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Abstract
Self-augmentation has received increasing re-
search interest recently to improve named en-
tity recognition (NER) performance in low-
resource scenarios. Token substitution and
mixup are two feasible heterogeneous self-
augmentation techniques for NER that can
achieve effective performance with certain spe-
cialized efforts. Noticeably, self-augmentation
may introduce potentially noisy augmented
data. Prior research has mainly resorted to
heuristic rule-based constraints to reduce the
noise for specific self-augmentation methods
individually. In this paper, we revisit these two
typical self-augmentation methods for NER,
and propose a unified meta-reweighting strat-
egy for them to achieve a natural integration.
Our method is easily extensible, imposing little
effort on a specific self-augmentation method.
Experiments on different Chinese and English
NER benchmarks show that our token substi-
tution and mixup method, as well as their in-
tegration, can achieve effective performance
improvement. Based on the meta-reweighting
mechanism, we can enhance the advantages of
the self-augmentation techniques without much
extra effort.

1 Introduction

Named entity recognition (NER), which aims to
extract predefined named entities from a piece of
unstructured text, is a fundamental task in the nat-
ural language processing (NLP) community, and
has been studied extensively for several decades
(Hammerton, 2003; Huang et al., 2015; Chiu and
Nichols, 2016; Ma and Hovy, 2016). Recently,
supervised sequence labeling neural models have
been exploited most popularly for NER, leading to
state-of-the-art (SOTA) performance (Zhang and
Yang, 2018; Li et al., 2020a; Ma et al., 2020).

Although great progress has been made, devel-
oping an effective NER model usually requires a
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Figure 1: The main idea of our work, where the two
heterogeneous self-augmentation methods (i.e., token
substitution and mixup) are integrated by a unified meta
reweighting framework.

large-scale and high-quality labeled training corpus,
which is often difficult to be obtained in real-world
scenarios due to the expensive and time-consuming
annotations by human experts. Moreover, it would
be extremely serious because the target language,
target domain, and the desired entity type could all
be infinitely varied. As a result, the low-resource
setting with only a small amount of annotated cor-
pus available is far more common in practice, even
though it may result in significant performance
degradation due to the overfitting problem.

Self-augmentation is a prospective solution to
this problem, which has received widespread at-
tention (Zhang et al., 2018; Wei and Zou, 2019;
Dai and Adel, 2020; Chen et al., 2020; Karimi
et al., 2021). The major motivation is to gener-
ate a pseudo training example set deduced from
the original gold-labeled training data automati-
cally. For NER, a token-level task, the feasible
self-augmentation techniques include token sub-
stitution (Dai and Adel, 2020; Zeng et al., 2020)
and mixup (Zhang et al., 2020a; Chen et al., 2020),
which are deformed at the ground-level inputs and
the high-level hidden representations, respectively.

Nonetheless, there are still some limitations cur-
rently for the above token substitution and mixup
methods. For one thing, both of them require some
specialized efforts to improve their effectiveness
due to the potential noise introduced by the self-
augmentation, which may restrict the valid seman-
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tic representation of the augmented data. For in-
stance, token substitution is typically limited to the
named entities in the training corpus (Wu et al.,
2019), and the mixup tends to be imposed on the
example pairs with small semantic distance gaps
(Chen et al., 2020). For another thing, though the
two techniques seem to be orthogonal and probably
complementary to each other, it remains a poten-
tial challenge to effectively and naturally integrate
them.

In this work, we revisit the token substitution
and mixup methods for NER, and investigate the
two heterogeneous techniques under a unified meta
reweighting framework (as illustrated in Figure 1).
First, we try to relax the previous constraints to a
broader scope for these methods, allowing for more
diverse and larger-scale pseudo training examples.
However, this would inevitably produce some low-
quality augmented examples (i.e., noisy pseudo
data) in terms of linguistic correctness, which may
negatively affect the model performance. To this
end, we present a meta reweighting strategy for
controlling the quality of the augmented examples
and leading to noise-robust training. Also, we can
naturally integrate the two methods by using the
example reweighting mechanism, without any spe-
cialization in a specific self-augmentation method.

Finally, we carry out experiments on several
Chinese and English NER benchmark datasets to
evaluate our proposed methods. We mainly focus
on the low-resource settings, which can be simu-
lated by using only part of the standard training
set when the scale is large. Experimental results
show that both our token substitution and mixup
method coupled with the meta-reweighting can ef-
fectively improve the performance of our baseline
model, and the combination can bring consistent
improvement. Positive gains become more signif-
icant as the scale of the training data decreases,
indicating that our self-augmentation methods can
handle the low-resource NER well. In addition, our
methods can still work even with a large amount
of training data. The code is available at https:
//github.com/LindgeW/MetaAug4NER.

2 Our Approach

In this section, we firstly describe our baseline
model. Then, we present our self-augmentation
methods to enhance the baseline model in the low-
resource settings. Finally, we elaborate on our meta
reweighting strategy, which aims to alleviate the

negative impact of the noisy augmented examples
caused by the self-augmentation while also ele-
gantly combining these augmentation methods.

2.1 Baseline Model

NER task is typically formulated as a sequence
labeling problem, which transforms entities/non-
entities into token-level boundary label sequence
by using the BIO or BIOES schema (Huang et al.,
2015; Lample et al., 2016). In this work, we adopt
BERT-BiLSTM-CRF as our basic model architec-
ture which consists of four components: (1) input
representation, (2) BiLSTM encoding, (3) CRF de-
coding, and (4) training objective.

Input Representation Given an input sequence
X = (x1, · · · , xn) of length n, we first convert it
into sequential hidden vectors using the pre-trained
BERT (Devlin et al., 2019):

e1, · · · , en = BERT(X), (1)

where each token is mapped to a contextualized
representation correspondingly.

Encoding We use a bidirectional LSTM layer
to further extract the contextual representations,
where the process can be formalized as:

h1, · · · ,hn = BiLSTM(e1, · · · , en), (2)

where hi is the hidden state output of the i-th token
in the sequence (i ∈ [1, n]).

Decoding First, a linear transformation layer is
used to calculate the initial label scores. Then,
a label transition matrix T is used to model the
label dependency. Let Y = (y1, · · · , yn) be a label
sequence, the score s(Y |X) can be computed by:

oi = Whi + b,

s(Y |X) =
n∑

i=1

(Tyi−1,yi + oi[yi]),
(3)

where W , b and T are the model parameters. Fi-
nally, we employ the Viterbi algorithm (Viterbi,
1967) to find the best label sequence Y .

Training Objective We exploit the sentence-
level cross-entropy objective for training. Given
a gold-labeled training example (X,Y ), we have
the conditional probability p(Y |X) based on the
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Figure 2: An overview of the self-augmentation framework for NER.

scoring function defined in Equation 3, and then ap-
ply a cross-entropy function to calculate the single
example loss:

p(Y |X) =
exp

(
s(Y |X)

)
∑

Ỹ
exp

(
s(Ỹ |X)

) ,

L(X,Y ) = − log p(Y |X).

(4)

where Ỹ denotes the candidate label sequences.

2.2 Self-Augmentation

Self-augmentation methods can reduce the demand
for abundant manually-annotated examples, which
can be implemented at the input level and represen-
tation level. Token substitution and mixup are two
popular methods for NER that correspond to these
two distinct levels. Here, we try to extend these
two self-augmentation methods.

Token Substitution Token substitution aims to
generate pseudo examples based on the original
gold-labeled training data by replacing the tokens
of input sentence with their synonym alternatives
(Wu et al., 2019; Dai and Adel, 2020). For NER,
Wu et al. (2019) adopted this method to obtain
performance gains on Chinese datasets where the
substituted objects are limited to named entities.
Dai and Adel (2020) empirically demonstrated the
superiority of synonym replacement among various
augmentation schemes where the synonyms are
retrieved from the off-the-shelf WordNet thesaurus.

Our token substitution is performed by building
a synonym dictionary, which covers the named en-
tity synonyms as well as numerous normal word
synonyms. Following Wu et al. (2019), we treat
all entities of the same type from the training set

as synonyms, which are added to the entity dictio-
nary. We name it as entity mention substitution
(EMS). Meanwhile, we extend the substitution to
non-entity tokens (i.e., the corresponding label is
‘O’), which is named as normal word substitution
(NWS). Since unlabeled data in a specific domain
is easily accessible, we adopt the word2vec-based
algorithm (Mikolov et al., 2013; Pennington et al.,
2014) to mine tokens with similar semantics on
Wikidata via distributed word representation (Ya-
mada et al., 2020), and build a normal word syn-
onym dictionary from the k-nearest token set based
on cosine similarity distance. Note that this scheme
does not require access to thesaurus for a specific
domain in order to obtain synonyms.

Figure 2 presents an example of token substi-
tution, where EMS and NWS are both involved.
Specifically, for a given gold-labeled training ex-
ample (X,Y ), we replace the entity token of X
with a sampled entity from the entity dictionary
which has the same entity type, and meanwhile
replace the non-entity token of X with a sampled
synonym. Then, we can obtain a pseudo exam-
ple (X̄, Ȳ ). Especially, we balance the EMS and
NWS strategies based on a ratio γ by adjusting the
percentage of EMS operations, aiming for a good
trade-off between entity diversity and context di-
versity. And, we refer to this method as TS in the
rest of this paper for short.

Mixup for CRF Unlike token substitution per-
formed at the ground input, the mixup technique
(Zhang et al., 2018) generates virtual examples at
the feature representation level in the NLP field
(Guo et al., 2019). The main idea is to perform
linear interpolations on both the input and ground-
truth output between randomly sampled example
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pairs from the given training set. Chen et al. (2020)
presented the first work based on the token clas-
sification framework for the NER task, and their
mixup strategy is constrained to the examples pairs
where the input sentences are semantically similar
by using specific heuristic rules. Different from
their method, we extend the mixup technique to the
CRF decoding.

Formally, give an example pair (X1, Y1) and
(X2, Y2) randomly sampled from the gold-labeled
training set, we firstly obtain their vector rep-
resentations through Equation 1, resulting in
e1,1 · · · e1,n1 , and e2,1 · · · e2,n2 , respectively. Then
we apply the linear interpolation to obtain a new
virtual training example (X̄, Ȳ ). Here we assume
a regularization of pair-wise linear interpolation
over the input representations and the output scores,
where the following attributes should be satisfied:

X̄:

{
BERT(X̄) = ē1 · · · ēn
ēi = λe1,i + (1− λ)e2,i, i ∈ [1, n]

Ȳ :s(Ȳ |X̄) = λs(Y1|X̄) + (1− λ)s(Y2|X̄),

(5)

where n = max(n1, n2)
1 and λ is sampled from

a Beta(α, α) distribution (λ ∈ [0, 1] and α > 0).
According to this formulation, the loss function can
be reformulated as:

L(X̄, Ȳ ) = − log
exp

(
s(Ȳ |X̄)

)
∑

Ỹ
exp

(
s(Ỹ |X̄)

)

= λL(X̄, Y1) + (1− λ)L(X̄, Y2).

(6)

which aligns with the training objective of Equation
4. In this way, our mixup method can fit well with
the structural decoding.

2.3 Meta Reweighting
Although the self-augmentation techniques can ef-
ficiently generate numerous pseudo training exam-
ples, how to control the quality of augmented ex-
amples is a potential challenge that cannot be over-
looked. In particular, unlike sentence-level classifi-
cation tasks, entity recognition is highly sensitive
to the semantics of the context. While positive
augmented examples can help our model advance,
some low-quality augmented examples that are in-
evitably introduced during self-augmentation may
hurt the final model performance.

In this paper, we leverage a meta reweighting
mechanism to dynamically and adaptively assign

1Special zero-vector pads are used to align two sequences
with different lengths.

Algorithm 1 The training procedure of the meta
reweighting strategy

Input: Initial model parameters Θ(0), clean train-
ing dataset D, augmented training dataset D̂,
batch size m,n, training steps T

Output: Updated model parameters Θ(T )

1: for t = 1 to T do
2: Initialize the trainable parameter ϵ.
3: {xc, yc}← SampleMiniBatch(D, m).
4: {xa, ya}← SampleMiniBatch(D̂, n).
5: La ←

∑n
i=1 ϵiL(f(xa,i; Θ(t)), ya,i).

6: ∇Θ(t) ← Grad(La,Θ(t)).
7: Θ̂(t) ← Θ(t) − β∇Θ(t).
8: Lc ← 1

m

∑m
i=1 L(f(xc,i; Θ̂(t)), yc,i).

9: ∇ϵ← Grad(Lc, ϵ).
10: ŵ ← Sigmoid(−∇ϵ).
11: w ← ŵ∑

j ŵj+δ .

12: L̂a ←
∑n

i=1wiL(f(xa,i; Θ(t)), ya,i).
13: ∇Θ(t) ← Grad(L̂a,Θ(t)).
14: Θ(t+1) ← OptimizerStep(Θ(t),∇Θ(t)).
15: end for

the example-wise weights to each mini-batch of
training data, motivated by Ren et al. (2018). The
key idea is that a small and clean meta-data set
is applied to guide the training of model parame-
ters, and the loss produced by the mini-batch of
meta-data is exploited to reweight the augmented
examples in each batch online. Intuitively, if the
data distribution and gradient-descent direction of
the augmented example are similar to those of the
sample in the meta-data set, our model could better
fit this positive augmented sample and increase its
weight, and vice versa. In other words, the clean
and valid augmented examples are more likely to
be fully trained.

More specifically, suppose that we have a
set of N augmented training examples D̂ =
{(Xi, Yi)}Ni=1, our final optimizing objective can
be formulated as a weighted loss as follows:

Θ∗(w) = argmin
Θ

N∑

i=1

wiL(f(Xi; Θ), Yi), (7)

where wi ≥ 0 is the learnable weight for the loss
of i-th training example. f(·; Θ) represents the
forward process of our model (with parameter Θ).
The optimal parameter w is further determined by
minimizing the following loss computed on the
meta example set D = {(Xm

i , Y m
i )}Mi=1 (M ≪
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N):

w∗=argmin
w

1

M

M∑

i=1

L(f(Xm
i ; Θ∗(w)), Y m

i ),

(8)

Accordingly, we need to calculate the optimal
Θ∗ and w∗ in Equation 7 and 8 based on two nested
loops of optimization iteratively. For simplicity and
efficiency, we take a single gradient-descent step
for each training iteration to update them via an
online-approximation manner. At every training
step t, we sample a mini-batch augmented exam-
ples {(Xi, Yi)}ni=1 initialized with the learnable
weights ϵ. After a single optimization step, we
have:

Θ̂(t+1)(ϵ) = Θ(t) − β∇Θ

n∑

i=1

ϵiL(f(Xi; Θ), Yi),

(9)

where β is the inner-loop step size. Based on
the updated parameters, we then calculate the
loss of the sampled mini-batch meta examples
{(Xmeta

j , Y meta
j )}mj=1:

Lmeta(Θ̂)=
1

m

m∑

j=1

L(f(Xmeta
j ; Θ̂(t+1)), Y meta

j ),

(10)

To generalize the parameters Θ̂ well to the meta-
data set, we take the gradients of ϵ w.r.t the meta
loss to produce example weights and normalize it
along mini-batch:

ŵi = σ(−∇ϵiLmeta(Θ̂)
∣∣∣
ϵi=0

),

wi =
ŵi∑

j ŵj + δ
.

(11)

where σ(·) is the sigmoid function and δ is a small
value to avoid division by zero. Finally, we opti-
mize the model parameters over augmented exam-
ples with the calculated weights.

Algorithm 1 illustrates the detailed training pro-
cedure of the meta reweighting strategy. It is note-
worthy that the augmented training examples con-
tain the original clean training examples, which
serve as the unbiased meta-data. Since the algo-
rithm execution just requires a clear definition of
the training objective for the input examples, it
is also well adaptable for the virtual augmented
examples generated by our mixup method.

3 Experiments

3.1 Settings
Datasets To validate our methods, we conduct
experiments on Chinese benchmarks: OntoNotes
4.0 (Weischedel et al., 2011) and Weibo NER
(Peng and Dredze, 2015), as well as English bench-
marks: CoNLL 2003 (Sang and Meulder, 2003)
and OntoNotes 5.02 (Pradhan et al., 2013). The Chi-
nese datasets are split into training, development
and test sections following Zhang and Yang (2018)
while we take the same data split as Benikova et al.
(2014) and Pradhan et al. (2012) on the English
datasets. We follow Lample et al. (2016) to use
the BIOES tagging scheme for all datasets. The
detailed statistics can be found in Table 4.

Dataset Type Train Dev Test

OntoNotes 4
#sent 15.7k 4.3k 4.3k
#char 491.9k 200.5k 208.1k
#entity 12.6k 6.6k 7.3k

Weibo
#sent 1.4k 0.27k 0.27k
#char 73.8k 14.5k 14.8k
#entity 1.9k 0.4k 0.4k

CoNLL03
#sent 15.0k 3.5k 3.7k
#token 203.6k 51.4k 46.4k
#entity 23.5k 5.9k 5.6k

OntoNotes 5
#sent 59.9k 8.5k 8.3k
#token 1088.5k 147.7k 152.7k
#entity 81.8k 11.1k 11.3k

Table 4: Statistics of datasets. #sent and #entity stand for
the number of sentences and entity words, respectively.

Implementation Details We use one-layer BiL-
STM and the hidden size is set to 768. The
dropout ratio is set to 0.5 for the input and output
of BiLSTM. Regarding BERT, we adopt BERT-
base model3 (BERT-base-cased for the English
NER) and fine-tune the inside parameters together
with all other module parameters. We use the
AdamW(Loshchilov and Hutter, 2019) optimizer
to update the trainable parameters with β1=0.9 and
β2=0.99. For the BERT parameters, the learning
rate is set to 2e−5. For other module parameters ex-
cluding BERT, a learning rate of 1e−3 and weight
decay of 1e−4 are used. Gradient clipping is used
to avoid gradient explosion by a maximum value
of 5.0. All the models are trained on NIVIDIA

2https://catalog.ldc.upenn.edu/
LDC2013T19

3https://github.com/huggingface/
transformers
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Models ON 4 ON 5 CoNLL03
5% 10% 30% 5% 10% 30% 5% 10% 30%

Baseline 75.07 76.14 80.88 81.22 83.51 86.27 85.12 87.11 89.24
+ TS w/o MR 74.58 75.94 79.83 82.12 83.82 86.23 85.93 87.66 89.14
+ TS w/ MR 76.08 76.85 81.23 82.58 83.92 86.50 86.25 88.00 89.55
+ Mixup w/o MR 75.21 76.03 80.00 82.63 83.77 86.04 86.18 87.75 89.48
+ Mixup w/ MR 76.15 76.75 80.97 82.83 84.12 86.60 86.33 88.03 89.75
+ Both w/o MR 76.33 76.91 81.40 82.85 84.33 86.88 86.51 88.10 89.96
+ Both (Final) 76.82 77.13 81.66 82.98 84.52 87.09 86.76 88.25 90.12
Dai and Adel (2020) 75.05 76.75 81.24 82.47 83.90 86.55 86.22 87.86 89.91
Chen et al. (2020) – – – – – – 84.85 87.85 89.87
Chen et al. (2020) (Semi) – – – – – – 86.33 88.78 90.25

Table 1: Results on OntoNotes and CoNLL03 using 5%, 10%, and 30% of the training data. Semi: additional 10,000
unlabeled training examples are used.

Models ON 4 Weibo
Baseline 81.73 69.10
+ TS w/o MR 81.38 68.69
+ TS w/ MR 81.85 69.61
+ Mixup w/o MR 81.68 69.96
+ Mixup w/ MR 82.15 70.53
+ Both w/ MR 82.33 71.15
+ Both (Final) 82.48 71.42
Meng et al. (2019)† 81.63 67.60
Hu and Wei (2020) 80.20 64.00
Mengge et al. (2020) 80.60 69.23
Li et al. (2020a) 81.82 68.55
Nie et al. (2020a)† 81.18 69.78
Nie et al. (2020b) – 69.80
Li et al. (2020b)† 82.11 –
Ma et al. (2020) 82.81 70.50
Xuan et al. (2020)† 82.04 71.25
Liu et al. (2021) 82.08 70.75

Table 2: Performance comparisons using the full train-
ing data on OntoNotes 4 (ON 4) and Weibo. Previous
SOTA results are also offered for comparisons. † de-
notes external knowledge is used.

Tesla V100 (32G) GPUs. The higher library4

is utilized for the implementation of second-order
optimization involved in Algorithm 1.

For the NWS, we use the word vectors trained on
Wikipedia data5 based on the GloVe model (Pen-
nington et al., 2014) and build the synonym set
for any given non-entity word based on the top-5
cosine similarity, where stop-words are excluded.

4https://github.com/facebookresearch/
higher

5https://dumps.wikimedia.org/

Models CoNLL03 ON 5
Baseline 91.23 88.22
+ TS w/o MR 90.98 87.55
+ TS w/ MR 91.64 88.84
+ Mixup w/o MR 91.04 87.46
+ Mixup w/ MR 91.42 88.98
+ Both w/ MR 91.88 89.24
+ Both (Final) 92.15 89.43
Chen et al. (2020) 91.83 –
Clark et al. (2018)‡ 92.60 88.80
Fisher and Vlachos (2019) – 89.20
Li et al. (2020b)† 93.04 91.11
Yu et al. (2020)† 93.50 91.30
Xu et al. (2021)† – 90.85

Table 3: Performance comparisons using the full train-
ing data on CoNLL03 and OntoNotes 5 (ON 5). Previ-
ous SOTA results are also offered for comparisons. ‡
means the multi-task learning with more unlabeled data.
† denotes external knowledge is used.

As mentioned in Section 2.2, we defined two core
hyper-parameters for our self-augmentation meth-
ods, one for TS (i.e., γ) and the other for mixup
(i.e., λ). Specifically, we set γ = 20% and λ
by sampled from the Beta(α, α) distribution with
α = 7, where the details will be shown in the anal-
ysis section. Meanwhile, we conduct the augmen-
tation up to 5 times corresponding to the original
training data.

Evaluation We conduct each experiment by 5
times and report the average F1 score. The best-
performing model on the development set is then
used to evaluate on the test set.
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3.2 Main Results

The main results are presented in Table 1, 2 and
3, verifying the effectiveness of our method under
the low-resource setting and the standard full-scale
setting, respectively. Since Weibo is a small-scale
dataset, we do not consider its partial training set
for the low-resource setting.

Low-Resource Setting We randomly sample 5%,
10%, and 30% of the original training data from
OntoNotes and CoNLL03 for simulation studies.
Table 1 shows the results where F1 scores of the
baseline, +TS, +Mixup, and +Both are reported.
We can observe that: (1) the baseline performance
will drop significantly as the size of training data
get reduced gradually, which demonstrates the per-
formance of the supervised NER model relies heav-
ily on the scale of the labeled training data. (2)
although the number of training examples has in-
creased, vanilla self-augmentation (without meta
reweighting) might degrade the model performance
due to potentially unreliable pseudo-labeled ex-
amples. The meta reweighting strategy helps to
adaptively weight the augmented examples during
training, which combats the negative impact and
leads to a stable and positive performance boost.

In addition, as the scale of the training data de-
creases, the effectiveness of the augmentation meth-
ods can be more significant, indicating that our self-
augmentation methods are highly beneficial for the
low-resource settings, and the two-stage combina-
tion of the two heterogeneous methods can yield
better performance consistently.

Full-Scale Setting Table 2 and 3 show the results
using full-scale training data. The results demon-
strate that our baseline model is already strong.
The model after vanilla augmentation could per-
form slightly worse since each training example
is treated equally even if it is noisy. This also
implies our meta reweighting makes great sense.
Furthermore, our final model (+Both) can further
achieve performance gains by integrating these self-
augmentation methods with the meta reweighting
mechanism. The overall trend is similar to the low-
resource setting, but the gains are relatively smaller
when the training data is sufficient. That may be at-
tributed that the size of training data is large enough
to narrow the performance gap between the base-
line and augmented models. It also suggests that
our method does not hurt the model performance
even when using enough training data.

Comparison with Previous Work We also com-
pare our method with previous representative
SOTA work, where all referred systems exploit
the pre-trained BERT model. As shown, compared
to Dai and Adel (2020) and Chen et al. (2020),
our method either outperforms or performs on par
with theirs when using limited training data. For
Chen et al. (2020), the pure mixup performs slightly
better due to the well-designed example sampling
strategy, but our overall framework outperforms
theirs. Moreover, our method can match the per-
formance of the semi-supervised setting that uses
additional 10K unlabeled training data. Besides,
our final model, without utilizing much external
knowledge, can achieve very competitive results
on the full training set in comparison to most previ-
ous systems.

3.3 Analysis

In this subsection, we further conduct detailed ex-
perimental analyses on the CoNLL03 dataset for a
better understanding of our method. Our main con-
cern is on the low-resource setting, therefore the
models based on 5%, 10% and 30% of the original
training data are our main focus.

Augmentation Times The size of augmented ex-
amples is an essential factor in final model perfor-
mance. Typically, we examine the 5% CoNLL03
training data. As illustrated in Figure 3, the larger
pseudo examples can obtain better performance in
a certain range. However, as the times of augmen-
tation increases, the uptrend of performance slows
down. The improvement tends to be stable when
the pseudo samples are increased to about 5 times
the original training data. Excessively increasing
the augmentation times does not necessarily bring
consistent performance improvement. And we se-
lect an appropriate value for training data of differ-
ent sizes from a range [1, 8].

Influence of γ for Token Substitution Regard-
ing our TS strategy, we take both NWS and EMS
into account simultaneously. The two parts are
blended by a percentage parameter γ, namely γ
for EMS and 1 − γ for NWS. Here we examine
the influence of γ in the sole self-augmentation
model by TS. Figure 4 shows the results, where
γ = 0 and γ = 100% denote the model with only
NWS and EMS, respectively. As shown, our model
can achieve the overall better performance when
γ = 20%, indicating that both of them are helpful
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Figure 3: Influence of augmentation times for 5% train-
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data without any augmentation.
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Figure 4: Performance against different EMS rate γ.

for the TS strategy, and NWS can be slightly bet-
ter. One possible reason is that the entity words
in original training examples are relatively sparse
(i.e., the ‘O’ label is dominant), allowing the NWS
to produce more diverse pseudo examples.

Mixup Parameter We further inspect the model
with the mixup strategy alone so as to understand
the important factors of the mixup model. First, we
analyze the influence of the mixing parameter α.
As depicted in Figure 5, we can see that α indeed af-
fects the effectiveness of the mixup method greatly.
Considering the feature of Beta distribution, the
sampled λ will be more concentrated around 0.5 as
the α value becomes large, resulting in a relatively
balanced weight between the mixed example pairs.
The model performance remains stable when α is
around 7. Second, we study where to conduct the
mixup operation since there are two main options
in our framework, i.e., the hidden representations
of either the BERT or BiLSTM for linear inter-
polation. Table 5 reports the comparison results,
demonstrating the former is a better choice.

Case Study To further understand the effec-
tiveness of the meta-reweighting mechanism, we
present several high-quality and low-quality exam-
ples in Table 6. As shown, the difference between
the positive and negative examples for TS could be
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Figure 5: Performance against different mixing parame-
ter by Beta(α, α) distribution.

Method 5% 10% 30%
Baseline 85.12 87.11 89.24
Mixing on BiLSTM 86.15 87.66 89.41
Mixing on BERT 86.33 88.03 89.75

Table 5: Performance comparison of the mixup strategy
on BERT or BiLSTM layer.

reflected in the syntactic and semantic validity of
the augmented examples. Similarly, for the mixup,
it seems that the valid example pairs are more likely
to generate positive augmented examples.

4 Related Work

In recent years, research on NER has concen-
trated on either enriching input text representations
(Zhang and Yang, 2018; Nie et al., 2020b; Ma et al.,
2020) or refining model architectures with various
external knowledge (Zhang and Yang, 2018; Ye
and Ling, 2018; Li et al., 2020a; Xuan et al., 2020;
Li et al., 2020b; Yu et al., 2020; Shen et al., 2021).
Particularly, NER model, with the aid of large pre-
trained language models (Peters et al., 2018; Devlin
et al., 2019; Liu et al., 2019), has achieved impres-
sive performance gains. However, these models
mostly depend on rich manual annotations, making
it hard to cope with the low-resource challenges
in real-world applications. Instead of pursuing a
sophisticated model architecture, in this work, we
exploit the BiLSTM-CRF model coupled with the
pre-trained BERT as our basic model structure.

Self-augmentation methods have been widely
investigated in various NLP tasks (Zhang et al.,
2018; Wei and Zou, 2019; Dai and Adel, 2020;
Zeng et al., 2020; Ding et al., 2020). The main-
stream methods can be broadly categorized into
three types: (1) token substitution (Kobayashi,
2018; Wei and Zou, 2019; Dai and Adel, 2020;
Zeng et al., 2020), which performs local substitu-
tion for a given sentence, (2) paraphrasing (Kumar
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Augmentation Examples
Original [Diana]PER met [Will

Carling]PER at an ex-
clusive gymnasium in
[London]LOC.

Positive TS [Freddy Pinas]PER invited
[John Marzano]PER at an
available gym in [UK]LOC.

Negative TS [Tim Henman]PER visit
[Simpson]PER at an avail-
able room in [NICE]LOC.

Positive Mixup
French 1997 budget due
around September 10 -
Juppe.
Jewish 1999 deficit
due about October 20
M.Atherton.

Negative Mixup
Olympic champion Agassi
meets Karim Alami of Mo-
rocco in the first round.
Olympic champion
Nathalie Lancien of France
also missed the winning
attack.

Table 6: Case study on positive and negative augmenta-
tion with respect to the TS and mixup.

et al., 2019; Xie et al., 2020; Zhang et al., 2020b),
which involves sentence-level rewriting without sig-
nificantly changing the semantics, and (3) mixup
(Zhang et al., 2018; Chen et al., 2020; Sun et al.,
2020), which carries out the feature-level augmen-
tation. As a data-agnostic augmentation technique,
mixup can help improve the generalization and ro-
bustness of our neural model acting as an useful
regularizer (Verma et al., 2019). For NER, token
substitution and mixup are very suitable and have
been exploited successfully with specialized efforts
(Dai and Adel, 2020; Chen et al., 2020; Zeng et al.,
2020), while the paraphrasing strategy may result
in structure incompleteness and token-label incon-
sistency, thus there has not been widely concerned
yet. In this work, we mainly investigate the token
substitution and mixup techniques for NER, as well
as their integration. Despite the success of various
self-augmentation methods, quality control may be
an issue easily overlooked by most methods.

Many previous studies have explored the ex-
ample weighting mechanism in domain adaption
(Jiang and Zhai, 2007; Wang et al., 2017; Osumi

et al., 2019). Xia et al. (2018) and Wang et al.
(2019) looked into the example weighting methods
for cross-domain tasks. Ren et al. (2018) adapted
the MAML algorithm (Finn et al., 2017) and pro-
posed a meta-learning algorithm to automatically
weight training examples of the noisy label using
a small unbiased validation set. Inspired by their
work, we extend the meta example reweighting
mechanism to the NER task, which is exploited
to adaptively reweight mini-batch augmented ex-
amples during training. The main purpose is to
mitigate the potential noise effects brought by the
self-augmentation techniques, advancing a noise-
robust model, especially in low-resource scenarios.

5 Conclusion

In this paper, we re-examine two heterogeneous
self-augmentation methods (i.e., TS and mixup) for
NER, extending them into more unrestricted aug-
mentations without heuristic constraints. We fur-
ther exploit a meta reweighting strategy to alleviate
the potential negative impact of noisy augmented
examples introduced by the aforementioned relax-
ation. Experiments conducted on several bench-
marks show that our self-augmentation methods
along with the meta reweighting mechanism are
very effective in low-resource settings, and still
work when enough training data is used. The com-
bination of the two methods can lead to consis-
tent performance improvement across all datasets.
Since our framework is general and does not rely
on a specific model backbone, we will further in-
vestigate other feasible model structures.
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