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Abstract

Existing research on Tabular Natural Language
Inference (TNLI) exclusively examines the
task in a monolingual setting where the
tabular premise and hypothesis are in the
same language. However, due to the uneven
distribution of text resources on the web across
languages, it is common to have the tabular
premise in a high resource language and the
hypothesis in a low resource language. As
a result, we present the challenging task of
bilingual Tabular Natural Language Inference
(bTNLI), in which the tabular premise and
a hypothesis over it are in two separate
languages. We construct EI-INFOTABS: an
English-Indic bTNLI dataset by translating
the textual hypotheses of the English TNLI
dataset INFOTABS into eleven major Indian
languages. We thoroughly investigate how pre-
trained multilingual models learn and perform
on EI-INFOTABS. Our study shows that the
performance on bTNLI can be close to its
monolingual counterpart, with translate-train,
translate-test and unified-train being strongly
competitive baselines.

1 Introduction

Tabular Natural Language Inference (TNLI) is the
task of classifying whether a textual hypothesis is
an entailment, contradiction or a neutral extension
of the given tabular premise. The task requires a
broad range of reasoning abilities, including but
not limited to the ability to make lexical, spatio-
temporal, and semantic deductions. Recently
published datasets, TabFact (Chen et al., 2020b)
and INFOTABS (Gupta et al., 2020), have enabled
the examination of the TNLI task. Moreover,
sophisticated models based on deep contextual
embeddings like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), etc. trained under
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Joe Strummer
Birth Name John Graham Mellor
Born 1952-08-21 Ankara, Turkey
Died 2002-12-22 Broomfield,

Somerset, England
Genres Punk Rock, Post Punk
Occupation(s) Musician, Songwriter,

Radio Host, Actor
Instruments Vocals, Guitar, Piano
Years Active 1970-2002
Labels CBS, Sony, Hellcat,

Mercury
Associated Acts The 101ers, The Clash

H1: John Graham Mellor plays less instruments than the
number of labels he has worked for.

H2: Joe Strummer changed his surname after he became a
guitar player.

H3: Joe Strummer was active in the sports industry for over
three decades.

H1hi−trl: jon grāham melar un lebaloan kı̄ sankhyā kı̄ tulanā
mean kam vādya bajāte haian jinake lie unhoanne kām
kiyā hai

H2hi−trl: jo st.ramar ne ek git.ār vādak banane ke bād apanā
upanām badal liyā

H3hi−trl: jo st.ramar tı̄n dashakoan se khel udyog mean
sakriya the

Figure 1: Tabular premise followed by human written
hypotheses (H1, H2, H3). H1 is entailed entirely from
the premise, H2 is neither entailed nor contradictory, and
H3 is contradictory. H1hi−trl, H2hi−trl, and H3hi−trl

are the transliterations of Hindi translations of the
former, released as a part of our EI-INFOTABS dataset.

supervision on heuristic adaptations of these
datasets perform adequately.

Typically, and to the authors’ best knowledge,
fact verification tasks, specifically TNLI, have been
examined only in a monolingual setting wherein,
the tabular premise and the textual hypothesis
are in the same language. However, many semi-
structured/tabular data sources exist only in English
but require verification of hypotheses over those
data sources in other languages, as discussed in
§2. Therefore, we examine a modified tabular NLI
task by introducing bilinguality within the premise
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and hypothesis pair. To understand this modified
task, consider the example in Figure 1. The table
presented in the figure has been extracted from
the English Wikipedia article on Joe Strummer1,
a well known musician. Following which, are
transliterated hypotheses in Hindi (hi) (and their
English (en) translation) which are related to the
information presented in the given table. We
show transliterated hypotheses only for the ease
of comprehension. We use native scripts for
each language in the EI-INFOTABS dataset. For
bilingual tabular NLI, a reasoning model should be
able to predict the inference label entail for H1hi,
neutral for H2hi and contradict for H3hi given the
English table as the primary context. In summary,
our contributions are as follows:

• We introduce the task of bilingual tabular NLI
(bTNLI) wherein the tabular premise is in a high
resource language, while the textual hypothesis is
in a low resource language. This is a practical,
real world setting for fact verification on semi-
structured tabular data which is further illustrated
in §2.

• We create EI-INFOTABS, a dataset consisting
of machine translated hypotheses in 11 Indian
languages, while retaining the English tabular
premises from the INFOTABS dataset. Through
extensive studies shown in §3, we confirm that
EI-INFOTABS is of good quality, and preserves
properties important to study the bTNLI task.

• We explore several multilingual models for
the bTNLI task, and establish strong baselines
and share findings about their performance
across multilingual models, languages, train-
eval techniques, tabular reasoning categories,
adversarial test splits, and both datasets
(INFOTABS and EI-INFOTABS).

Overall, EI-INFOTABS dataset and our proposed
train-eval strategies enable thorough examination
of the challenging task of bTNLI. Furthermore,
the former aslo serve as a quality benchmark
for evaluating the robustness of multilingual
models. The dataset and the associated scripts,
are available at https://enindicinfotabs.
github.io.

2 Motivation

Why Tabular NLI? Tabular data is termed as
semi-structured as it is neither truly unstructured
1 Joe Strummer Wikipedia

data like raw text, nor is it entirely structured like a
database. Although semi-structured data is based
on a structured scaffold, the content can be free-
form text with variable length and type. Moreover,
unlike a database, there is no homogeneity across
various data points in a shared context. Such
structural ambiguity imposes a significant cognitive
load while reasoning about it. However, such data
is ubiquitous in the real world (e.g. web pages, fact
sheets, information tables) and we frequently make
inferences from it.

Chen et al. (2020b) argue that reasoning about
semi-structured data is broadly two-fold in nature.
It consists of (a.) Linguistic Reasoning: a semantic
deconstruction of the semi-structured data (b.) ,
and Symbolic Reasoning: a symbolic execution
on the tabular structure.For instance, H2 in Figure
1 requires linguistic reasoning over the phrase
“became a guitar player” from the “Occupation”,
and the “Instruments” rows of the concerned
table. H1 requires symbolic reasoning in the
form of conditional and arithmetic operations on
the “Labels” and “Instruments” rows. Whereas,
H3 requires a combination of the two types of
reasoning. Such interwoven reasoning criteria
makes it challenging to model Tabular NLI task.

Why Indic Languages? Indian society is largely
multilingual and consists of 122 major and 1599
other languages and dialects spanning 6 language
families with over 1.3 billion native speakers2. Out
of these, 30 languages have more than 1 million
native speakers each and over 1 billion speakers
cumulatively3. Moreover, India has the second
largest online presence with over 749 million
internet users and is expected to grow to over
1.5 billion users by 20404. So, development of
competent reasoning models for the Indic context
is essential.

However, due to unfair linguistic bias on the
web (Miquel-Ribé and Laniado, 2020; Joshi et al.,
2020), there is a disproportionate distribution
of text resources for Indian languages. Indian
languages have a limited number of internet
resources. Thus, they are often known as low web
resource languages (LRL) (Khemchandani et al.,
2021). For instance, Wikipedia entries in Hindi are
just 2% of those in English, and Wikipedia entries
in Assamese and Oriya are 7 times lesser than those
in Hindi. This implies that a significant fraction of
2 Wikipedia Indian Languages 3 2011 Indian Census
4 www.statista.com
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articles and sometime even complete categories are
discussed only in the English language Wikipedia
(Bao et al., 2012).

Although, efforts have been made to bridge this
gap (Adar et al., 2009; Kumaran et al., 2010),
there still exist several limitations: (a.) table
extraction for an article across languages is a
challenge due to absence of Wikipedia page links,
their infobox tables or important keys of tables,
(b.) even if tabular data exists, infobox tables in
Indian languages are not updated as regularly as
their English equivalents (Minhas et al., 2022)
which leaves us with outdated and untrustworthy
tabular data for inference, (c.) and lastly, table
translation while maintaining the intent, context,
and the same quality of the source English language
is difficult. Often, accurate translation requires the
distinction of a language specific domain expert.
Due to above reasons, tabular data is mostly absent
from Indic Wikipedia articles.

Thus, fact verification in a bilingual setting
wherein, the premise is in English and the
claim/hypothesis is in an Indic language, is of
great significance. Moreover, recent advances
in multilingual language models (Khanuja et al.,
2021a; Kunchukuttan, 2020), datasets (Roark et al.,
2020; Ramesh et al., 2022), and translation systems
(Ramesh et al., 2022) for Indian languages have
enabled quality examination of several Indic NLU
tasks which serves as additional motivation to
evaluate the task of bTNLI for Indic languages
before other low resource languages.

3 EI-INFOTABS Dataset

EI-INFOTABS is an English-Indic bTNLI
extension of INFOTABS (Gupta et al., 2020),
an English TNLI dataset. INFOTABS consists
of 23,738 pairs of tabular premises and textual
hypotheses. The hypotheses are human written
short assertions with an accompanying NLI label,
and the tabular premises are based on 2,540
Wikipedia infoboxes from 12 diverse categories.
Moreover, it consists of additional adversarial test
sets apart from α1 which is the standard test set
and is lexically and topically similar to the train
set - α2 is the lexically adversarial test set which
maintains topical similarity and α3 is the topically
adversarial test set. The dev and test sets (α1, α2,
α3) cumulatively consist of 7200 table-hypothesis
pairs equally splits on all four sets.

EI-INFOTABS extends it by providing machine

translated hypotheses in 11 major Indic languages
namely Assamese (as), Bengali (bn), Gujarati (gu),
Hindi (hi), Kannada (kn), Malayalam (ml), Marathi
(mr), Odia (or), Punjabi (pa), Tamil (ta), and
Telugu (te) for each tabular premise. In this section,
we discuss the EI-INFOTABS construction and
verification.

3.1 EI-INFOTABS Construction
To construct EI-INFOTABS, we machine translated
the English hypotheses provided in INFOTABS
to 11 major Indian languages as described
earlier. We use IndicTrans (Ramesh et al.,
2022), an open-sourced state-of-the-art Indic
NMT model. IndicTrans is trained on the
Samanantar dataset (Ramesh et al., 2022), which
is the largest publicly available parallel corpus
for Indic languages. Moreover, it outperforms
(a) commercial NMT systems like Google-
Translate 5 and Bing Microsoft Translator 6, and
(b) open-source multilingual models like OPUS-
MT (Tiedemann and Thottingal, 2020), mBART50
(Liu et al., 2020) and mT5 (Xue et al., 2021).

3.2 EI-INFOTABS Verification.
Given the absence of Indic reference data, it
becomes challenging to measure the quality of the
translations, and subsequently, of EI-INFOTABS.
In this section, we describe our robust quality
estimation approach to validate EI-INFOTABS.

Automatic Evaluation. We use BERTScore
(Zhang* et al., 2020), an automatic scoring
metric for sentence similarity, between the source
and back-translated English sentences. We use
IndicTrans to generate Indic to English back-
translated data.

BERTScore is known to correlate better with
human judgment at the sentence level (Zhang*
et al., 2020) compared to conventionally used MT
evaluation metrics like BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004). BERTScore
calculates word level semantic similarity whereas
the conventional MT metrics focus on word overlap.
The results are presented in Table 1. We notice high
semantic similarity scores for all the languages.
However, when we analyse the examples with
low scores, we note that the scores are almost
always low due to the error added during the back-
translation phase. The back-translation introduces
5 https://translate.google.co.in/
6 https://www.bing.com/translator
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errors due to incorrect transliteration of Named
Entities. Consider the following example:

• Femme aux Bras Croisés is open for public
viewing.

• Back-translated: The Ox Brass Crossox is open
to the public

• Hindi Translation(Transliterated): fem auksa brās
kroisaiksa janatā ke lie khulā hai

The Hindi translation of the original sentence
is perfect, however, the named entity “Femme aux
Bras Croisés” when back-translated becomes “Ox
Brass Crossox ”and yields a low BERTScore of
0.86. This is broadly identified as qualitative
feedback for most of the sentences with low
scores across all the languages. Around 20%
of the examples yield a BERTScore of 1.0 and
are deemed perfect translations when reviewed by
native speakers.

Human Evaluation. Broadly, we follow the
guidelines recommended in (Agirre et al., 2016)
to conduct human evaluation. We (a.) diversely
sample source-translation pairs in each language,
(b.) prepare a common Direct Assessment (Graham
et al., 2013) scoring strategy, and (c.) get the
sampled data evaluated on the basis of that strategy.

Diverse Sampling. We sample 50 diverse
hypotheses from the dev split of EI-INFOTABS for
each Indic language. Using the k-DPP algorithm
(Kulesza and Taskar, 2011) over the mBERT
sentence representations, we’re able to achieve
syntactically and semantically diverse samples
spanning the different table categories.

Direct Assessment. We adopt the human evaluation
strategy for low resource machine translation laid
out in (Guzmán et al., 2019). We ask native Indic
language speakers proficient in English to score
a source-translation pair from 0-100. The score
highlights the perceived translation quality of the
source-translation pair. For each language, we get
the samples annotated by two different annotators.
In Table 1, we report the average scores for
each language along with the Pearson correlation
coefficient (r) as a measure for inter-rater reliability.
For more details on human evaluation strategy refer
to Appendix §C.

Discussion. We report our evaluation results
in Table 1. Automatic evaluation and our
corresponding analysis on it shows that EI-

Language DA BSIT BSGT r
Bengali (‘bn’) 0.87 0.95 0.99 0.64
Marathi (‘mr’) 0.81 0.94 0.98 0.68
Gujarati (‘gu’) 0.89 0.95 0.98 0.38
Oriya (‘or’) 0.94 0.94 0.98 0.35
Hindi (‘hi’) 0.89 0.96 0.99 0.40
Punjabi (‘pa’) 0.86 0.95 0.98 0.34
Kannada (‘kn’) 0.87 0.95 0.98 0.70
Tamil (‘ta’) 0.85 0.94 0.98 0.59
Malayalam (‘ml’) 0.85 0.94 0.98 0.50
Telugu (‘te’) 0.84 0.94 0.98 0.39
Assamese (‘as’) 0.83 0.94 - 0.65

Table 1: Here, we compare the Average Direct
Assessment (DA) scores provided by native speakers
with Average BERTScore F1 scores for IndicTrans
En-Indic-En back-translated data (BSIT ), and Average
BERTScore F1 scores for Google-Translate En-Indic-
En back-translated data (BSGT ). Additionaly, we also
present the Pearson correlation coeffecient as a measure
of inter-rater reliability. Higher score implies better
quality for each of the metric.

INFOTABS consists of fluent, semantically accurate
translations across all Indic languages. Moreover,
we note competitive Direct Assessment scores
for each language, and a positive r value which
indicates that the native speakers agree on the good
quality of EI-INFOTABS.

4 Experimental Pipeline

We design our experimental pipeline along the lines
of the research question: How well do existing pre-
trained multlilingual language models perform on
the bTNLI task? In this section, we propose various
modeling strategies and examine how they might
address the challenges and nuances of the proposed
inference bTNLI task.

4.1 Table Representations

It is necessary to linearize semi-structured tabular
data into a textual premise in order to reduce the
task of Tabular Inferencing to a standard NLI
task for which existing state-of-the-art language
models can be adapted directly. We use and
compare the previously proposed linearization
methods (a.) Better Paragraph Representations
(BPR) (Neeraja et al., 2021), (b.) and Premise as
Structure - TabFact (Chen et al., 2020b; Gupta
et al., 2020) (cf. Appendix §A). Henceforth, by
premise, we refer to the linearized representation
of the tabular premise i.e. the infobox table.
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Strategy Model bn hi gu pa mr te ta ml kn as or ModAvg
mBERT 62 64 61 62 61 60 61 59 61 60 35 59

Translate-Train IndicBERT 54 54 53 48 51 51 52 47 54 34 53 50
MuRIL 67∗ 67∗ 67∗ 66 65 65 66 66 66 65 64 66
LnAvg 61 62 60 59 59 57 60 56 60 53 51 57
mBERT 53 55 50 54 51 50 53 51 52 45 34 50

Translate-Test IndicBERT 37 35 35 34 36 36 34 38 39 39 38 36
MuRIL 63 65∗ 62 62 62 60 61 61 62 60 59 62
LnAvg 51 52 49 50 50 49 49 50 51 48 44 49
mBERT 63 66 62 64 62 63 63 62 64 62 36 61

Bilingual-Train IndicBERT 53 53 52 53 52 50 52 54 53 54 53 53
MuRIL 68∗ 67 66 67 65 67 66 66 66 65 65 66
LnAvg 61 62 60 61 60 60 60 61 61 60 51 60
mBERT 63 64 62 63 62 62 61 62 63 62 36 60

Multilingual-Train IndicBERT 53 54 53 52 52 50 51 50 50 53 51 52
MuRIL 67 68∗ 67 67 66 66 67 67 67 66 66 67
LnAvg 61 62 61 61 60 59 60 60 60 60 51 60
mBERT 65 67∗ 63 66 63 62 64 62 64 62 62 64

EnTranslate-Test IndicBERT 56 57 56 57 55 56 57 57 57 57 56 56
MuRIL 65 67∗ 65 65 63 62 64 63 64 61 62 64
LnAvg 63 64 61 63 60 60 62 61 62 60 60 62
mBERT 55 55 53 54 53 53 54 53 53 50 36 51

Translate-Train-X IndicBERT 41 41 39 36 39 40 40 40 40 34 40 39
MuRIL 64 65∗ 64 63 64 64 63 63 64 63 62 64
LnAvg 53 53 52 51 52 52 52 52 52 49 46 51
mBERT 56 56 55 56 56 56 55 55 55 55 41 54

Bilingual-Train-X IndicBERT 42 42 41 40 41 41 41 41 42 42 41 41
MuRIL 65∗ 64 65∗ 65∗ 64 65∗ 65∗ 65∗ 65∗ 65∗ 65∗ 65
LnAvg 54 54 54 53 54 54 54 54 54 54 49 53

Table 2: Performance in terms of accuracy when evaluated on the α1 test set. Higher value implies better performance.
Here, LnAvg represents the average accuracy for a language across all models, while ModAvg represents the average
accuracy of a model across all languages. A value in Purple represents the best accuracy for that model across
all languages. An underlined value in Blue represents the best accuracy for that language across all models. A
value in Green with an asterisk(∗) represents the cases where language-wise and model-wise values coincide. As
we fine-tune on a specific Indic language in the train-eval strategies Translate-Train-X and Bilingual-Train-X, we
report the training average of accuracy on the remaining 10 Indic languages for them. We do not include the results
of XLM-RoBERTa as the model fails to converge on these experiments on multiple runs with a distinct set of
hyper-parameters as explained in Appendix §D. The results for the α2 and α3 sets are provided in Appendix §E.

4.2 Multilingual Models

Owing to the multilingual setting of this task, we
utilise pre-trained multilingual models to encode
the linearized English tabular premise along with
the Indic hypothesis into contextual representations
for classification. We consider two kinds of pre-
trained multilingual models (a.) Indic Specific
which includes IndicBERT and MuRIL due to their
indic specific pre-training, and (b.) Generic which
includes mBERT and XLM-Roberta due to their
pre training in more than hundred languages. For
more details refer to Appendix §B.

4.3 Training and Evaluation Strategies

In order to examine the inter-woven relationships
among the 11 languages, and the corresponding
impact on multilingual models’ performance, we
design a set of train-eval strategies for this task.

Translate-Train: We fine-tune and evaluate the
models on EN-INi premise-hypothesis pairs where
INi is one of the 11 Indic languages. This baseline
evaluates the performance of the multilingual
models on EI-INFOTABS when fine-tuned on Indic
hypotheses. We also evaluated these models across
all languages i.e. cross lingual zero-shot setting
Translate-Train-X.

Translate-Test: We fine-tune the multilingual
models on EN-EN premise-hypothesis pairs from
the INFOTABS dataset and evaluate on EN-INi

premise-hypothesis pairs. This baseline evaluates
the Zero-shot Cross-Lingual Transfer ability of
the reasoning models from INFOTABS to EI-
INFOTABS.

Bilingual-Train: We fine-tune the multilingual
models on both EN-EN and EN-INi premise-
hypothesis pairs, and evaluate on EN-INi premise-
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hypothesis pairs. This baseline evaluates whether
addition of English hypotheses while fine-tuning
aids the performance of the multilingual models
prepared in Translate-Train. We also evaluated
these models across all languages i.e. cross lingual
zero-shot setting Bilingual-Train-X.

Multilingual-Train: We fine-tune the multilingual
models on all available training data across all Indic
languages and the English language. We evaluate
the models on EN-INi premise-hypothesis pairs on
each 11 Indic languages. This baseline assesses
if fine-tuning on several languages to produce a
unified multilingual model improves performance.

EnTranslate-Test: We fine-tune the multilingual
models on EN-EN premise-hypothesis pairs from
INFOTABS and evaluate on EN-ENINi premise-
hypothesis pairs where ENINi represents INi to
EN back-translated hypotheses. This approach
evaluate the translate then test baseline on the EI-
INFOTABS dataset.

5 Results and Analysis

In this section, we discuss and analyse the results
obtained on conducting the experiments as per
the various strategies laid out in §4. We present
the results in Table 2 for each experiment on the
α1 test set using the BPR linearization algorithm.
The values represent classification accuracy. We
analyze the findings thoroughly across multilingual
models, languages, train-eval techniques, tabular
reasoning categories, adversarial test splits, and
both datasets (INFOTABS and EI-INFOTABS).

5.1 Across Multilingual Models
We observe that MuRIL performs best across all
languages and experiments except EnTranslate-
Test, beating IndicBERT and mBERT. MuRIL’s
superior performance can be justified on the
grounds of (a) the large size of the hidden layers,
(b) Indic specific pre-training data, and (c) Indic
specific pre-training objectives (Khanuja et al.,
2021a). MuRIL’s architecture consists of 237M
parameters, compared to mBERT’s 167M and
IndicBERT’s 33M, which makes it extremely
competitive on any Indic NLU task. IndicBERT’s
relatively small size explains why it performs the
worst, even though it is pre-trained on Indic specific
data. mBERT comes in a close second to MuRIL,
failing to perform adequately only on Odia (or).
mBERT isn’t pre-trained on Assamese (as) or Odia
which justifies its extremely low performance on

Odia. However, we note competitive results on
the Assamese language. This could be attributed
to the fact that Assamese is closely related to
Bengali (bn) linguistically. They both share
the Bengali-Assamese script and are mutually
intelligible (Khemchandani et al., 2021).

# dev α1 α2 α3

0 15.56% 16.33% 27.61% 25.67%
1-3 11.17% 10.83% 11.39% 14.22%
4-6 7.16% 7.5% 6.72% 9.61%
7-9 9.55% 10.67% 10.22% 12.67%
10-11 56.56% 54.67% 44.06% 37.83%

Table 3: Percentage of examples predicted correctly by
our best performing model for the given number of Indic
languages. For instance, 7.16% of examples in the dev
set are predicted correctly for at least 4 and at max 6
Indic languages.

mBERT’s performance gets boosted in
EnTranslate-Test as mBERT is pre-trained on a
significant amount of English data which makes
it extremely competitive in modeling English
NLU tasks. MuRIL performs similarly even
though it is trained on lesser amount of English
data. This could be due to Indic artifacts like
sentence structure and inadequately transliterated
named entities being present in the back-translated
sentences which MuRIL has been trained to handle
better than mBERT.

5.2 Across Languages

We observe that the models perform best on
Hindi (hi) and Bengali. This is expected as
they are high resource languages in the Indic
context. Additionally, as explained in §5.1, we
note that pre-training or fine-tuning on Bengali
aids the performance on Assamese due to their
high degree of relatedness. Table 3 shows the
measure of agreement across the languages. We
note that almost all languages agree on 55% of
the predictions on the dev set and the α1 test
set. This reduces to 38% on the α3 test set.
This indicates that for a majority of examples
from the non-adversarial test sets, MuRIL
performs uniformly across languages. However,
its performance across languages starts varying
more on the adversarial test sets (α2 and α3).

5.3 Train-Eval Strategies

Translate-Train’s results show that the multilingual
models converge and perform adequately when
fine-tuned on EI-INFOTABS. Moreover, when
fine-tuned along with English data - as described
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Figure 2: Here, we compare human benchmarks (H), predictions of the best performing model trained on INFOTABS
from (Neeraja et al., 2021) (I) and predictions of our best performing model (E), MuRIL (Multilingual-Train), on
the examples annotated with reasoning category in the dev split for Oriya (left) and Hindi (right).

in Bilingual-Train - mBERT and IndicBERT
perform marginally better while MuRIL doesn’t
report a change in performance. MuRIL,
when fine-tuned on all languages as described
in Multilingual-Train, performs best on EI-
INFOTABS and forms the benchmark for this
task. mBERT and IndicBERT, however, perform
worse on Multilingual-Train when compared
to Bilingual-Train. This indicates that these
models fail to generalise their reasoning ability
across all languages and aren’t as multilingually
robust as MuRIL. The results on Translate-Test
are the lowest across all train/eval strategies
which indicates a poor Zero-shot Cross-Lingual
Transfer from INFOTABS to EI-INFOTABS.
However, the performance of MuRIL on Translate-
Test is comparable with its performance on
Translate-Train unlike mBERT and IndicBERT.
This indicates that MuRIL can generalize well
across English and Indic languages which are
linguistically distinct.

Translate-Train-X and Bilingual-Train-X
evaluate the average Cross-Lingual Transfer
performance of the models trained in Translate-
Train and Bilingual-Train. We observe higher
performance in Bilingual-Train-X over
Translate-Train-X which indicates that addition
of English training data aids the Cross Lingual
Transfer from one Indic language to another.
Moreover, the average performance of MuRIL
on Bilingual-Train-X is comparable to that on
Translate-Train which suggests that MuRIL
robustly generalises across Indic languages.
Both, Bilingual-Train-X and Translate-Train-X
perform better than Translate-Test due to high

Figure 3: Consistency Matrix which measures the
deviation of our best performing model, MuRIL
(Multilingual-Train)’s predictions on the α1 test set for
Hindi as compared to that of RoBERTaLARGE on the α1

test set of INFOTABS.

language relatedness among Indic languages
when compared with English. The results on
EnTranslate-Test are extremely promising for
both MuRIL and mBERT. Their performance is
very close to that of the best performing model,
MuRIL, on Translate-Train. This indicates that
back-translation doesn’t lead to a significant loss
in information required for the bTNLI task.

5.4 Tabular Reasoning Categories

We conduct a fine-grained analysis on how our
best model, MuRIL (Multilingual-Train), performs
on various reasoning categories. We present the
results in Figure 2 for Hindi and Odiya. We
observe that MuRIL performs similarly on EI-
INFOTABS as RoBERTaLARGE does on INFOTABS
for entity type, named entity, negation, numerical,
quantification and simple lookup reasoning types.
Additionally, MuRIL performs better for the co-
reference resolution reasoning type. This is broadly
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Figure 4: Confusion Matrix for the predictions of our
best performing model, MuRIL (Multilingual-Train), on
the Hindi α1 set from EI-INFOTABS.

observed across all the Indic languages. Both
RoBERTaLARGE and MuRIL perform poorly for
knowledge and common sense, multi-row, co-
reference, and temporal reasoning types.

5.5 Across Adverserial Test Splits

The results for the other evaluation sets α2 and
α3 are provided in Appendix §E. Across all
the experiments, we note that the fine-tuned
models perform best on α1, followed by α2

and α3 respectively. Moreover, we note that
on most baselines, the average performance
of a fine-tuned model drops by roughly 10%
when tested on α2 or α3. This is similar to
the observations reported on INFOTABS (Neeraja
et al., 2021) and presented in Table 4. Low
performance of the multilingual models on the
α2 test set of EI-INFOTABS indicates that
(a.) multilingual models learn shallow lexical
features to make inferences on EI-INFOTABS just
like the monolingual models do on INFOTABS,
(b.) and IndicTrans carefully captures the lexical
adversity in the α2 test set of INFOTABS.This
commends the ability of IndicTrans to handle
lexical nuances. Low performance on α3 test set
of EI-INFOTABS suggests that the multilingual
models learn categorical features and perform
adversely when evaluated on unseen category.

5.6 EI-INFOTABS v/s INFOTABS

Table 4 reports the human benchmarks and the
baselines with the BPR linearization algorithm
on each validation set in INFOTABS. We observe
that the baselines on EI-INFOTABS are within an
absolute margin of 10% when compared to those
on INFOTABS. This suggests that EI-INFOTABS
is more challenging than INFOTABS which was

expected due to the presence of (a.) bilinguality
within the premise-hypothesis pair, and (b.) the
low resource nature of Indic languages.

Figure 3 reports the consistency of predictions
of MuRIL on the α1 test set of Hindi EI-
INFOTABS when compared against that of
RoBERTaLARGE on the α1 test set of INFOTABS.
We observe that MuRIL behaves noticeably
different than RoBERTaLARGE. MuRIL disagrees
with RoBERTaLARGE on 47% of examples with the
Contradiction and Entailment labels. However, for
Neutral labels, it only disagrees on around 36%
of the examples. Moreover, from our discussion
in §5.4, we observe that MuRIL outperforms
RoBERTaLARGE on certain reasoning categories.

Model (Rep) Dev α1 α2 α3

BERTB (BPR) 63.00 63.54 52.57 48.17
RoBERTaB (TabFact) 68.06 66.7 56.87 55.26
RoBERTaL (BPR) 76.42 75.29 66.50 64.26
RoBERTaL (TabFact) 77.61 75.06 69.02 64.61
Human 79.78 84.04 83.88 79.33

Table 4: The human benchmarks and several baselines
on evaluation set of INFOTABS as reported in Gupta
et al. (2020) (TabFact) and Neeraja et al. (2021) (BPR).
Here subscript XL and XB represent X model L: Large
and B: Base versions respectively.

However, the models fine-tuned on EI-
INFOTABS broadly mimic the performance of
RoBERTaLARGE on INFOTABS. Figure 4 presents
the confusion matrix of MuRIL’s predictions on
the α1 test set of Hindi. We observe a similar
distribution across all Indic languages. As noted in
Gupta et al. (2020), MuRIL also tends to predict
Neutral hypotheses with the highest confidence
as they mostly contain out of table or subjective
information terms. Moreover, both models confuse
Entailment with Contradiction inference label and
vice-versa. We observe that the model predictions
on EI-INFOTABS is similar to RoBERTaLARGE
predictions on INFOTABS.

6 Further Discussion

EI-INFOTABS is the first Tabular NLI dataset
in the Indic context which enables preliminary
studies in this field. Moreover, it introduces
bilinguality for fact verification scenarios which
is of huge significance in low resource contexts.
It motivates the development of cross-lingual
reasoning models, and helps in evaluation of
robustness of multilingual models. For instance,
our experiments on EI-INFOTABS clearly indicate
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that MuRIL is a significantly more robust
multilingual model when compared to mBERT as
it is able to generalize its reasoning ability across
all Indic languages.

Although, we explain how machine translation
doesn’t affect the semantics of the hypotheses, it
does come with a few challenges. We identified
a few instances wherein the IndicTrans model
translates named entities, instead of transliterating
them. This is observed only, but not always, when
a named entity has an English dictionary word in
it. For instance, “Death Proof ”, name of a movie,
gets translated and not transliterated in two out
of nine hypotheses containing the phrase. This is
mostly observed in the Movies category. However,
this doesn’t affect our reasoning models and they
perform on par on this category when compared
with RoBERTaLARGE’s performance on INFOTABS.
This is so because such translations when shallow
parsed indicate that the translated entity still acts
as the Noun Phrase in the sentence. This helps the
translation, though technically imperfect, retain the
intended semantic structure.

7 Related Work

Tabular Reasoning. Tabular NLI has been of
keen interest recently. Datasets like TabFact (Chen
et al., 2020b), INFOTABS (Gupta et al., 2020)
were the first resources on TNLI and they enabled
a fine-grained examination of the task. Beyond
NLI, there has been a thorough examination of
various other NLP tasks on semi-structured data.
For instance, question answering (Abbas et al.,
2016; Chen et al., 2020c; Zayats et al., 2021; Oguz
et al., 2020; Chen et al., 2021, and others), semantic
parsing and retrieval (Krishnamurthy et al., 2017;
Sun et al., 2016; Pasupat and Liang, 2015; Lin
et al., 2020, and others), tabular probing (Gupta
et al., 2021), generative tasks including table-to-
text (Parikh et al., 2020; Nan et al., 2021; Yoran
et al., 2021; Chen et al., 2020a,d, and others). Other
works have explored creating task-independent
representations for Wikipedia infoboxes (Herzig
et al., 2020; Yin et al., 2020; Zhang et al., 2020; Iida
et al., 2021; Pramanick and Bhattacharya, 2021;
Glass et al., 2021, and others), and boosting tabular
reasoning by pre-training and external knowledge
incorporation (Neeraja et al., 2021; Varun et al.,
2022, and others).

Multilingual Models. Multilingual, and
specifically Cross-Lingual transfer (Deshpande

et al., 2021; Patil et al., 2022, and other), has
been widely discussed in the context of low
resource languages. Several datasets (Conneau
et al., 2018; Yang et al., 2019; Ponti et al., 2020;
Artetxe et al., 2020; Nivre et al., 2016; Lewis et al.,
2021, and others), benchmarks and leaderboards
(Hu et al., 2020; Liang et al., 2020; Ruder et al.,
2021; Khanuja et al., 2021b, and others), and
evaluation frameworks (Tarunesh et al., 2021; K
et al., 2021; Srinivasan et al., 2021) have emerged
which focus entirely on evaluation of multilingual
NLU. Further, multilingual language models
have been developed for (a.) Natural Language
Understanding (Devlin et al., 2019; Conneau and
Lample, 2019; Conneau et al., 2020; Chi et al.,
2021; Chung et al., 2021, and others), (b.) and
Natural Language Generation (Xue et al., 2021;
Fan et al., 2021, and others).

Indic Resources. Indic NLP, recently, has seen
a recent surge in the number of datasets (Ramesh
et al., 2022; Roark et al., 2020; Haddow and Kirefu,
2020a; Abadji et al., 2022; Kolluru et al., 2021, and
others), multilingual models (Dabre et al., 2021;
Kakwani et al., 2020; Khanuja et al., 2021a, and
others), toolkits (Arora, 2020; Bhat et al., 2015;
Jain et al., 2020, and others), translation systems
(Ramesh et al., 2022), and dedicated benchmarks
for evaluation (Kakwani et al., 2020; Krishna et al.,
2021). This has enabled the Indian NLP research
community to construct competent models for a
variety of challenging NLP tasks.

8 Conclusion

We motivate and introduce the bilingual tabular
NLI for fact verification tasks, and release EI-
INFOTABS- a first of its kind tabular NLI dataset
for making inferences in 11 Indic languages over
English tabular data. Our robust quality estimation
experiments show that the machine translated
datasets closely preserve the semantics of the
source and are fluent. We show that pre-trained
multilingual models find this task challenging,
however, still perform close to the benchmarks on
INFOTABS with Translate-test and Translate-train
providing good performance. The analysis also
shows the similarity of inference capabilities across
languages. The dataset offers immense potential as
it opens up avenues in (a) multilingual tabular NLI,
(b) bilingual claim verification, (c) and evaluation
of multilingual models.
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9 Ethical Considerations

In terms of demographic and socioeconomic
characteristics, we attempted to establish a
balanced, bias-free dataset. The EI-INFOTABS
dataset is derived from the INFOTABS dataset,
which is devoid of bias. The only possible source
of prejudice can be the translation pipeline. Our
qualitative analysis indicates that translation quality
is reasonably good and there aren’t any observable
biases like gender in the translation. The dataset is
intended and useful for studying language model
representations in a cross-lingual and structured
data setting. The paper points out that low-
resource languages can benefit from reasoning
over structured data in other languages. This is
a relatively new research topic and further work
will help understand limitations as well as uncover
new directions. Hence, we recommend the use of
this dataset at this point exclusively for scholarly,
non-commercial purposes.
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A Details: Table Representation

1. Premise as Paragraph: (Chen et al.,
2020b), (Gupta et al., 2020) employ universal
templates to construct close to natural
language sentences for isolated cells in a
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Hyper Parameter XLM-RoBERTa IndicBERT MuRIL-base-cased mBERT-cased
Initial Learning Rate [1e-4,1e-9] 5e-5 5e-5 5e-5
Batch Size 128 128 128 128
Weight Decay 0.01 0.01 0.01 0.01
Max Seq Length 128 128 128 128
Model Size 278M 33.7M 237M 177M
Warmup Steps 500 500 500 500

Table 5: Hyper Parameters used for Fine-Tuning the corresponding multilingual models.

row, and then, concatenate them to obtain
a single paragraph representation. (Gupta
et al., 2020) suggest constructing sentences
of the form "The k of t is v" for a cell
having key k, value v in a table with title
t. E.g. in figure 1 for the row Born
the premise sentence would be "The born
of Joe Strummer is 21 August 1952
(1952-08-21) Ankara, Turkey"

However, (Neeraja et al., 2021) identify
that such templates can often lead to
ungrammatical sentences and propose the
Better Paragraph Representation (BPR)
approach. BPR utilises type specific templates
based on the entity type of a key, and
the overall category of the table itself
resulting in grammatical sentences. (Neeraja
et al., 2021) note a significant increase in
performance while employing BPR over the
universal template. We adopt BPR as one
of our representation approaches. E.g. for
same Born key in figure 1 the premise
sentence with BPR representation would be
"Joe Strummer was born on August
21, 1952 (1952-08-21) at Ankara,
Turkey"

2. Premise as Structure: Unlike the natural
language like Premise as Paragraph
representations, here, we try to represent the
row as structural text as proposed by (Chen
et al., 2020b). Every isolated cell in a row is
represented as "k : v" where k is the key, and
v is the value of the cell. A row’s structural
representation is a semi-colon ";" separated
sequence of the structural representations
of all the isolated cells in that row. E.g. for
the same Born key in figure 1 the premise
sentence will be represented as "Born :
August 21, 1952 (1952-08-21),
Ankara, Turkey"

B Details: Multilingual Models

Indic Specific: This class of multilingual models
are pre-trained entirely on Indic language data
along with English. We use MuRIL Base
(Khanuja et al., 2021a), and IndicBERT (kak)
pre-trained multilingual models. MuRIL is a
BERT (Devlin et al., 2019) based model trained
with Masked Language Modeling (Taylor, 1953)
and Translation Language Modeling (CONNEAU
and Lample, 2019) objectives. It is trained
on (a.) Common Crawl OSCAR corpus7 and
Wikipedia8 monolingual data for 16 Indic
languages along with the English language,
(b.) PMIndia (Haddow and Kirefu, 2020b) along
with other in-house parallel corpora, (c.) and
the Dakshina Dataset (Roark et al., 2020) along
with other parallel in-house transliterated corpora.
IndicBERT is an ALBERT (Lan et al., 2019) based
model trained on IndicCorp (kak).

Generic: This class of multilingual models are
pre-trained on a wide array of languages from
around the world. We use mBERT-cased (Devlin
et al., 2019) and XLM-RoBERTa (con) pre-trained
multilingual models.

C Human Evaluation Strategy

We requested our colleagues who are native
speakers and are proficient in English to help us
with this task while disclosing the intentions. We
provide them with instructions adopted from the
Direct Assessment (Graham et al., 2013) strategy
for low resource machine translation in (Guzmán
et al., 2019). We sample 50 pairs of source,
translation pairs and ask the annotators to provide
a continuous score between 0 to 100. 0–10
range represents a translation that is completely
incorrect and inaccurate. 70–90 range represents a
translation that closely preserves the meaning of the
source sentence while the 90–100 range represents
a perfect translation.
7 Oscar Corpus 8 Tensorflow Datasets
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D Model Hyper-Parameters

Table 5 reports the hyper-parameters used for fine-
tuning the multilingual models on EI-INFOTABS.
We use the Huggingface Transformers9 library
to script these experiments. We were unable to
successfully converge XLM-RoBERTa in multiple
runs spanning a distinctive set of hyper-parameters.
Figure 5 shows the loss plots for XLM-RoBERTa
and mBERT when fine-tuned on EI-INFOTABS.
It is distinctively visible that XLM-RoBERTa
is unable to converge on EI-INFOTABS on a
significant amount of steps unlike mBERT.

Figure 5: Train Loss for multiple runs of XLM-
RoBERTa with distinct set of hyper-parameters
compared with that of mBERT. Each run spans roughly
37,000 steps.

Fine-Tuning Settings. We follow the
conventionally used pipeline for fine-tuning
BERT for Sequence Classification (Jiang and
de Marneffe, 2019). We concatenate the premise
and the hypothesis strings using a [SEP] token
in between them, prepend this sequence with a
[CLS] token, tokenize this sequence using the
pre-trained tokenizer for the respective model,
and provide the obtained sequence as input to
the pre-trained model. We attach a three-way
classification head with cross-entropy loss on top
of the pooled output obtained from the previous
step. With an initial learning rate of 5e-05 with
AdamW optimizer (Loshchilov and Hutter, 2018),
we fine-tune each model on 4 1080Ti GPUs with
a batch size of 32 per GPU over 10 epochs.

9 Transformer Hugging Face

E Performance on the α2 and α3

Adversarial Sets

Tables 6 and 7 report the results for the adverserial
test sets α2 and α3 respectively using the BPR
linearization method.

F Zero Shot Cross-Lingual Transfer

Tables 8 and 9 report the performance of MuRIL on
Translate-Train-X and Bilingual-Train-X. We note
that models trained on linguistically closer pairs
of languages are able to admirably transfer their
performance to each other. Notably, Assamese
(‘as’) and Bengali (‘bn’) being immensely closely
related, support this hypothesis. Moreover, we
note the same for closely related Indo-European
languages Bengali, Hindi, Gujarati (‘gu’), and
Marathi (‘mr’). Models trained on these languages
distinctively transfer their performance better
on each other compared to languages from
the Dravidian language family - Malayalam
(‘ml’), Telugu (‘te’), Tamil (‘ta’), Kannada (‘kn’).
Dravidian languages are not as closely related due
to differences in scripts and sentence structures
which is observed in the results as well.
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Strategy Model bn hi gu pa mr te ta ml kn as or ModAvg
mBERT 51 52 48 49 48 48 49 48 49 47 36 48

Translate-Train IndicBERT 46 44 44 44 46 46 45 45 46 34 45 44
MuRIL 56∗ 56∗ 52 55 54 52 55 53 55 54 53 54
LnAvg 51 51 48 49 49 49 50 48 50 45 45 49
mBERT 47 47 44 45 44 44 45 43 46 41 34 44

Translate-Test IndicBERT 41 38 37 38 39 38 38 38 38 42 39 39
MuRIL 52 51 51 50 50 51 51 53∗ 53∗ 49 50 51
LnAvg 47 45 44 44 44 45 44 44 45 44 41 44
mBERT 52 52 50 51 50 50 51 49 51 50 37 49

Bilingual-Train IndicBERT 45 45 45 48 47 45 46 45 46 44 45 45
MuRIL 56∗ 55 54 56∗ 54 54 53 54 56∗ 54 53 54
LnAvg 51 51 50 51 50 50 50 49 51 49 45 50
mBERT 50 51 51 50 50 51 49 48 50 48 35 48

Multilingual-Train IndicBERT 46 46 46 47 45 45 44 44 45 45 44 45
MuRIL 55 55 56∗ 55 55 54 55 55 55 54 54 55
LnAvg 50 51 51 51 50 50 49 49 50 49 45 50
mBERT 55 55 55 53 53 54 54 54 54 54 53 54

EnTranslate-Test IndicBERT 48 47 47 48 47 47 46 46 46 47 47 47
MuRIL 56∗ 55 55 56∗ 54 55 54 55 54 54 54 55
LnAvg 53 52 52 52 51 52 51 52 51 52 52 52
mBERT 45 45 44 45 42 42 45 41 45 40 35 43

Translate-Train-X IndicBERT 40 38 37 36 37 39 38 40 38 34 38 38
MuRIL 54∗ 53 52 54∗ 53 52 53 51 52 54∗ 52 53
LnAvg 46 45 44 45 44 44 45 44 45 42 41 44
mBERT 47 47 46 46 46 46 46 44 46 47 43 46

Bilingual-Train-X IndicBERT 39 40 39 39 39 39 40 39 39 40 39 39
MuRIL 54 54 54 55∗ 54 53 53 54 54 54 54 54
LnAvg 46 47 46 47 47 46 46 46 46 47 45 46

Table 6: Performance in terms of accuracy when evaluated on the α2 test set. Higher value implies better performance.
Here, LnAvg represents the average accuracy for a language across all models, while ModAvg represents the average
accuracy of a model across all languages. A value in Purple represents the best accuracy for that model across all
languages. An underlined value in Blue represents the best accuracy for that language across all models. A value
in Green with an asterisk(∗) represents the cases where language-wise and model-wise values coincide. As we
fine-tune on a specific Indic language in the fine-tuning strategies Translate-Train-X and Bilingual-Train-X, we
report the training average of the concerned language. We do not include the results of XLM-RoBERTa as the
model fails to converge on these experiments on multiple runs with a distinct set of hyper-parameters as explained
in Appendix §D.

4034



Strategy Model bn hi gu pa mr te ta ml kn as or ModAvg
mBERT 47 48 46 45 46 46 47 46 46 43 35 45

Translate-Train IndicBERT 43 44 40 42 41 42 43 39 43 33 41 41
MuRIL 52 54∗ 52 53 52 51 52 51 54 51 50 52
LnAvg 47 49 46 47 46 47 47 45 48 43 42 46
mBERT 44 46 43 45 43 45 46 43 44 39 33 43

Translate-Test IndicBERT 36 36 35 34 35 35 35 35 35 36 34 35
MuRIL 53∗ 52 51 51 51 50 51 51 50 50 49 51
LnAvg 45 44 43 43 43 43 44 43 43 42 39 43
mBERT 49 49 47 47 48 46 49 47 49 46 34 46

Bilingual-Train IndicBERT 42 41 42 42 40 42 41 44 42 42 41 42
MuRIL 52 53∗ 52 51 51 52 51 52 51 53 51 52
LnAvg 48 48 47 47 46 47 47 47 47 47 42 47
mBERT 47 47 46 47 46 45 46 45 47 46 36 45

Multilingual-Train IndicBERT 42 41 42 40 40 42 41 41 40 42 40 41
MuRIL 54∗ 54∗ 52 53 52 53 53 53 54∗ 54∗ 53 53
LnAvg 47 47 47 47 46 47 47 46 47 47 43 46
mBERT 51 52 50 51 50 50 52 49 50 50 49 50

EnTranslate-Test IndicBERT 46 48 46 46 46 46 46 45 46 45 44 46
MuRIL 53∗ 52 51 51 51 50 50 50 51 50 48 51
LnAvg 50 51 49 49 49 49 49 48 49 48 47 49
mBERT 44 44 43 44 43 44 44 43 44 41 34 42

Translate-Train-X IndicBERT 37 36 36 35 36 37 37 37 36 33 36 36
MuRIL 51 52∗ 52∗ 52∗ 50 51 51 51 52∗ 51 51 51
LnAvg 44 44 43 44 43 44 44 43 44 42 40 43
mBERT 45 44 44 44 44 44 45 44 45 44 37 44

Bilingual-TrainX IndicBERT 37 36 36 36 36 37 38 37 37 37 36 37
MuRIL 51 51 51 51 51 51 52∗ 52∗ 51 52∗ 52∗ 51
LnAvg 44 44 44 44 44 44 45 44 44 44 42 44

Table 7: Performance in terms of accuracy when evaluated on the α3 test set. Higher value implies better performance.
Here, LnAvg represents the average accuracy for a language across all models, while ModAvg represents the average
accuracy of a model across all languages. A value in Purple represents the best accuracy for that model across all
languages. An underlined value in Blue represents the best accuracy for that language across all models. A value
in Green with an asterisk(∗) represents the cases where language-wise and model-wise values coincide. As we
fine-tune on a specific Indic language in the fine-tuning strategies Translate-Train-X and Bilingual-Train-X, we
report the training average of the concerned language. We do not include the results of XLM-RoBERTa as the
model fails to converge on these experiments on multiple runs with a distinct set of hyper-parameters as explained
in Appendix §D.
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bn hi gu pa mr te ta ml kn as or TrainAvg
bn 67 66 64 62 63 63 63 60 63 64 62 63
hi 66 67 65 65 64 62 63 64 65 62 62 64
gu 63 64 66 65 62 64 63 63 63 63 64 64
pa 63 64 63 65 61 61 62 62 62 62 61 62
mr 65 66 63 64 65 62 62 63 64 62 62 63
te 65 62 63 64 62 64 62 63 64 63 63 63
ta 63 64 63 61 62 62 65 62 64 61 59 62
ml 65 62 62 63 62 63 62 65 64 63 61 63
kn 65 65 65 64 63 63 63 64 66 62 62 64
as 63 63 63 62 63 62 63 63 63 65 61 63
or 64 61 60 62 60 61 61 60 62 62 64 61
TestAvg 64 64 63 63 62 62 63 63 64 63 62 63

bn hi gu pa mr te ta ml kn as or TrainAvg
bn 55 54 54 53 53 52 53 53 53 54 52 53
hi 54 56 53 52 52 51 52 52 53 53 52 53
gu 54 52 52 50 51 50 52 50 51 50 50 51
pa 55 54 54 55 53 52 54 52 53 52 53 53
mr 54 53 53 53 53 51 52 51 52 52 52 52
te 54 52 52 52 52 51 51 52 52 52 51 52
ta 56 55 54 51 53 53 54 52 53 51 51 53
ml 53 50 53 49 51 50 50 52 52 51 50 51
kn 54 53 52 51 51 50 52 50 54 51 51 52
as 56 53 55 52 53 52 53 53 54 54 51 53
or 55 51 50 53 51 51 51 51 52 51 53 52
TestAvg 54 53 53 52 52 51 52 52 53 52 51 52

bn hi gu pa mr te ta ml kn as or TrainAvg
bn 52 51 50 51 50 49 50 49 51 52 51 50
hi 53 54 51 53 52 51 52 51 52 50 50 52
gu 53 51 52 52 50 51 50 52 51 50 50 51
pa 53 52 51 53 51 51 53 51 51 51 52 52
mr 52 50 50 51 51 48 49 49 49 50 49 50
te 51 51 49 50 50 51 50 50 51 49 49 50
ta 53 52 50 48 51 49 52 51 50 51 50 51
ml 52 49 50 51 52 50 49 50 51 50 49 50
kn 52 53 50 51 50 51 51 51 53 51 50 51
as 51 50 50 51 50 49 50 50 51 51 52 51
or 52 51 49 50 51 50 50 51 51 50 50 50
TestAvg 52 51 50 51 51 50 51 51 51 50 50 51

Table 8: Complete results (accuracy) for Translate-Train-X of MuRIL on the α1, α2, and α3 test splits respectively.
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bn hi gu pa mr te ta ml kn as or TrainAvg
bn 67 67 64 65 64 63 63 64 64 63 63 64
hi 65 67 63 65 63 63 63 62 63 63 61 63
gu 65 67 66 65 63 64 64 64 65 64 62 64
pa 66 66 65 66 64 62 64 64 64 64 63 64
mr 64 67 64 65 65 62 64 63 64 64 61 64
te 66 66 65 65 64 66 65 64 65 64 64 65
ta 65 67 65 64 63 63 65 63 64 63 63 64
ml 67 67 66 66 63 63 64 66 63 63 61 64
kn 67 67 65 65 64 63 64 64 66 63 63 65
as 66 66 65 64 65 63 64 64 64 65 62 64
or 65 68 65 65 64 63 65 63 65 63 65 64
TestAvg 66 67 65 65 64 63 64 63 64 63 63 64

bn hi gu pa mr te ta ml kn as or TrainAvg
bn 55 54 54 53 53 53 53 52 53 52 52 53
hi 55 54 54 54 53 52 54 53 54 52 52 53
gu 54 54 53 53 53 53 54 53 53 54 52 53
pa 55 55 54 55 53 52 55 54 56 54 53 54
mr 55 54 54 53 53 53 54 53 55 53 52 54
te 55 53 53 53 53 54 53 51 53 53 52 53
ta 53 53 53 53 52 52 53 52 54 52 51 52
ml 57 54 55 53 54 53 53 53 54 53 52 54
kn 56 54 53 54 52 51 53 53 56 54 52 53
as 56 54 54 54 52 53 54 54 55 53 52 54
or 55 54 53 53 52 53 54 54 54 53 53 53
TestAvg 55 54 54 54 53 53 54 53 54 53 52 53

bn hi gu pa mr te ta ml kn as or TrainAvg
bn 52 50 49 50 52 51 50 52 50 49 49 50
hi 51 52 49 52 50 49 50 51 51 49 48 50
gu 51 51 51 51 51 51 50 51 51 49 49 51
pa 52 52 50 51 51 51 50 52 50 49 48 51
mr 52 50 51 50 51 50 50 51 50 49 49 50
te 51 51 51 51 52 52 51 51 51 49 50 51
ta 52 52 51 52 51 51 51 51 51 51 50 51
ml 53 52 52 50 52 52 51 52 50 50 50 51
kn 50 52 51 52 50 51 51 50 50 49 48 50
as 53 52 51 52 52 52 51 52 50 53 49 52
or 53 52 51 52 51 50 52 52 51 51 50 51
TestAvg 52 52 51 51 51 51 51 51 50 50 49 51

Table 9: Complete results (accuracy) for Bilingual-Train-X of MuRIL on the α1, α2, and α3 test splits respectively.
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