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Abstract

We present a novel feature attribution method
for explaining text classifiers, and analyze it in
the context of hate speech detection. Although
feature attribution models usually provide a sin-
gle importance score for each token, we instead
provide two complementary and theoretically-
grounded scores – necessity and sufficiency –
resulting in more informative explanations. We
propose a transparent method that calculates
these values by generating explicit perturba-
tions of the input text, allowing the importance
scores themselves to be explainable. We em-
ploy our method to explain the predictions of
different hate speech detection models on the
same set of curated examples from a test suite,
and show that different values of necessity and
sufficiency for identity terms correspond to dif-
ferent kinds of false positive errors, exposing
sources of classifier bias against marginalized
groups.

1 Introduction

Explainability in AI (XAI) is critical in reaching
various objectives during a system’s development
and deployment, including debugging the system,
ensuring its fairness, safety and security, and under-
standing and appealing its decisions by end-users
(Vaughan and Wallach, 2021; Luo et al., 2021).

A popular class of local explanation techniques
is feature attribution methods, where the aim is to
provide scores for each feature according to how
important that feature is for the classifier decision
for a given input. From an intuitive perspective,
one issue with feature attribution scores is that it is
not always clear how to interpret the assigned im-
portance in operational terms. Specifically, saying
that a feature is ‘important’ might translate to two
different predictions. The first interpretation is that
if an important feature value is changed, then the
prediction will change. The second interpretation is
that, as long as the feature remains, the prediction

will not change. The former interpretation corre-
sponds to the necessity of the feature value, while
the latter corresponds to its sufficiency.

To further illustrate the difference between neces-
sity and sufficiency, we take an example from hate
speech detection. Consider the utterance “I hate
women”. For a perfect model, the token ‘women’
should have low sufficiency for a positive predic-
tion, since merely the mention of this identity group
should not trigger a hateful prediction. However,
this token should have fairly high necessity, since
a target identity is required for an abusive utter-
ance to count as hate speech (e.g., “I hate oranges”
should not be classified as hate speech). In this
paper, we develop a method to estimate the neces-
sity and sufficiency of each word in the input, as
explanations for a binary text classifier’s decisions.

Model-agnostic feature attribution methods like
ours often perturb the input to be explained, ob-
tain the predictions of the model for the perturbed
instances, and aggregate the results to make con-
clusions about which input features are more in-
fluential on the model decision. When applying
these methods to textual data, it is common to ei-
ther drop the chosen tokens, or replace them with
the mask token for those models that have been
trained by fine-tuning a masked language model
such as BERT (Devlin et al., 2019). However, delet-
ing tokens raises the possibility that a large portion
of the perturbed examples are not fluent, and lie
well outside the data manifold. Replacing some
tokens with the mask token partially remedies this
issue, however it raises others. Firstly, the expla-
nation method ceases to be truly model-agnostic.
Secondly, a masked sentence is in-distribution for
the pre-trained model but out-of-distribution for the
fine-tuned model, because the learned manifolds
deviate from those formed during pre-training in
the fine-tuning step.

To avoid these problems we use a generative
model to replace tokens with most probable n-
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grams. Generating perturbations in this way en-
sures that the perturbed instances are close to the
true data manifold. It also provides an additional
layer of transparency to the user, so they can decide
whether to trust the explanation by checking how
reasonable the perturbed examples seem.

Although supervised discriminative models rely
fundamentally on correlations within the dataset,
different models might rely on different correla-
tions more or less depending on model architecture
and biases, training methods, and other idiosyn-
crasies. To capture the distinction between cor-
relations in the data and the direct causes of the
prediction, we turn to the notion of interventions
from causal inference (Pearl, 2009). Previous work
employing causal definitions of necessity and suf-
ficiency for XAI have assumed tabular data with
binary or numerical features. The situation in NLP
is much more complex, since each feature is a word
in context, and we have no concept of ‘flipping’ or
‘increasing’ feature values (as in binary data and
numerical data, respectively). Instead, our method
generates perturbations of the input text that have
high probability of being fluent while minimizing
the probability that the generated text will also be
a direct cause of the prediction we aim to explain.

As our application domain we choose hate
speech detection, a prominent NLP task with sig-
nificant social outcomes (Fortuna and Nunes, 2018;
Kiritchenko et al., 2021). It has been shown
that contemporary hate speech classifiers tend to
learn spurious correlations, including those be-
tween identity terms and the positive (hate) class,
which can result in further discrimination of already
marginalized groups (Dixon et al., 2018; Park et al.,
2018; Garg et al., 2019). We apply our explain-
ability metrics to test classifiers’ fairness towards
identity-based groups (e.g., women, Muslims). We
show how necessity and sufficiency metrics calcu-
lated for identity terms over hateful sentences can
explain the classifier’s behaviour on non-hateful
statements, highlighting classifiers’ tendencies to
over-rely on the presence of identity terms or to ig-
nore the characteristics of the object of abuse (e.g.,
protected identity groups vs. non-human entities).

The contributions of this work are as follows:

• We present the first methodology for calculat-
ing necessity and sufficiency metrics for text
data as a feature attribution method. Arguably,
this dual explainability measure is more infor-
mative and allows for deeper insights into a

model’s inner workings than traditional single
metrics.

• We use a generative model for producing input
perturbations to avoid the out-of-distribution
prediction issues that emerge with token dele-
tion and masking techniques.

• To evaluate the new methodology, we apply it
to the task of explaining hate speech classifi-
cation, and demonstrate that it can detect and
explain biases in hate speech classifiers.

We make the implementation code freely avail-
able to researchers to facilitate further advancement
of explainability techniques for NLP.1

2 Background and Related Work

Explanations are often categorized as to whether
they are for an individual prediction (local) or
for the model reasoning as a whole (global), and
whether the explanation generation is a part of
the prediction process (self-explaining) or gener-
ated through additional post-processing (post-hoc)
(Guidotti et al., 2018; Adadi and Berrada, 2018).
The necessity and sufficiency explanations pre-
sented here belong to the class of local explanation
methods, as do most of the XAI methods applied
to NLP data (Danilevsky et al., 2020). It is also
a post-hoc method to the degree that it is entirely
model-agnostic: all it requires is binary predictions
on provided inputs.

There are a few classes of popular techniques
for explaining natural language processing models
(see Danilevsky et al. (2020) for a survey). One ap-
proach is feature attribution methods that allocate
importance scores to each feature. These can be
architecture-specific (Bahdanau et al., 2015; Sun-
dararajan et al., 2017), or model-agnostic (Ribeiro
et al., 2016; Lundberg and Lee, 2017).

Another approach is counterfactual explana-
tions, which provide similar examples to the in-
put in order to show what kinds of small differ-
ences affect the prediction of the model (Wu et al.,
2021; Kaushik et al., 2021; Ribeiro et al., 2020;
Ross et al., 2020). These contrastive examples
are related to the concept of counterfactual rea-
soning from the causality literature, that formal-
izes the question: “Would the outcome have hap-
pened if this event had not occurred?” in order

1https://github.com/esmab/
necessity-sufficiency
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to determine whether the event was a cause of the
observed outcome (Pearl, 2009). Counterfactual
explanation methods are often targeted at certain
semantic or syntactic phenomena such as negation
(Kaushik et al., 2021) or swapping objects and
subjects (Zhang et al., 2019), and hence do not
guarantee that the counterfactuals cover the data
distribution around the input text well.

In this work, we combine methods from feature
attribution and counterfactual generation models.
This allows us to calculate scores that capture lo-
cal feature importance, and provide counterfactual
examples as justification for the assigned scores.

Necessity and sufficiency. These are two no-
tions from causal analysis that capture what one
intuitively expects a true cause of an event to ex-
hibit (Pearl, 2009; Halpern, 2016). Several works
have recently suggested applying necessity and suf-
ficiency to explain model predictions. Mothilal
et al. (2021) used the actual causality framework
of Halpern (2016) to calculate necessity and suffi-
ciency scores for tabular data. Galhotra et al. (2021)
suggested an approach to capture the notions of ne-
cessity and sufficiency from probabilistic causal
models (Pearl, 2009). Watson et al. (2021) pre-
sented a different method for quantifying necessity
and sufficiency over subsets of features. We follow
the framework of probabilistic causal models, and
adopt the definitions from Galhotra et al. (2021). In
NLP explanations, necessity and sufficiency have
been used for evaluating rationales (Zaidan et al.,
2007; DeYoung et al., 2020; Mathew et al., 2021)2,
however to the best of our knowledge, this is the
first work to explore their usage for estimating fea-
ture attribution scores.

The out-of-distribution problem in feature attri-
bution models. Virtually all model-agnostic fea-
ture attribution models calculate importance scores
by perturbing input features and assign importance
according to which feature changes the outcome
the most. However, an issue has been raised that
these perturbed inputs are no longer drawn from
the data distribution that the model would naturally
encounter for a given task (Fong and Vedaldi, 2017;
Chang et al., 2018; Hooker et al., 2019; Janzing
et al., 2020; Hase et al., 2021). This is problematic
because then, any change in the model predictions
could be caused by the distribution shift rather than

2The term comprehensiveness is often used instead of ne-
cessity in this context.

the removal of feature values (Hooker et al., 2019).
Recently, Hase et al. (2021) have argued that the
problem is due to social misalignment (Jacovi and
Goldberg, 2021), where the information commu-
nicated by the model differs in non-intuitive ways
from the information people expect.

One solution to address these issues is to calcu-
late importance scores by marginalizing over coun-
terfactuals that respect the data distribution. Kim
et al. (2020) and Harbecke and Alt (2020) adopted
this approach and targeted text data specifically by
marginalizing over infills generated by BERT. In
our preliminary experiments, this resulted in the
model putting an overwhelmingly high probability
mass to one or few very common words, making
the generated perturbations relatively non-diverse.3

As Pham et al. (2021) also pointed out, BERT is
very good at guessing the masked word, doing so
correctly about half of the time. This behaviour
results in assigning low importance to highly pre-
dictable words regardless of their true importance.

For this reason, we choose to use a generative
language model to infill masked sections with n-
grams. Our mask-and-infill approach is similar to
that of Wu et al. (2021) and Ross et al. (2021), who
used fine-tuned causal language models to infill
masked sections of text with variable length se-
quences. Ross et al. also used the contrasting label
to condition the generative model. However, both
these works aim to find counterfactual examples as
explanations, while we marginalize over them to
calculate necessity and sufficiency of each token.

3 Our Method

A central idea in causal inference is that of inter-
vention, where a random variable is intervened on
and set to a certain value. The intuition is that, if
a random variable is the cause of another, then in-
tervening on the first one should affect the other,
whereas if they are correlated by other means then
the intervention should not have an effect.

Necessity. Let X ← a denote that the random
variable X has been intervened so that X = a.
When talking about a feature vector x, we will
denote by xi←a that we intervene on the ith feature
value and set it to a. For an input with features
x where xi = a, the necessity of xi = a for the

3Making the softmax scores more distributed across the
vocabulary results in unpredictably disfluent infills.
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model prediction f(x) = y is defined as:

Nxi ,y=Pc∼Dn(x)(f(ci←a′)=y′|ci = a, f(c) = y)

where a′ is an alternative feature value such that
a′ ̸= a and y′ is an alternate outcome such that
y′ ̸= y. Dn(x) is a distribution that covers the
neighborhood of x, and can be defined according to
the data and the implementation. In words, xi = a
has high necessity for the prediction y if, for those
points in the neighborhood of x that also have the
value a for the ith feature and the same model
prediction y, changing the ith feature value from a
to a′ changes the prediction from y to y′ with high
probability.

Sufficiency. The sufficiency of xi = a for the
model prediction f(x) = y is defined as:

Sxi ,y=Pc∼Ds(x)(f(ci←a) = y|ci = a′, f(c) = y′)

This means that if xi = a has high sufficiency for
the outcome y, then for inputs in the neighborhood
of x that differ in the ith feature value, changing
ith feature value to that of a will flip the prediction
to f(x) = y.

Interventions. Previous works applying notions
of necessity and sufficiency from causal inference
to XAI assume tabular data. This makes it rela-
tively straightforward to apply these measures to
the features since a) it is clear how to assess and
compare the ith feature of each input and b) there
is little ambiguity in how to change one feature
value to another. Both these are issues for NLP
data, where each feature is a token in the context
of the wider text.

We argue that the replacements should reflect
the likelihood of natural data, but should still be
distinct from purely observational correlations in
task-specific aspects. To achieve this balance, we
sample the replacement values a′ conditioned both
on the other parts of the text and on the opposite
class y′. If there are two features xi = a and
xj = b that are both correlated with the outcome y,
the intervention xi←a′ , where a′ is sampled in this
way results in a′ being still plausible with respect
to the context xj = b, but removes the potential
indirect effect that xj = b causes xi = a, which
causes f(x) = y. This allows us to distinguish
which of the correlated features the model relies on
more for a given prediction.

Estimation. The formulae for necessity and suffi-
ciency suggest a naive implementation of sampling
first from the neighborhood of the input, picking
those samples that conform to the conditions, and
intervening on the feature of interest and marginal-
izing over the model predictions to calculate the
final value. To perform these steps for each token in
a sentence is prohibitively expensive. We therefore
perform interventions on subsets of tokens at once,
so that one perturbation can be used in the necessity
and sufficiency estimation of multiple tokens.

We estimate the necessity of a token by perturb-
ing subsets of tokens containing the given token
and calculating the average change in model pre-
diction, weighted according to the size of the sub-
set. For calculating necessity, we marginalize over
f(ci←a′) where c = xj1←b1,···jk←bk for a random
subset of features xj1 , · · · , xjk , not including the
original feature i. This means that in our imple-
mentation, Dn(x) is an interventional distribution
around x rather than an observational one. In prac-
tice, we estimate a simplified version of this value
where we do not explicitly condition on f(c) = y
in order to perform the estimation efficiently.

We consider the instances where only one or a
few tokens are perturbed to have higher probabil-
ity in Dn(x). As such, the weight assigned to a
sample with k perturbed tokens is proportional to
1/k. This means that the difference between the
original and the perturbed instance is attributed to
each perturbed token equally.

For estimating sufficiency we take the dual ap-
proach. We perturb subsets of tokens excluding
the target token, and calculate the difference be-
tween the weighted average of the model predic-
tions and the baseline prediction. Here too, Ds(x)
is an interventional distribution where each sample
c = xi←a′,j1←b1,···jk←bk for the focus feature xi
and a subset of other features xj1 , · · · , xjk . Even
though we do not explicitly condition on f(c) = y′,
Ds(x) is biased towards such c because the inter-
ventions are conditioned on y′. For a sequence of
length n, the weight assigned to an instance where
k tokens are perturbed is 1/(n − k). This means
that for an perturbed example that contains only a
single token from the original instance, the differ-
ence from the baseline will be attributed entirely to
that token, whereas if there is k original tokens, the
attribution is shared between them. Note thatDs(x)
still assigns a higher probability mass to instances
closer to x, but is less peaked than Dn(x).
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“I hate women”

“I [MASK] [MASK]”
“I hate [MASK]”
“I hate [MASK]”

...
“[MASK] hate [MASK]”

“I hate [MASK]”
“I [MASK] [MASK]”

“I don’t know.”
“I hate her.”

“I hate how illiterate
the administrators are.”

...
“And yet you come

and hate me.”
“I hate how it is sometimes.”

“I’m really confused.”

“I [MASK] women.”
“[MASK] hate women.”

“[MASK] [MASK] women.”
...

“[MASK] [MASK] women.”
“[MASK] [MASK] women.”

“I [MASK] women.”

“I do not under-
stand women.”

“’Please hate women.”
“I am so excited to
see more women.”

...
“’He aint blind to women.”

“lol, i hate women.”
“I shouldn’t harass women.”

non-hate
hateful

non-hate
...

non-hate
non-hate
non-hate

non-hate
hateful

non-hate
...

non-hate
hateful

non-hate

MASKING INFILLING PREDICTION

0.83

0.33

necessity

sufficiency

Figure 1: An illustration of how necessity and sufficiency are calculated for a chosen token “women” in the input “I
hate women” that the model classifies as hateful. In the MASKING step, the subsets of tokens are masked. For the
necessity calculation the masked tokens always include the focus word, and for sufficiency they always exclude it.
In the INFILLING step, the generative language model is used to infill the masked sections with n-grams of various
lengths. These are then passed to the classifier. The necessity is the proportion of instances where changing the
token changes the prediction, and sufficiency is the proportion of instances where changing other tokens does not
change the original prediction. The infills are real examples generated by our method.

4 Explaining Hate Speech Models

For tasks with very skewed class distributions such
as those for binary hate speech classification, it is
not intuitive to ask for explanations for the majority
class predictions: it is difficult to answer why a reg-
ular utterance such as “I would like some coffee."
is not hate speech. This echoes the argument of
Miller (2019) that humans demand explanations
only for selective and surprising aspects of an oc-
currence. We assume that there exists a majority,
‘neutral’ class, and aim to provide explanations only
for the minority, ‘positive’ class.

At the core of our approach is sampling replace-
ments xi ← a′ that are interventional with respect
to the task, but also have high likelihood in the con-
text of other tokens. We implement such a pertur-
bation model for explaining positive predictions of
hate speech classifiers, and explore what informa-
tion necessity and sufficiency provide for this task
through quantitative and qualitative analysis. Our
implementation is task specific, since we sample
from the data labelled as ‘neutral’ only; however,
it is not dataset specific in that it allows comparing
hate speech classifiers that are trained on different
datasets. Figure 1 illustrates the calculations of

necessity and sufficiency for an example classifier.

4.1 Generating perturbations
We use the infilling language model (ILM) of Don-
ahue et al. (2020) to generate the perturbed exam-
ples. This model fine-tunes GPT-2 (Radford et al.,
2019) to allow infilling masked sections of text
with n-grams, where the length of the infill varies
from 1 to 7 tokens.

We fine-tune the ILM on training data that is la-
belled ‘neutral’, which is the opposite of the model
prediction we aim to explain. Training the perturba-
tion model only on the neutral examples allows us
to distinguish direct causes of the model prediction
from correlations in data. To see this, consider the
case where we would like to determine whether a
given identity mention is sufficient for a positive
prediction. If the ILM captures the entire data dis-
tribution rather than just the neutral class, then a
large chunk of the perturbed instances might still
be hateful utterances. In those cases a good model
should predict the positive class even though the
occurrence of the identity term is arguably not the
direct cause of the prediction. Rather, the presence
of the identity term causes the ILM to generate a
hateful infill, which then causes the positive pre-
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Functionality Example Test Case Gold Label n
E

xp
lic

it

F1: Expression of strong negative
emotions

“I hate [IDENTITY].”
“You [IDENTITY] make me sick.” hateful 40

F2: Description using very negative
attributes

“[IDENTITY] are disgusting.”
“All [IDENTITY] like them are vile.” hateful 40

F3: Dehumanisation “[IDENTITY] are scum.”
“[IDENTITY] are a pest.” hateful 40

N
on

-h
at

e
gr

p.
id

en
t. F18: Neutral statements using pro-

tected group identifiers
“We are a group of [IDENTITY].”
“I live with two [IDENTITY].” non-hate 36

F19: Positive statements using pro-
tected group identifiers

“I love [IDENTITY].”
“[IDENTITY] are great.” non-hate 54

A
bu

se
ag

ai
ns

t
no

n-
pr

ot
.t

ar
ge

ts F22: Abuse targeted at objects “I really can’t stand cauliflower.”
“All cocktails like these are vile” non-hate 65

F23: Abuse targeted at individuals
(not as member of a prot. group)

“You make me sick.”
“I will hurt you.” non-hate 65

F24: Abuse targeted at non-
protected groups (e.g. professions)

“Artists are parasites to our society.”
“Death to all capitalists.” non-hate 62

Table 1: Test cases of interest from HateCheck (Röttger et al., 2021). We hypothesize that for identity terms in
explicit test cases, if sufficiency is high then the model will have a high error rate on the test cases that capture
non-hate group identity mentions, and if necessity is low then the model will have a high error rate on the test cases
that cover abuse against non-protected targets.

diction. Using the non-hateful data distribution to
train the infilling model helps avoid such cases,
and enables the method to attribute importance to a
token only when the classifier relies on it directly.

To train our infilling language model, we choose
four widely-used datasets for hate speech and
abusive language detection that are from various
sources such as Twitter (Founta et al., 2018), Red-
dit (Vidgen et al., 2021), Wikipedia comments
(Wulczyn et al., 2017) and news article comments
(Borkan et al., 2019). For all these datasets, we
fine-tune our generative model on benign instances
from the training sets. Details for training and
datasets can be found in Appendix A.

5 Experiments

For our experiments, we focus on investigating the
necessity and sufficiency of identity mentions for
a sentence to be detected as hate speech, since a
known bias in many hate speech detection models
is that mere mentions of identity terms result in
false positive predictions (Dixon et al., 2018).

For a set of instances that contain mentions of
identity terms we leverage HateCheck (Röttger
et al., 2021), which is a suite of functional tests
targeted at diagnosing weaknesses of hate speech
classifiers. Tests are constructed from hand-crafted

templates, where the target is picked from a prede-
fined set of protected groups.

To evaluate our explanation method, we train six
BERT classifiers on three different datasets (Founta
et al., 2018; Vidgen et al., 2021; Davidson et al.,
2017), and obtain the necessity and sufficiency of
the identity terms on explicitly hateful test cases
in HateCheck that target women and Muslims. De-
tails for the datasets and classifiers can be found
in Appendix B. We train classifiers on both ‘hate
speech’ labels and on more general ‘abusive’ lan-
guage labels in order to observe the effects of this
distinction on the necessity and sufficiency values
for identity terms. The difference between the two
is that abusive language does not need to target
a protected group identity. Accordingly, our first
hypothesis is:

Hypothesis 1: We will observe lower necessity
for the identity terms for those models that are
trained on the ‘abuse’ labels compared to the ones
that are trained on the ‘hate’ labels.

We further hypothesize that different necessity and
sufficiency scores for identity mentions in explic-
itly hateful test cases indicate different biases, and
correlate with how well a model does in the Hate-
Check functionalities that aim to capture those bi-
ases (see Table 1 for the test cases), leading to our
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These women disgust me so much. These Muslims disgust me so much.
.81 .99 .96 .45 .50 .49 .33 1 .2 0 .02 .01

These women disgust me so much. These Muslims disgust me so much.
.21 .3 .37 0 .11 .03 .31 1 .33 .29 .3 .37

Figure 2: Visualization for necessity and sufficiency scores on an example HateCheck test case targeting women and
Muslims for the classifier Founta2018-hate. Darker shades correspond to higher values.

second and third hypotheses:

Hypothesis 2: If a model has high sufficiency
scores for identity terms in explicit expressions of
hate (functionalities F1, F2 and F3), this should
indicate that the model is over-sensitive to identity
terms. Therefore, we expect it have increased error
rate in F18 and F19, which consist of neutral or
positive statements that mention identity terms.

Hypothesis 3: If the necessity scores for identity
terms are low in explicit expressions of hate, we
can conclude under-reliance on the identity terms,
and over-reliance on the context. Consequently, we
expect that the model will perform poorly on F22,
F23 and F24, which capture abuse not targeted at
protected identity groups.

5.1 Implementation
We obtain the average necessity and sufficiency val-
ues for explicitly hateful test cases targeting women
and Muslims for each of the classifiers. We calcu-
late necessity and sufficiency by masking a subset
of the tokens and using our fine-tuned language
model to generate infillings. If multiple consec-
utive tokens are chosen, we aggregate them to a
single mask instance to be infilled. We choose the
number of perturbations for each example so that
the expected number of perturbations for each to-
ken is 100. The necessity and sufficiency scores
are only calculated for test cases that a classifier
returns a correct prediction, since we only aim to
explain positive predictions. The results can be
found in Table 2. Table 3 presents the proportions
of test cases classified as hateful/abusive by each of
the six classifiers on the non-hateful statements that
mention identity terms (F18 and F19) and abusive
utterances not targeting protected identity groups
(F22, F23, and F24). We report the results where
necessity and sufficiency are calculated with mask-
ing rather than perturbing the chosen tokens in
Appendix C.

As baselines, we calculate the average impor-
tance of the tokens corresponding to target groups

with SHAP4 and LIME5. For both of these meth-
ods, we use the default parameters for textual data.
As with the calculation of necessity and sufficiency,
we only include the attribution scores for test cases
on which the classifier correctly predicts the pos-
itive class. These results can be found in Table
4.

6 Results and Discussion

An example necessity and sufficiency attribution
is given in Figure 2. It shows that for this input,
the token ‘Muslims’ is more sufficient compared to
‘women’, and the token ‘disgust’ is more necessary
in the context of ‘women’ than that of ‘Muslims’.

According to our first hypothesis, we expect the
models that were trained on the abuse versions of
each dataset to have lower necessity for identity
terms compared to those that have been trained on
hate labels. Indeed, in Table 2 we observe this
pattern for all models and targets except David-
son2017 for the target women. This correctly sug-
gests that identity terms are necessary for a com-
ment to be hate speech, but not for it to be abusive.

The results also clearly support our second hy-
pothesis that if an identity mention has high suffi-
ciency on explicit examples for a given model, then
this model is over-sensitive to the identity term.
Comparing the sufficiency of women and Muslims
in Table 2 illustrates this difference: for all models
except Davidson2017-abuse sufficiency is high for
Muslims and significantly lower for women. Ac-
cordingly, all models except Davidson2017-abuse
display a large difference between their error rates
on neutral or positive mentions for women and Mus-
lims in Table 3 (F18, F19). That is, the mere occur-
rence of the word “Muslims” is sufficient for the
classifiers to classify a text as hate speech, even if
the text is neutral. Furthermore within each group,
higher sufficiency values correspond to higher error
rates in functionalities F18, F19. Vidgen2021-hate

4https://github.com/slundberg/shap
5https://github.com/marcotcr/lime
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women Muslims
necc suff necc suff

Founta2018-hate 0.82 ±0.18 0.29 ±0.1 0.89 ±0.16 0.81 ±0.08
Founta2018-abuse 0.54 ±0.17 0.34 ±0.1 0.65 ±0.21 0.82 ±0.06

Davidson2017-hate 0.58 ±0.09 0.21 ±0.06 0.91 ±0.12 0.74 ±0.09
Davidson2017-abuse 0.82 ±0.14 0.43 ±0.13 0.83 ±0.13 0.41 ±0.14

Vidgen2021-hate 0.96 ±0.02 0.71 ±0.17 0.97 ±0.03 0.88 ±0.13
Vidgen2021-abuse 0.82 ±0.14 0.64 ±0.14 0.82 ±0.15 0.88 ±0.07

Table 2: The mean and standard deviation of necessity and sufficiency scores for target tokens in explicitly hateful
cases of HateCheck (F1, F2, and F3) targeting women or Muslims for the the three classifiers trained on hate, and
three classifiers trained on abuse labels.

Neutral/supportive group identity mention
(F18, F19)

Abuse against non-protected targets
(F22, F23, F24)

women Muslims group individual object
Founta2018-hate 0.02 0.78 0.19 0.15 0.05

Founta2018-abuse 0.02 0.78 0.45 0.72 0.37
Davidson2017-hate 0.02 0.78 0.37 0.18 0.02

Davidson2017-abuse 0.31 0.22 0.26 0.28 0.14
Vidgen2021-hate 0.36 0.82 0.02 0.00 0.00

Vidgen2021-abuse 0.42 0.96 0.40 0.61 0.00

Table 3: Proportions of test cases classified as hateful/abusive for different non-hateful HateCheck functionalities
and targets.

and Vidgen2021-abuse display the highest suffi-
ciency for women, and correspondingly have the
highest error rates on these test cases for women.
Davidson2017-abuse has the lowest sufficiency for
Muslims, and the lowest error rate for this target.

Our third hypothesis is that low necessity for
identity terms will be correlated with positive pre-
dictions for abusive instances that do not target
a protected identity. In Table 2, the lowest ne-
cessity for both target groups are observed with
Founta2018-abuse. Indeed, this model has the high-
est rate of positive (abuse) predictions on all func-
tionalities that test for abuse against non-protected
targets in Table 3. The false positives in the test
cases that target objects is much higher than the cor-
responding errors for the other models, indicating
that Founta2018-abuse is indeed over-sensitive to
abusive contexts, and does not consider the target
of the abuse to be a necessary feature for the clas-
sification. On the other hand, the classifier trained
on Vidgen2021-hate shows the highest necessity
values for both targets, and the lowest error rates
on F22, F23, F24.

6.1 Comparison of Average SHAP and LIME
Values with Necessity and Sufficiency

The average SHAP and LIME values for the two tar-
gets are presented in Table 4. While Founta-abuse
and Davidson-abuse get very similar SHAP scores

for the target Muslims, Founta2018-abuse has high
sufficiency for this token while Davidson2017-
abuse has high necessity. These two classifiers
have very different false-positive rates for test in-
stances that are non-abusive mentions of this target
as reported in Table 3, and hence can be observed
to be biased against this group to a different extent.
This distinction is clearly captured with the neces-
sity and sufficiency scores, but not with SHAP.

LIME scores seem even less consistent with the
false-positive rates in Table 3 than SHAP. For ex-
ample, Davidson2017-hate has a very high false-
positive rate for neutral/supportive mentions of the
target Muslims, however the average LIME score
for this model and target group is in low negatives.
This means that LIME was unable to capture the
biases of the model against this target group.

For the target women, LIME gives very sim-
ilar average importance to the target tokens for
Founta2018-abuse and Vidgen2021-hate, however
all of the other metrics we calculate highlight sig-
nificant differences. Indeed, we can observe in Ta-
ble 3 that Founta2018-abuse has high false-positive
rates for abuse against non-protected targets, but
low false-positive rates for neutral/supportive men-
tions of the target women, whereas Vidgen2021-
hate shows the exact opposite pattern. LIME scores
seem unable to distinguish this important differ-
ence, unlike our necessity and sufficiency scores.
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women Muslims
SHAP LIME SHAP LIME

Founta2018-hate 0.36 ±0.24 0.018 ±0.045 0.84 ±0.2 0.013 ±0.036
Founta2018-abuse -0.07 ±0.21 0.011 ±0.02 0.39 ±0.25 0.042 ±0.037

Davidson2017-hate 0.01 ±0.02 -0.021 ±0.018 0.89 ±0.15 -0.002 ±0.057
Davidson2017-abuse 0.42 ±0.19 0.001 ±0.086 0.37 ±0.2 -0.032 ±0.092

Vidgen2021-hate 0.89 ±0.17 0.012 ±0.077 0.95 ±0.11 0.042 ±0.049
Vidgen2021-abuse 0.66 ±0.23 0.045 ±0.088 0.75 ±0.22 0.087 ±0.062

Table 4: The mean and standard deviation of SHAP and LIME scores for target tokens in explicitly hateful cases of
HateCheck (F1, F2, and F3) targeting women or Muslims for the the three classifiers trained on hate, and three
classifiers trained on abuse labels.

6.2 Qualitative analysis

Examining the generated perturbations reveals that
the majority of the time, the generator successfully
replaces the original snippet with non-offensive
text. There are minimal repetitions of the same in-
fill, indicating that the perturbations are sufficiently
diverse. The quality of the perturbations is mixed,
and tends to decrease with the number of infills.
Our method can be used with any generator that
can model the data distribution conditioned on the
label. For our current model we prioritize diver-
sity over fluency, and leave improvements on this
aspect for future work.

Inspecting the generated perturbations reveal
that there are often instances that combine a few
HateCheck functionalities. For example, as a per-
turbation for “I hate [IDENTITY]” model gener-
ates “This is a subreddit I hate.”, combining shuf-
fling the word order with changing the target. For
the template “[IDENTITY] are the dumbest peo-
ple.”, one of the generated counterfactuals is “I
don’t believe that American people are the dumb-
est people.”, combining negation and phrasing.

Interestingly, many infills for the identity terms
do not clearly correspond to either object, individ-
uals or non-protected groups, which are the three
cases that HateCheck checks for. Instead, our gen-
erative model infills it with clauses such as “I hate
that I feel like I have to do these things”, actions
such as “I hate crying,” or types of events like “I
hate surprises.” This illustrates that our relatively
non-constrained generation of counterfactuals pro-
vides better coverage of potential replacements,
and provides a good complement to manual checks.

7 Conclusion

This work is a step towards more informative and
transparent feature attribution metrics for explain-
ing text classifiers. We argue that standard token

importance metrics can be ambiguous in terms of
what ‘importance’ means. Instead, we adapt the
theoretically-grounded concepts of necessity and
sufficiency to explain text classifiers. Besides being
more informative, the process of generating these
two metrics is intuitive and can be explained to lay
people in terms of “how much the perturbations in
input change the output of the classifier”. More-
over, the input perturbations can be presented to the
users, leading to a transparent and understandable
explainability framework.

Considering the complexities of perturbing tex-
tual features, we introduced a practical implemen-
tation to compute the necessity and sufficiency of
the input tokens. Taking hate speech detection
as an example application, we showed that suffi-
ciency and necessity can be used to explain the
expected differences between a classifier that is
intended to detect identity-based hate speech and
those trained for detecting general abuse. We also
leveraged these metrics to explain the observed
over-sensitivity and under-sensitivity to mentions
of target groups, issues that are tightly related to
fairness in hate speech detection. While the cur-
rent work focused on binary hate speech detection
for English-language social media posts, in future
work, we will explore the effectiveness of these
metrics in generating explanations for other appli-
cations and languages. We will also explore how
the new metrics can improve the debugging of the
models or communicating the model’s decision-
making process to the end-users.

8 Ethical Considerations

The proposed method has benefits and risks that
should be considered from an ethics perspective.

One principle of ethical AI is transparency, and
we have developed this method with the goal of
improving transparency for system developers, end
users, and other stakeholders to better understand
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the inner workings of complex NLP systems. In the
application domain of hate speech detection, we
demonstrated how necessity and sufficiency scores
might be used to diagnose possible classification
biases against identity groups, who are frequently
subjects of online abuse. This can help in address-
ing the known issue of over-sensitivity to identity
terms, ensuring that benign conversations around
issues concerning marginalized groups are not mis-
classified as hate speech.

However, there are also potential risks. We make
use of existing datasets and thus our analysis is lim-
ited by those data: they were collected from public,
online platforms without user’s explicit consent,
and may not accurately represent speakers from all
demographic groups, they are only in English, and
they may be biased towards or against certain top-
ics of conversation. The data and analysis are also
limited to the English language. Training language
models on user data also has privacy implications,
as the language model may then re-generate user
text when deployed.

While transparency and explainability are seen
as desirable properties, they can also expose AI
systems to malicious attacks. In the context of hate
speech, our explainability metrics could potentially
be used to identify and then exploit system vulner-
abilities.

Finally, our approach requires the use of large
language models, which are computationally ex-
pensive to train and can reflect the biases of their
training data. Our method of generating multiple
counterfactual examples per word, rather than sim-
ply removing or masking that word, also increases
the computational resources required.
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A Data, Training and Generation Details
for the Infilling Language Model

To fine-tune the ILM model, we use the following
four datasets: Wikipedia Toxicity6 (Wulczyn et al.,
2017), Founta20187 (Founta et al., 2018), Civil
Comments 8 (Borkan et al., 2019), and Vidgen20219

(Vidgen et al., 2021). The datasets contain English-
language utterances, and cover different domains
(Twitter post, Reddit posts, Wikipedia comments,
and comments from news websites). The datasets
have been created to study abusive language, and
are commonly used to train and evaluate classifi-
cation models that detect various sub-categories
of online abuse, such as hate speech, toxicity, per-
sonal attacks, etc. All datasets except Founta2018
are in the public domain and licensed for research
purposes. Founta2018 dataset is being used with
the permission of the first author.

The details on each dataset are provided in Ta-
ble A.1. For the Wikipedia Toxicity dataset, a large
portion of the data is from conversations about
Wikipedia-specific topics. To not skew our genera-
tion model, we filter these instances following the
unsupervised method presented by Nejadgholi and
Kiritchenko (2020)10. Because the Civil Comments
dataset is significantly larger than the rest, we ran-
domly sample 30K neutral instances and discard
the rest. After filtering, the compound dataset of
neutral instances consists of 130,430 instances in
total. As preprocessing, we replace URLs, men-
tions and emojis with special tokens.

To train the ILM, we fine-tune GPT-2 (1.5B
parameters) for 4 epochs with the default hyper-
parameters provided by Donahue et al. (2020). The
training takes approximately 2.5 hours on a Tesla
V100-SXM2 GPU. Although the original ILM is
trained by infilling words, n-grams, sentences and
paragraphs, we modify the objective to only infill
words and n-grams.

We generate perturbations once for the 120 Hate-
Check cases, and evaluate all models on the same
set of perturbations. The number of perturbations
are chosen so that to have approximately 100 per-

6https://figshare.com/articles/
dataset/Wikipedia_Talk_Labels_Toxicity/
4563973

7https://github.com/ENCASEH2020/
hatespeech-twitter

8https://bit.ly/3Kfaveb
9https://zenodo.org/record/4881008#

.YeBBQ2jMKUk
10https://github.com/IsarNejad/cross_

dataset_toxicity

Dataset Source Class Size
Wikipedia Toxicity
(Wulczyn et al., 2017)

Wikipedia
comments

Normal 36,121

Founta2018
(Founta et al., 2018)

Twitter
posts

Normal 53,236

Civil Comments
(Borkan et al., 2019)

Comments on
news sites

Normal 30,000

Vidgen2021
(Vidgen et al., 2021)

Reddit
posts

Non-
Abusive

11,073

Total 130,430

Table A.1: Description of the training data used to fine-
tune the ILM model.

turbed instances for each token for the necessity
calculation, and 100 instances for the sufficiency
calculation. This results in a total of 66,120 per-
turbed instances, and takes approximately 6 hours
to generate on a 2.3 GHz Quad-Core Intel Core i7
CPU.

B Data and Training Details for Hate
Speech Classifiers

We fine-tune six BERT (Devlin et al., 2019) clas-
sifiers on three different datasets and with two dif-
ferent labelling schemes (hate speech vs. abusive
language) for each. The datasets include: David-
son201711 (Davidson et al., 2017), Founta2018
(Founta et al., 2018), and Vidgen2021 (Vidgen et al.,
2021). The datasets contain English-language posts
from two online platforms, Twitter and Reddit. The
details on each dataset are provided in Table B.1.

We train two models on the dataset of Founta
et al. (2018). For Founta2018-hate, we binarize
the labels to map hate annotations as positive, and
the rest as the negative class. For Founta2018-
abuse, we label both hate and abuse annotations as
positive, and the rest as negative. To illustrate that
our method can provide explanations for models
trained on data that is not explicitly modelled by
our perturbation generator, we also train models
on two versions of the dataset of Davidson et al.
(2017): Davidson2017-abuse and Davidson2017-
hate, which are binarized in the same manner.

The dataset of Vidgen et al. (2021) provides
a hierarchical labelling scheme, the top distinc-
tion being abusive vs. non-abusive. We bina-
rize Vidgen2021-abuse based on these labels. For
Vidgen2021-hate, we take the positive class to be
those instances that are labelled identity-directed
abuse, and label the rest as the negative class.

11https://github.com/t-davidson/
hate-speech-and-offensive-language/tree/
master/data
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Classifier Dataset Positive Class Negative Class Size
Train Dev Test

Founta2018-hate Founta2018
(Founta et al., 2018)

Hateful Normal
Abusive

62,445 7,806 7,806

Founta2018-abuse Founta2018
(Founta et al., 2018)

Hateful
Abusive

Normal 62,445 7,806 7,806

Davidson2017-hate Davidson2017
(Davidson et al., 2017)

Hate Neither
Offensive

19,826 2,478 2,479

Davidson2017-abuse Davidson2017
(Davidson et al., 2017)

Hate
Offensive

Neither 19,826 2,478 2,479

Vidgen2021-hate Vidgen2021
(Vidgen et al., 2021)

Identity-
directed abuse

Non-abusive
Person-directed abuse
Affiliation-directed abuse

13,585 4,527 5,308

Vidgen2021-abuse Vidgen2021
(Vidgen et al., 2021)

Abusive Non-abusive 13,585 4,527 5,308

Table B.1: Description of the datasets used to fine-tune hate speech and abuse detection classifiers.

Micro Macro Training time
F1 F1 (mins)

Founta2018-hate 0.94 0.67 28
Founta2018-abuse 0.94 0.93 28
Davidson2017-hate 0.94 0.70 7
Davidson2017-abuse 0.96 0.93 7
Vidgen2021-hate 0.91 0.71 22
Vidgen2021-abuse 0.85 0.72 22

Table B.2: Micro- and macro-averaged F1-scores and
training times for each BERT model trained and evalu-
ated on the given datasets.

We employ the same pre-processing steps as
in the experiments by Röttger et al. (2021), and
replace URLs, mentions and emojis with special
tokens. We fine-tune a BERT model from the Hug-
ging Face library12 on each of these datasets on a
single Tesla V100-SXM2 GPU. Each model has
110M trainable parameters. We follow the imple-
mentation of Röttger et al. (2021) and use their
hyper-parameters of 3 epochs, batch size of 16,
learning rate of 5e-5 and weight decay of 0.01.
We also employ weighted cross-entropy loss that
corrects for the class imbalance in data. For the
training/development/test splits, we use the stan-
dard split for Vidgen2021 provided by the creators
of the dataset, and use a stratified 80/10/10 split for
the other datasets, making sure that the splits are
the same for the hate and abuse versions of each,
and correspond to the training set for ILM when
applicable. The classification performance of these
models on the held-out test sets is shown in Table
B.2, together with the training times for each. We
can observe that the reported scores are within a
few percentage points of the previously published

12https://huggingface.co/
bert-base-uncased

women Muslims
necc suff necc suff

Founta2018-hate 0.53 0.30 0.72 0.81
Founta2018-abuse 0.19 0.34 0.36 0.82

Davidson2017-hate 0.44 0.21 0.88 0.74
Davidson2017-abuse 0.55 0.44 0.52 0.41

Vidgen2021-hate 0.87 0.71 0.93 0.88
Vidgen2021-abuse 0.62 0.64 0.64 0.88

Table B.3: Average necessity and sufficiency scores
calculated by masking rather than perturbing selected
tokens, for the identity terms in explicitly hateful cases
of HateCheck (F1, F2, and F3) targeting women or
Muslims for the the three classifiers trained on hate,
and three classifiers trained on abuse labels.

results (Röttger et al., 2021). All reported results
are from a single run.

C Calculating Necessity and Sufficiency
with Masking

In Section 1 we have argued that using the mask
token from the pre-training objective in feature
attribution methods has several drawbacks. Nev-
ertheless, in Table B.3 we report the results of a
modified version of our experiment presented in
Section 5 where we keep the number and the loca-
tion of the perturbations the same as the original
experiments, but instead of perturbing the chosen
tokens using an LM, we replace them with the mask
token. The results show that although the values
are different than their counterparts in the main
experiment, the overall trends remain the same,
and support the hypotheses presented in Section
5. Evaluating the classifier with the masked input
is faster than explicitly generating perturbations,
but the method ceases to be model agnostic and
looses transparency. The results still suggest that
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evaluating necessity and sufficiency with masked
rather than perturbed inputs might be preferable
in contexts where latency is more important than
transparency, or as a pre-processing step to choose
which inputs and tokens to focus on for in-depth
analysis with explicit perturbations. We leave fur-
ther explorations of this avenue for future work.

2686


