ 

t̂i+1 = E[ti+1|ti, Hti ] = pi(t)tdt (5) 
ti 

where E[·] is an estimator for choosing an optimal 
time point t to minimize the expectation of risks. 

The overall loss consists of three terms on rumor 
detection, expected earliest stable time and CTL-
STM. Concretely, given an instance C with input 
sequence X = {(xi, ti)}, let y be the one-hot en-
coding of ground-truth label (i.e., rumor or not). At 
each time of observation ti, the cross-entropy loss 
between prediction and ground truth is defned as 
Lr = −y · log pr
i i . For the expected earliest stable 

time, the loss at ti is defned as 
� � 

where the frst term is the loss of 3 ∆I(ti, t∞) ap-
proximation in Eq. 3, and the second term encour-
ages the model to select an earliest time possible. 

3For simplicity, ∆I(ti, t∞) and ˆ∆I(ti, t∞) are denoted 
as ∆I and ˆ ∆I in Eq. 6, respectively. 

Dataset Instances # Posts # AvgLen (hrs) 

TWITTER 
R 
N 

498 
494 

182,499 
466,480 

2,538 
1,456 

PHEME 
R 
N 

1,972 
3,830 

31,230 
71,210 

10 
19 

BEARD 
R 
N 

531 
667 

2,644,807 
657,925 

1,432 
1,683 

Table 2: Statistics of datasets. R: Rumor; N: Non-rumor. 

The loss incurred from CTLSTM is given as 

cLc = −∆I · log pi + |t̂i+1 − ti+1| (7)i 

where ∆I is the one-hot encoding of target 
∆I(ti, ti+1), the frst term is the loss of next pre-
diction inverse and the second term is the loss of 
time prediction for next observation. 

Our objective is to minimize the cumulative loss 
up to ti∗ when the early detection decision is made: 

  1 Pi∗ 
L = L r

i Li = L + e  L + Lc
i∗ i=1 , where i i i . We 

use stochastic gradient decent (SGD) mini-batch 
training over all training instances. 

6 Experiments and Results 

6.1 Experimental Setup 

Datasets. We use BEARD, TWITTER (Ma et al., 
2016) and PHEME (Zubiaga et al., 2016) datasets 
in the evaluation. BEARD contains 1,198 rumors 
and non-rumors reported during 2015/03-2021/01 
with around 3.3 million relevant posts. We hold out 
20% of instances for tuning, and the rest are ran-
domly split with a ratio of 3:1 for training/test. Re-
sults are averaged over 5 splits. In Table 2, we show 
the statistics of TWITTER, PHEME and BEARD 
datasets. 

Baselines. We compare HEARD with four state-of-
the-art baselines using their original source codes: 
1) BERT (Devlin et al., 2019) is fne-tuned on the 
“earliest rumor detection” task (Miao et al., 2021), 
in which the early detection strategy is to output 
a prediction using only the frst post of each in-
stance. 2) CED (Song et al., 2019) uses a fxed 
probability threshold to check if the prediction is 
credible for determining the early detection point. 
3) ERD (Zhou et al., 2019) uses a Deep Q-Network 
(DQN) to enforce the model to focus on early 
posts for determining the time point to stop and 
output the detection result. 4) STN (Xia et al., 
2020) use a time-evolving network to represent 
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X1 iC
SEA = 1ŷi∗ =y + 1 − 

3|C| |C|
� 

C∈C �� 
∆I(ti∗ , t|X|) 

+ 1 − |X| − i∗ 

state-independent sub-events in posts sequence for 
classifying claims at each checkpoint. 

6.2 Experimental Settings 
To balance the sequence length and granularity 
of time intervals, we pre-process posts sequences 
in the three datasets differently. We merge every 
10 posts in BEARD and every 2 posts in TWIT-
TER while we only merge the posts with the same 
timestamp in PHEME due to its generally short 
sequences. For each interval, both ERD and STN 
use pre-trained word embeddings to initialize the 
embedding matrix and fne-tune it in the training, 
while CED uses the TF-IDF method (Salton and 
Buckley, 1988), all of which follow the settings in 
the original papers (Song et al., 2019; Zhou et al., 
2019; Xia et al., 2020). We also follow the orig-
inal CED setting by using TF-IDF with 1,000 di-
mensions for representing the posts in each time 
interval. 

The hidden size of standard LSTM is set to 128 
with the dropout rate of 0.1, and the size of CTL-
STM is set to 64. We pad all the sequences in a 
batch to the same length as the longest one, with the 
batch size of 16. We use the Adam (Kingma and Ba, 
2015) with a learning rate of 2e-4 for optimization. 
To avoid overftting, we add a L2 regularization 
with the weight of 1e-4. All values are fxed based 
on the validation set. 

Our model HEARD is implemented using Pytorch4. 
We use the original source codes of all the base-
lines: CED5 and ERD6 are implemented with Ten-
sorFlow; BERT7 are implemented with Pytorch, 
and we use the base uncased pre-trained model; 
The code of STN is obtained directly from the au-
thors of the original paper (Xia et al., 2020) which 
is implemented with Pytorch. All the experiments 
are conducted on a server with 4*12GB NVIDIA 
GeForce RTX 2080 Ti GPUs. 

6.3 Evaluation Metrics 
We use the general classifcation evaluation metrics 
accuracy and F1-score together with several EARD-
specifc metrics (see below) for evaluation. 

Early Rate (ER) (Song et al., 2019) is defned asP 
the utilization ratio of posts:  ER = 1 iC 

|C| C∈C |C| 
4https://pytorch.org/ 
5https://github.com/thunlp/CED 
6https://github.com/DeepBrainAI/ERD 
7https://github.com/huggingface/ 

transformers 

where C is the test set, iC implies the early detec-
tion decision is made at the i-th post in instance 
C and |C| is the number of posts in it. Lower ER 
means the model can detect rumors earlier. 

Early Detection Accuracy Over Time (EDAOT). 
The metric of detection accuracy over time widely 
used (Ma et al., 2016; Zhou et al., 2019; Xia et al., 
2020) is unsuitable for EARD models as it en-
forces a model to output a decision at each check-
point whereas an EARD model can decide its own 
optimal decision point which may be earlier and 
more accurate than its output at the checkpoint. 
Our variant requires a model output result only 
when it cannot make an early decision before a 
given checkpoint while both accuracy and aver-
age time of decisions will be presented. Specif-
cally, given a set of checkpoints at time {t1, ..., tk}, 
at the j-th checkpoint, the detection accuracy is P 1
Acc

ŷ ∗ =yi
tj = C∈C |C| , where the binary func-

tion 1 takes 1 if ŷi∗ = y or 0 otherwise. And the P 
average time of decisions is tAvgT ∗i

tj = C∈C |C| ,
where ti∗ ≤ tj , and ti∗ = tj if the model cannot 
make a decision before tj . 

Stabilized Early Accuracy (SEA) is a newly de-
fned comprehensive metric considering accuracy, 
earliness and stabilization: 

� � �

where the frst term is the ratio of correctly pre-
dicted instances at the predicted time point ti∗ in-
dicating accuracy, the second term is the ratio of 
posts after ti∗ indicating earliness, and the third 
term is the ratio of unchanged predictions after ti∗ 

indicating stability. The value of SEA is bounded 
in [0, 1] and higher SEA means better performance. 

6.4 Results and Analysis 

The main results are provided in Table 3. We show 
the EDAOT results in Figure 2. 

Results of Classifcation. STN uses the entire 
timeline of each instance since it cannot automati-
cally determine an early detection point. As shown 
in Table 3, however, it only achieves comparable 
Accuracy and F1 as ERD and CED and is much 
worse than HEARD, even though it was reported 
much better than CED on TWITTER in previous 
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(a) TWITTER (b) PHEME (c) BEARD 

Figure 2: Early detection accuracy over time within 48 hours. X-axis: timeline; Y-axis: accuracy; Vertical lines: 
checkpoints; Dots with shapes: decision points; Time above a dot: Deadline (i.e., checkpoint) set for the model. 

Dataset Model Acc F1 ER SEA 

TWITT 

BERT 
ERD 
STN 
CED 

HEARD 

0.623 
0.696 
0.682 
0.685 
0.716 

0.599 
0.699 
0.649 
0.682 
0.714 

0.026 
0.999 
1.000 
0.811 
0.348 

0.768 
0.566 
0.561 
0.620 
0.789 

PHEME 

BERT 
ERD 
STN 
CED 

HEARD 

0.839 
0.784 
0.810 
0.800 
0.823 

0.820 
0.753 
0.787 
0.695 
0.805 

0.163 
0.976 
1.000 
0.884 
0.284 

0.830 
0.602 
0.603 
0.638 
0.841 

BEARD 

BERT 
ERD 
STN 
CED 

HEARD 

0.565 
0.709 
0.711 
0.769 
0.789 

0.452 
0.708 
0.690 
0.740 
0.788 

0.091 
1.000 
1.000 
0.674 
0.490 

0.758 
0.570 
0.570 
0.689 
0.765 

Table 3: Early rumor detection results. 

work (Xia et al., 2020)8. This implies that the early 
detection models are promising which can use a 
prior fraction of posts to achieve similar or much 
better results. It also suggests that capturing early-
stage features is important to more accurate rumor 
detection. Only using the source post for detection, 
BERT gives worst Accuracy and F1 on TWITTER 
and BEARD, but it gets unexpectedly high perfor-
mance on PHEME. We inspect this issue by follow-
ing the prior analysis (Schuster et al., 2019) based 
on Local Mutual Information (LMI) (Evert, 2005) 
and Pointwise Mutual Information (PMI) (Church 
and Hanks, 1990). We fnd that the source posts 
in PHEME have spuriously much stronger correla-
tion with the class labels. Appendix B.1 discusses 
such bias and the possible cause. This observation 
suggests data sampling bias exists in the existing 
dataset, and thus the model’s decision based on the 
source post only can be misleading and insuffcient. 

8The CED performance reported in (Xia et al., 2020) is an 
excerpt from (Song et al., 2019) based on half of the TWIT-
TER data, while they experimented STN using the full data. 

Results of ER and SEA. Table 3 also shows that 
HEARD consistently outperforms ERD and CED 
in large margin based on ER and SEA, indicating 
HEARD is more effective and stable. HEARD con-
siderably improves CED by 57%, 68% and 27% in 
ER and by 27%, 32% and 11% in SEA on TWIT-
TER, PHEME and BEARD, respectively. ERD’s 
high ER scores entails that it can hardly make early 
decision, as this DQN-based model seems weak 
on its reward function, which gives a small penalty 
to continuation but a large one to termination with 
wrong predictions (Zhou et al., 2019), discouraging 
it from stopping early. BERT only uses the frst 
post for detection which thus obtains the lowest ER. 
Note that a model being expectantly stable at the 
time of decision means the prediction will remain 
unchanged even though new data could be seen 
by the model after that. To probe its stability, we 
enforce model to continue outputting predictions 
at the checkpoints later than its decision point. We 
can see that HERAD still outperforms BERT on 
SEA on all the datasets indicating it is more stable. 

Results of EDAOT. Figure 2 shows that HEARD is 
clearly superior over the baselines in accuracy, ear-
liness and stability at the checkpoints. ERD looks 
relatively stable but it hardly makes early detection 
due to aforementioned reason. Our conjecture is 
that its DQN module forces it to overly focus on the 
frst few intervals while deferring the decision to 
the end due to the weak reward design, resulting in 
nearly no improvement even with more data. Note 
that in EDAOT evaluation a model should stop once 
it outputs a prediction for a given checkpoint (i.e., 
deadline). Thus, BERT reports all the predictions 
using only the frst post, rendering the same ac-
curacy at checkpoints. Interestingly, HEARD can 
make especially fast decisions on PHEME which 
only uses a little less than 6 hours given a 48-hour 
deadline. The reason might be the average length 
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7 

(a) Germanwings (b) Darkest baby 

Figure 3: (a) A rumor in PHEME on “The co-pilot of Germanwings fight 9525 was Muslim convert”; (b) A rumor 
in TWITTER on “A photograph shows the darkest baby in the world”. Y-axis: the number of collected posts; X-axis: 
timeline in minutes (m)/days (d); Colored bar: the semantic similarity between the posts in any time step and the 
posts in the decision time step, where the red bar denotes recollected data and the blue one denotes original data. 
The similarity ranges from 0.7 to 1.0, and the darker the color the more similar the posts are. 

of instances in PHEME is only around 14 hours as 
compared to over 1,000 hours in other two datasets, 
which HEARD can especially beneft from in the 
training. However, considering the fact that the 
PHEME (and TWITTER) dataset may fail to cover 
the real early information, such a very quick detec-
tion on it could be an illusion since the patterns the 
model actually uses for the decision are from the 
midst of rumor propagation. 

Case Study 

In this section, we give an intuitive illustration to 
reveal 1) why BEARD is more suitable for EARD 
task; and 2) how HEARD is more advantageous 
than the state-of-the-arts with automatic early time 
point determination. Specifcally, we recollect 
the relevant posts of rumor cases in PHEME and 
TWITTER using our data construction method for 
BEARD. To analyze the frst question, we inspect 
the posts before and after the recollection as shown 
in Figure 3. In the original posts, the actual early-
stage timelines of both cases are largely missing. 
Our recollected data can cover the important de-
nial and questioning posts signaling rumors in the 
early stage. This observation indicates that our 
data collection method has improved coverage by 
recalling these actual early information which is 
not available in the existing datasets. 

To analyze the second question, we display the de-
tection outputs of different models before and after 
the recollection. HEARD consistently detects ru-
mors with less time than CED and ERD since it au-
tomatically terminates when stabilization process 
estimates the expected future prediction inverse 

will not change. The correctness of such expec-
tation could be refected by the value of semantic 
similarity, which almost has no change with new 
posts coming in after the detection point, implying 
the future prediction results are expected stable. 

8 Conclusion and Limitation 

We introduce BEARD, a new benchmark dataset 
collected for early rumor detection, and propose 
a model called HEARD to perform stable early 
rumor detection based on neural Hawkes process. 
Experiments show that HEARD achieves overall 
better performance than state-of-the-art baselines. 
Analysis entails BEARD is more suitable for the 
early rumor detection task. 

There are some cases that a rumor seems to be 
stable over an extended time period but is even-
tually refuted by an authoritative source later. It 
is because sensational discussions are more attrac-
tive to some social media users than facts, which 
leads to signals in support of the rumor are usually 
much stronger in social media, and the fnal cor-
rection often has only small engagement. In such 
cases, our model HEARD based on social media 
alone could be misled by the signals of only one 
source. In future, we plan to study incorporating 
authoritative sources of information to alleviate this 
phenomenon on social media, such as statements 
of offcial platforms, scientifc sources, etc.. 
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A Corpus Construction Protocols 

A.1 Claims Collection 

Snopes is a well-known fact-checking website 
where fact-checkers manually collect check-worthy 
claims from multiple sources (e.g., social media, 
e-mail, news, etc.) and review each claim to report 
a decision in terms of “Fact Checks” (i.e., rumors 
being fact-checked) or “News” (i.e., non-rumors of 
no need to check). Further, the checkers verify the 
rumors and compose detailed fact-checking articles 
for justifying the veracity of rumors. 

9 

We utilize Snopes to collect the claims for con-
structing our data instances in terms of rumors 
and non-rumors. There are around 10k+ claims 
on Snopes in total (up to the end of 2021), but 
majority of them have very limited exposure on 
Twitter. Specifcally, we include the claims into our 
collection based on the following principles: (1) 

9https://www.snopes.com/ 
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We only include the claims that were published in 
recent 6 years since they have relatively more com-
plete exposure on Twitter (e.g., aged posts might 
be more likely to get deleted); (2) We only include 
the claims that have relevant posts on Twitter be-
fore the claim was offcially debunked. As a result, 
we collect 531 rumor and 667 non-rumor claims 
reported during 2015/03-2021/01. For each claim, 
we scrape the text of article title, the claim, the 
debunking time and the veracity label. 

We also try to exclude posts that may leak the 
ground truth since a claim might have been fact-
checked by other fact-checking websites, thus 
the truth might have been referenced in the so-
cial media posts, such as the rumor example in 
TWITTER shown in Table 1. To minimize the 
chance of ground truth leakage, therefore, we 
match each claim from Snopes across the claims 
from a handful set of fact-checking websites in-
cluding FactCheck.org10 and PolitiFact.com11 to 
get the possible earliest offcial debunking time, 
from which we begin collecting the relevant posts 
backwards in time. 

A.2 Query Construction 

For each claim, we construct a set of high-quality 
search queries for Twitter search to diversely cover 
relevant posts. Firstly, we concatenate the title and 
claim of an article followed by stop words removal 
to flter out noise, resulting in an original query. 
Since the original query might be long and harm 
the diversity of search results, we carry out the 
following ad hoc operations to shorten the query 
for maintaining maximum useful information and 
possibly broadening the coverage of retrieved posts: 
(1) We perform synonym replacement with Natural 
Language Toolkit (NLTK) (Bird et al., 2009) to 
create a variant of the query for each replacement; 
(2) For each variant obtained in (1), we use Google 
Search API12 to search for this altered query and 
rank by the frequencies of the highlighted words 
that are hit in the top-100 searched snippets; (3) 
We then shorten the original query and its variants 
obtained in (2) by removing the highlighted words 
that are contained in the queries one by one starting 
from the low-frequency words, while keeping the 
remaining words after each removal as a variant of 

10https://www.factcheck.org/ 
11https://www.politifact.com/ 
12https://developers.google.com/ 

custom-search/v1/overview 

the query, until the shortest variant is left with three 
words. Note that here we perform named entity 
recognition by NLTK on the original query and the 
words that are parts of named entities will not be 
removed as they are useful for search. 

A.3 Iterative Twitter Search 

To prevent early quit of iteration caused by the 
intermittent sparse distribution of posts along the 
timeline, we manually adjust the values of M and 
N by trial and error with different instances to 
gather as much early posts as we can. We also man-
ually check the search results based on a sample of 
instances using different settings of the termination 
threshold, i.e., the ratio of the number of gathered 
posts in each iteration over that in the previous iter-
ation. We observe that too high threshold hinders 
early posts to be searched out, but too low threshold 
tends to introduce more noise. We fnally set 1% as 
the termination threshold by trading off earliness 
and noise. 

A.4 Posts Collection 

Rather than merging the conversations led by dif-
ferent root posts regarding the same claim into a 
large conversation, it is more realistic to remain 
them naturally separated since the conversations 
originate from different sources and the merge may 
introduce unnecessary bias. And we drop all the 
posts that are published after the offcial debunking 
time of each claim to avoid ground truth leakage. 

B Experimental Details 

B.1 Bias Evaluation on Datasets 

As mentioned in Section 6.4, we utilize LMI and 
PMI to examine the data sampling bias in the exist-
ing datasets and BEARD. The top-5 LMI-ranked 
words of PHEME, TWITTER and BEARD are 
shown in Table 4. The top-5 LMI-ranked words of 
PHEME have much higher LMI and PMI than the 
other two datasets indicating the high correlations 
between the words of source posts and the label. 
Meanwhile, the words in PHEME, e.g., ‘breaking’, 
‘hostages’, ‘shot’, etc., are more eyes-catching com-
paring to the top ranked words in other two datasets. 
These idiosyncrasies might be introduced by the 
construction method of PHEME in a sense that 
journalists might see a timeline of posts about the 
breaking news and then annotate source posts of 
conversations, which are easily utilized by BERT 
to obtain high classifcation performance. Some 
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 Dataset Word LMI·10−6 PMI 

breaking 2,720 0.75 
hostages 2,569 0.66 

PHEME soldier 2,378 1.00 
shot 2,308 0.79 
cafe 2,283 0.74 

not 1,214 0.38 
black 780 0.45 

TWITT fag 745 0.49 
trump 637 0.39 
baby 589 0.53 

he 1,246 0.38 
they 722 0.26 

BEARD his 665 0.26 
by 598 0.19 
biden 580 0.51 

Table 4: Top-5 LMI-ranked words of source posts cor-
related with class label in three datasets. 

salient bias also exists in TWITTER dataset evi-
denced as some top words with high LMI and PMI, 
such as ‘black (lives)’, ‘fag’ and ‘trump’, while we 
do not observe such bias among the top words in 
BEARD. 
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