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Abstract

Deep acoustic models represent linguistic infor-
mation based on massive amounts of data. Un-
fortunately, for regional languages and dialects
such resources are mostly not available. How-
ever, deep acoustic models might have learned
linguistic information that transfers to low-
resource languages. In this study, we evaluate
whether this is the case through the task of dis-
tinguishing low-resource (Dutch) regional vari-
eties. By extracting embeddings from the hid-
den layers of various wav2vec 2.0 models
(including new models which are pre-trained
and/or fine-tuned on Dutch) and using dynamic
time warping, we compute pairwise pronun-
ciation differences averaged over 10 words
for over 100 individual dialects from four (re-
gional) languages. We then cluster the result-
ing difference matrix in four groups and com-
pare these to a gold standard, and a partitioning
on the basis of comparing phonetic transcrip-
tions. Our results show that acoustic models
outperform the (traditional) transcription-based
approach without requiring phonetic transcrip-
tions, with the best performance achieved by
the multilingual XLSR-53 model fine-tuned
on Dutch. On the basis of only six seconds of
speech, the resulting clustering closely matches
the gold standard.

1 Introduction

Deep acoustic models have improved automatic
speech recognition (ASR) substantially in recent
years (Schneider et al., 2019; Baevski et al.,
2020a,b; Conneau et al., 2020). These models
represent linguistic information based on massive
amounts of data. While these models are gen-
erally evaluated on ASR benchmarks, few stud-
ies have addressed what kind of linguistic infor-
mation is represented by them. The work of
Pasad et al. (2021) examined information repre-
sented by the wav2vec 2.0 model (Baevski
et al., 2020b) across the various Transformer layers.
They showed that different layers encode different
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types of linguistic information. Specifically, the
initial layers appeared to be most similar to the
input speech features, whereas the middle layers
mostly encoded contextual information. The final
layers again turned out to be similar to the input
speech features. However, the representations of
the final layers changed when the model was fine-
tuned, likely because task-specific information was
learned. In addition, Ma et al. (2021) investigated
several deep acoustic models using phonetic prob-
ing tasks, and found that representations from these
models capture information useful for distinguish-
ing English phones. Importantly, these deep acous-
tic models were better able to distinguish English
phones than using conventional MFCC or filterbank
features. Although they evaluated the transferabil-
ity of deep acoustic representations across several
domains, it remains unclear whether these mod-
els learned information that transfers to other lan-
guages. This is, however, important when working
on more inclusive speech technology. Especially
when resources for training these models are lack-
ing, such as for regional languages and dialects. In
this paper, we therefore investigate if hidden layers
of deep acoustic models incorporate fine-grained
information, which can be used to represent dif-
ferences between, and in turn distinguish, regional
language varieties.

Past work on investigating language variation
has often been based on computing pronuncia-
tion distances that rely on phonetically transcribed
speech (Nerbonne and Heeringa, 1997; Livescu
and Glass, 2000; Heeringa, 2004). These (edit) dis-
tances have been found to match perceptual judge-
ments of similarity well (Gooskens and Heeringa,
2004; Wieling et al., 2014). However, transcribing
speech phonetically is time-consuming and prone
to errors (Bucholtz, 2007; Novotney and Callison-
Burch, 2010). While automatic approaches for
computing phonetic transcriptions exist (e.g., Li
et al. 2020), they produce lower quality phonetic
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transcriptions than human transcribers do. Addi-
tionally, (discrete) phonetic transcriptions do not
capture all (continuous) aspects of human speech
(Liberman, 2018).

To mitigate these shortcomings, acoustic ap-
proaches have been developed for investigating lan-
guage variation (Huckvale, 2007; Ferragne and Pel-
legrino, 2010; Strycharczuk et al., 2020; Bartelds
et al., 2020). However, these studies either exclu-
sively focused on the vowels (ignoring differences
in the consonants), or were negatively influenced
by non-linguistic variation in the speech signal.

Recently, Bartelds et al. (2022) found that repre-
sentations from the hidden layers of pre-trained and
fine-tuned wav2vec 2.0 (large) models are suit-
able to represent language variation. They showed
that these representations capture linguistic infor-
mation that is not represented by phonetic transcrip-
tions, while being less sensitive to non-linguistic
variation in the speech signal. Furthermore, this
approach seems to provide a better match to human
perceptual judgements than phonetic transcription-
based approaches.

To investigate if wav2vec 2.0 acoustic mod-
els (including newly trained Dutch models) learn
fine-grained linguistic information that can transfer
to regional languages and dialects, we will assess
whether or not regional languages and dialects spo-
ken in the Netherlands can be distinguished using
these models. Our code and newly trained models
are publicly available.'

2 Dataset

We use Dutch dialect pronunciation recordings
from the Goeman-Taeldeman-Van Reenen-Project
(Goeman and Taeldeman, 1996). Audio recordings
of hundreds of words were obtained (and manually
phonetically transcribed) in the 1980s and 1990s
and are available for 613 dialect varieties in the
Netherlands and Belgium. Unfortunately, the hour-
long audio recordings were not segmented, and the
metadata with the time stamps we use to extract the
audio containing individual word pronunciations
were only partially available. In total, therefore,
we extract the acoustic recordings (judged to be
of sufficient quality) for 10 words (armen: ‘arms’,
deeg: ‘dough’, draden: ‘wires’, duiven: ‘pigeons’,
naalden: ‘needles’, ogen: ‘eyes’, pijpen: ‘pipes’,
tangen: ‘pliers’, volk: ‘people’, vuur: ‘fire’) pro-

'nttps://github.com/Bartelds/
language-variation

nounced in 106 locations in the Netherlands. On
average, the duration of these 10 words is only 6.3
seconds for each location. Some example pronun-
ciations are shown in Table 1.

Standard Frisian Low Saxon Limburgish

Dutch (Joure) (Eelde) (Echt)
Arms aromon  jeromon ‘Paims &Bom
Dough derx deig deix deix
Wires dradon tridn drodn drei

Table 1: Phonetic transcriptions of the words ‘arms’,
‘dough’, and ‘wires’ obtained from three locations where
different regional languages (Frisian, Low Saxon, and
Limburgish) are spoken, as well as in Standard Dutch.
The names of the locations are provided between paren-
theses.

3 Methods

We compute embeddings from the hidden Trans-
former layers of three fine-tuned deep acoustic
wav2vec 2.0 large models, and subsequently
determine pronunciation differences using dy-
namic time warping (DTW) with these embeddings
(Miiller, 2007). We use fine-tuned acoustic mod-
els in this study as their hidden representations
were found to show the closest match with human
perceptual judgements of pronunciation variation
(Bartelds et al., 2022). For the transcription-based
approach, we apply a (phonetically sensitive) Lev-
enshtein distance algorithm to the available corre-
sponding phonetic transcriptions of the 10 words in
all locations. After averaging the word-based dif-
ferences, the result of both approaches is a distance
matrix representing the aggregate pronunciation
difference between every pair of locations. Both
distance matrices are then clustered in four groups
and quantitatively compared to a gold standard clus-
tering of four groups (see Figure 1a). These groups
correspond to the three regional languages spoken
in the Netherlands that are recognised by the Euro-
pean Charter for Regional or Minority Languages
(Frisian: light blue in Figure 1a, Low Saxon: dark
blue, Limburgish: light green) and standard Dutch
(dark green).

We use the fine-tuned English wav2vec 2.0
large model (abbreviated as w2v2-en) released
by Baevski et al. (2020b). In addition, we use
a new pre-trained Dutch wav2vec 2.0 large
model that is fine-tuned on Dutch labelled data
(abbreviated as w2v2-nl), and we use the multi-
lingual XL.SR-53 model of Conneau et al. (2020)
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that is fine-tuned on the same Dutch labelled data
(XLSR-n1). We explicitly use models for Dutch
because this language is closely related to the dif-
ferent regional languages and dialects spoken in
the Netherlands (including Frisian, Low Saxon,
and Limburgish; Eberhard et al., 2021). The ad-
vantage of having a Transformer-based language
model that is linguistically closest was shown by
de Vries et al. (2021), albeit for a different task
(i.e. part-of-speech tagging). It may therefore be
the case that a high degree of language similarity is
also beneficial for Transformer-based models that
learn speech representations.

Acoustic models w2v2-en is pre-trained on
960 hours of English speech from the Librispeech
dataset (Panayotov et al., 2015). The model con-
sists of a convolutional encoder, a quantizer, and a
24-layer Transformer network. Subsequently, the
learned representations are fine-tuned on 960 hours
of labelled data by adding a randomly initialised
linear projection layer on top of the Transformer
network. This projection layer is used to predict
characters from the labelled data using the connec-
tionist temporal classification loss function (CTC;
Graves et al., 20006).

w2v2-nl is obtained by further pre-training
the English model on 243 hours (cross-talk and
silences removed) of Dutch speech from the Spo-
ken Dutch Corpus (Oostdijk, 2000). This approach
converged faster in preliminary experiments com-
pared to a randomly initialised network. Subse-
quently, the model is fine-tuned on the same 243
hours of (now labelled) Dutch speech using CTC.
Pre-training is performed for 2 million steps with
100,000 iterations for warm up, and a linearly de-
creasing learning rate starting at 5e—>5. Fine-tuning
is performed on labelled data for 1 million steps,
with a linearly decreasing learning rate starting at
le—5. Other configuration details are similar to
those reported in Baevski et al. (2020b).

XLSR-53 has the same architecture as the other
acoustic models, except that the quantizer has
learned a single set of discrete speech represen-
tations that is shared across the pre-training lan-
guages (which includes Dutch and German, but
not Frisian, Low Saxon or Limburgish). This
model is pre-trained on 56,000 hours of speech
in 53 languages (44,000 hours consists of English
speech) obtained from the BABEL, Common Voice
and Multilingual Librispeech datasets (Gales et al.,
2014; Ardila et al., 2020; Pratap et al., 2020). To

obtain XLSR—n1l, XLSR-53 is fine-tuned on the
same labelled data as w2v2-n1 with the same con-
figuration details.

Obtaining pronunciation differences We com-
pute pronunciation differences between all 106 lo-
cations in our dataset using both phonetic transcrip-
tions and acoustic embeddings. For determining
the phonetic transcription-based distance, we use
a variant of the Levenshtein distance (LD) algo-
rithm proposed by Wieling et al. (2012), which
includes automatically determined phonetic seg-
ment distances. This algorithm matches perception
well (Wieling et al., 2014) and is often used for
investigating dialect variation.

Given a pair of locations, recordings of the same
word are compared using LD (phonetic transcrip-
tions) or DTW (acoustic embeddings), which is a
frequently-used algorithm for comparing represen-
tations of acoustic sequences (Senin, 2008). The
acoustic embeddings are obtained for each model
for each of the 24 layers separately (i.e. to deter-
mine the optimal layer). The word-based distances
between two locations are averaged to determine
the single pronunciation distance between a loca-
tion pair. This process is repeated for all pairs to
create a symmetric distance matrix including all
locations.

Clustering We classify the phonetic transcription
distance matrix and the acoustic distance matri-
ces (three models times 24 layers) from the acous-
tic embeddings using seven clustering techniques,
yielding the four different groups. Of course, the
choice of clustering technique may influence the
results, but we determine the optimal clustering
algorithm by selecting the one best representing
the underlying difference matrix. We use cluster-
ing techniques that have previously been applied to
distance matrices of dialect pronunciations, namely
single link (s 1), complete link (c1), group average
(ga), weighted average (wa), unweighted centroid
(uc), weighted centroid (wc) and minimum vari-
ance (mv) clustering (Heeringa et al., 2002; Proki¢
and Nerbonne, 2008).

To select the best clustering algorithm, we cal-
culate the cophenetic correlation coefficient (Sokal
and Rohlf, 1962). This coefficient represents the
(Pearson) correlation between the original dis-
tances and the clustering-based cophenetic dis-
tances (i.e. extracted from the dendrogram underly-
ing the clustering). Higher values indicate a better
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(a) Gold standard clustering
(human-generated)

(b) XLSR-n1 layer 15
(c1 clustering)
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(c) w2v2-en layer 13
(c1 clustering)

(d) w2v2-nl layer 16
(wa clustering)

Figure 1: Cluster maps visualizing four clusters on the
map of the Netherlands. Separate clusters are indicated
by the different colours.

(a) XLSR—-n1 layer 15

(b) LD

Figure 2: MDS maps visualizing pronunciation differ-
ences based on Dutch dialect pronunciations. Similar
colours correspond to pronunciations that are also simi-
lar.

correspondence between the original data and the
clustering (with a value of 1 being perfect). We
determine the optimal clustering method for each
Transformer layer (for the acoustic models) per
model by selecting the one with the highest cophe-
netic correlation coefficient.

Evaluation We compare the layer-based cluster-
ing results per model to the gold standard clustering.

We do this by computing the CDistance score,
which is a clustering comparison measure proposed
by Coen et al. (2010). As opposed to other tech-
niques for comparing clustering partitions, this
measure incorporates spatial information in the
evaluation (i.e. the coordinates of the locations),
which is essential for evaluating spatial (i.e. geo-
graphical) clustering. The CDistance scores (for
the optimal clustering method per layer) are com-
pared across the layers for each model. The layer
with the lowest score per model (i.e. most closely
matching the gold standard clustering) is selected
for the comparison of the three models. In addition,
we create multidimensional scaling (MDS) maps
(Torgerson, 1952) using the best-performing model
and compare it to the frequently used LD algorithm
to show the (more fine-grained) relationship be-
tween the geographical location of the locations
and the pronunciation differences.

4 Results and discussion

Model Layer Clustering CDistance
w2v2-en 13 cl 0.34
w2v2-nl 16 wa 0.34
XLSR-nl 15 cl 0.20
LD ga 0.46

Table 2: CDistance scores for the different models
with the optimal clustering algorithm and output layer
(if applicable). Lower scores indicate a better match
with the gold standard clustering.

In Table 2, we show the CDistance scores as-
sociated with the different models. Ideally, the best
layer would have been selected using a validation
set instead of using all data, but our set of words
was unfortunately too small to be adequately split.
However, given that the optimal layers reported in
Table 2 correspond with the middle hidden layers
found to be best representing pronunciation differ-
ences in the work of Bartelds et al. (2022), we do
not believe this to be problematic.

Our results show that the XLSR-n1 model with
output layer 15 and complete link clustering shows
the best performance among the fine-tuned models.
Note that the standard deviation of the performance
for the XLSR-n1 model across all Transformer lay-
ers was equal to 0.09, which highlights the strong
performance of this model over the other models.
Importantly, all fine-tuned acoustic models improve
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over the LD algorithm, which is traditionally used
to investigate (dialectal) language variation. Per-
haps surprisingly, the w2v2-n1l model performs
similar to the w2v2-en model. We do not have
a clear explanation for this pattern, but it may be
caused by the Dutch model being based on the En-
glish model, in combination with a smaller amount
of Dutch as opposed to English data used for pre-
training. In future work we aim to investigate this.

The multilingual XLSR—n1 model outperforms
both monolingual models. The XLSR-n1 model
is pre-trained on a variety of languages, including
Dutch, English and German. The regional lan-
guages and dialects spoken in the Netherlands have
clear links to these three languages (i.e. Frisian has
some overlap with English, Low Saxon has some
overlap with German, and all varieties overlap with
Dutch, which is also the fine-tuning language).

To illustrate, Figure 1 visualizes the gold stan-
dard together with the fine-tuned acoustic models.
The XL.SR—n1 model clearly classifies pronuncia-
tions in the geographical area where Limburgish is
spoken (i.e. the light green area) most accurately.
While the XLSR-n1 model does not perfectly dis-
tinguish the Low Saxon pronunciations (i.e. the
dark blue area), the other models perform worse in
this regard.

To evaluate (albeit subjectively) how well more
fine-grained differences are captured by the best-
performing model, Figure 2 shows the MDS maps
for the XL.SR-n1 model, as well as the LD algo-
rithm. Both approaches show the relative grad-
ual nature of dialect variation well. However, the
XLSR-nl model seems to capture the larger dis-
tinctions (e.g., delineating the Limburgish area)
better than the LD algorithm. Based on these eval-
uations, XLSR—-n1 appears to be the best model
when little data is available.

5 Conclusion

We have found that the XLSR—-n1 model can be
effectively used to distinguish between language
groups in the Netherlands when only a small
amount of data is available. It even outperformed
the LD algorithm, which requires time-consuming
phonetic transcriptions. Our study further shows
that multilingual pre-training and fine-tuning on a
similar language (compared to the target languages)
is beneficial over using a monolingual model.
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