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Abstract

Pretrained language models have significantly
improved the performance of downstream lan-
guage understanding tasks, including extractive
question answering, by providing high-quality
contextualized word embeddings. However,
training question answering models still re-
quires large amounts of annotated data for spe-
cific domains. In this work, we propose a coop-
erative self-training framework, RGX, for auto-
matically generating more non-trivial question-
answer pairs to improve model performance.
RGX is built upon a masked answer extraction
task with an interactive learning environment
containing an answer entity Recognizer, a ques-
tion Generator, and an answer eXtractor. Given
a passage with a masked entity, the generator
generates a question around the entity, and the
extractor is trained to extract the masked en-
tity with the generated question and raw texts.
The framework allows the training of ques-
tion generation and answering models on any
text corpora without annotation. We further
leverage a self-training technique to improve
the performance of both question generation
and answer extraction models. Experiment
results show that RGX outperforms the state-
of-the-art (SOTA) pretrained language models
and transfer learning approaches on standard
question-answering benchmarks, and yields the
new SOTA performance under given model size
and transfer learning settings.

1 Introduction

Recent studies have shown that language model pre-
training provides high-quality text representations
and significantly improves neural networks’ perfor-
mance on a variety of natural language processing
(NLP) tasks (Peters et al., 2018). Based on the
popular Transformer architecture (Vaswani et al.,
2017), various language models have been pro-
posed (Devlin et al., 2018; Liu et al., 2019; Clark
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Figure 1: The pipeline of semi-supervised question an-
swering (machine reading comprehension) by RGX.
AER (answer entity Recognition) agent recognizes
answer entity from a given passage; QG (question
Generation) generates a question based on the passage
and entity; QAE (question-answering eXtractor) ex-
tracts answer from the question and passage.

et al., 2020). These models are pretrained to pre-
dict a masked word in a given context from large
corpora, and generate a contextual representation
that encodes semantic and syntactic information.
After finetuning, these representations significantly
improve performance on downstream NLP tasks.
Although masked language modeling is a powerful
self-supervised learning technique, annotation on
large-scaled data is still necessary for finetuning
on difficult downstream tasks, including extractive
question answering (QA)1 where a large number
of labeled question-answer pairs are required as a
training corpora.

Previous studies showed that the QA models
can be improved by training on synthetic question-
answer pairs, namely self-training (Sachan and
Xing, 2018; Puri et al., 2020; Shakeri et al., 2020;
Bartolo et al., 2021). The core step of these work is
pretraining a question-answer pair synthesis model
on a seed corpus, and apply the generator on target

1Also referred to as machine reading comprehension. The
two terms are used interchangeably in this paper.
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domains to obtain synthetic training data. The QA
model learns domain knowledge after finetuning on
the synthetic data, and thus the domain adaptation
is improved. However, the gap between the pre-
training (i.e., seed) and the target corpus still exists,
in terms of domain knowledge, question difficulty,
and language style. The gap affects the quality of
the synthetic training data.

We thus propose a framework that allows co-
operative self-training for both QA pair synthesis
and question answering to better adapt the syn-
thesis models to the target domain and improve
the learning of the QA models. In the framework,
we construct a cooperative environment where a
question generator and an answer extractor work
together to solve a masked entity prediction prob-
lem. We first leverage an entity recognizer to mask
out an entity in a provided passage. The ques-
tion generator then outputs a question based on
the masked passage. With the generated question
and the original, unmasked passage, we train the
answer extractor to select the correct answer spans,
which are the masked entity. The extractor is also
the final model used for extractive QA. To extract
the spans accurately, the generator has to provide
a good question, and the extractor should select
the most likely tokens. We apply an expectation-
maximization algorithm to select high-quality QA
pairs and update both question generation and an-
swer extraction models to improve the quality of
synthetic data and the accuracy of the self-trained
QA model based on synthetic QA pairs. We call
our algorithm RGX since it incorporates an an-
swer entity Recognizer, a question Generator, and
a question-answering eXtractor. The RGX pipeline
is illustrated in Figure 1.

With RGX, we can train a QA model for any un-
labeled target domain given the corresponding text
corpora and a labeled QA corpus in a seed domain
(either the same or different from the target). By
training QA models on synthetic QA data gener-
ated by RGX and evaluating the trained model on
human-labeled evaluation data, we show that RGX
outperforms SOTA approaches in QA benchmark
datasets when domain specific human labels are
not available during finetuning. In this work, we
make the following contributions:

1. We propose a cooperative self-training frame-
work, RGX, which contains an answer entity
recognition, question generation, and answer
span extraction to automatically generate non-

trivial QA pairs on unlabeled corpora.

2. We design a expectation-maximization (EM)
synthetic QA selection that identifies difficult
but answerable questions without supervision
to incrementally train the QA model with chal-
lenging examples, and an answer entity recog-
nition (AER) based maximum mutual infor-
mation (MMI) inference method for question
answering.

3. Experiments show that our method signifi-
cantly outperforms SOTA pretrained QA mod-
els and self-training QA baselines.

2 Related Work

Reinforcement learning and self-training have
emerged recently for learning language genera-
tion in addition to maximum likelihood training.
To optimize text generation models directly with
non-differentiable objective functions, Rennie et al.
(2017) proposed self-critical sequence training
(SCST) using a policy gradient (Kakade, 2001; Sil-
ver et al., 2014). On the other hand, self-training
has been shown to be effective in many tasks, such
as machine translation (He et al., 2019), image clas-
sification (Xie et al., 2020), and structured database-
grounded question answering (Xu et al., 2020).

In the domain of question answering, a question
generator can be used for joint answer prediction
(Tang et al., 2017; Duan et al., 2017), and synthetic
QA data are used for in-domain data augmenta-
tion (Sachan and Xing, 2018; Puri et al., 2020;
Liu et al., 2020; Klein and Nabi, 2019) and out-
of-domain adaptation. Lewis et al. (2019b) and
Lee et al. (2020) introduced models for question
answering under unsupervised/zero-shot settings.
Shakeri et al. (2020) proposed generating synthetic
question-answer pairs with an end-to-end model
simultaneously. Bartolo et al. (2021) improved
the question synthesis by training with difficult
QA cases from the AdversarialQA corpus (Bar-
tolo et al., 2020) and fine-grained answer synthesis
by multi-model voting. We include more related
studies in Appendix A.

In this work, we mainly compare our method
with latest baselines, Shakeri et al. (2020) and
Bartolo et al. (2021) that reported results on out-
of-domain adaptation. Besides improved QA per-
formance, our framework, RGX, differs from the
previous work in the following aspects: (1) Our
method features reinforced finetuning of the QA
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Figure 2: The cooperative learning pipeline for question answering. The pipeline starts from a passage and follows
the steps: (1) recognizing a potential answer entity, (2) generating a question asking about the answer entity, and
(3) answering the question by extracting the answer span in the passage.

Synthesizer, (2) Our framework supports and im-
proves maximize mutual information inference in
test time, and (3) Our work did not use complicated
data annotation, e.g. AdversarialQA.

3 RGX Framework

In this section, we first introduce (1) the QA syn-
thesis pipeline, (2) cooperative self-training for
both QA synthesis and question answering, and
(3) an improved maximum mutual information in-
ference strategy. The self-training pipeline of RGX
is shown in Figure 2.

3.1 Data Synthesis

Given a passage p, our goal is generating a set of
questions q and answers a for the self-training of
the QA model. The RGX model first recognize
potential answer entities (AE) in p with an answer
entity recognition (AER) model, and then gener-
ate question based on the recognized AEs with a
question generation (QG) model, and fine-grain the
AEs with a pretrained question-answering extrac-
tion (QAE) model.

3.1.1 Answer Entity Recognition (AER)

Latest QA synthesis models, QAGen2S (Shakeri
et al., 2020) and SynQA (Bartolo et al., 2021), di-
rectly generate questions from passages by model-
ing Pqg(q|p). In RGX, we first recognize all poten-
tial answer entities in a passage before generating
questions for (1) increasing question diversity and
coverage, and (2) modeling the mutual information
between question generation and answering mod-
els in test time. The AER model in trained on the
seed QA corpus.

We found that using an off-the-shelf named en-
tity recognition (NER) model pretrained on the
CONLL 2003 shared task (Bender et al., 2003)
performs poorly as a AER model (shown in our ex-
periments). To learn an effective recognizer, given
a passage p and an annotated answer entity e, we
select the sentence s containing e from p and train
language models to recognize e in s. We tried two
models for this task: a BIO sequence tagging model
(AER-Tag) and a extractive AER model, which is
similar to an extractive question answering model,
for easier decoding. The model predicts the start
and end positions of the answer entity e. With
this method, we get potential answer entities by
probabilities of all candidate spans.

3.1.2 Masked Question Generation
With AER, we replace the answer entity e in the
passage p with a [MASK] token and obtain the
masked passage p∗. We then build a question gen-
erator Q (denoted as QG interchangeably) that out-
puts answerable questions q in natural language
with the concatenation of p∗ and e as input, i.e.,
q = Q([p∗, e]). We adopt the BART sequence-to-
sequence model (Lewis et al., 2019a) as the archi-
tecture of Q in our implementation, and we train Q
on the question-answer pairs in the seed corpus by
maximizing the likelihood of annotated questions.

3.1.3 Answer Extraction as Fine-grained AER
The answer extraction model A (denoted as QAE,
question-answering extractor) takes generated ques-
tion q and the original passage p as inputs. Follow-
ing the standard extractive QA method, we predict
the answers by

Ist, Ied = A([q, p]) (1)
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where Ist and Ied stand for the start and end po-
sitions of e in p, respectively. We train the QAE
model to predict Ist and Ied separately with cross
entropy losses.

Besides being trained with synthetic QA pairs
and evaluated for the final QA performance, the
QAE model is also a part of the data synthesis
pipeline. After generating questions with the QG
model, we use a pretrained QAE model to answer
the generated questions. The QAE model recog-
nizes better answers spans than the AER model
since it takes questions as additional inputs. As a
result, the final synthetic dataset is constructed by
selecting generated questions and their correspond-
ing QAE outputs. However, we still found the AER
model necessary for generating diverse questions.

3.2 Cooperative Self-training
Although the pretrained models can generate syn-
thetic QA pairs from corpora in unseen domains,
there is always a domain shift from the seed QA
corpus for pretraining to the target. To efficiently
adapt the pretrained models to the new domains,
we propose a cooperative self-training algorithm
that allows finetuning on the target corpora without
additional annotations. The finetuning is based on
a three-agent (AER, QG, QAE) cooperative frame-
work, RGX. The pipeline is illustrated in Figure 2
and comprises the following steps:

1. Produce a masked passage by replacing an answer entity
selected by AER with the ‘[MASK]’ token.

2. Generate a question asking about the masked entity.

3. Feed the generated question and the original passage
into the QAE to predict an answer span.

4. Optimize the QAE model with selected QA pairs.

5. Optimize the QG model with selected QA pairs.

In the proposed pipeline, all the AER, QG, and
QAE models need pretraining to provide a reason-
able start point for the cooperative self-training.
However, the domain gap between the pretraining
and the target corpus causes performance degra-
dation. To mitigate the gap, we propose to mea-
sure the quality of generated questions and incor-
porate the measurement in loss functions. The
quality is defined in two folds, correctness and
difficulty. Firstly, the question should be fluent
and answerable, and secondly, it should not be
too trivial. To automatically select high-quality
generated QA pairs, we introduce a expectation-
maximization (EM) method based on QAE losses
that learns the question quality without supervision.

3.2.1 Synthetic QA Selection with EM

To select synthetic QA pairs for finetuning, we
first divide the generated questions based on the
QAE loss for each question into three groups: low-,
medium-, and high- loss questions. We can inter-
pret questions with low loss as simple ones that
the QAE model can easily answer. Medium-loss
questions are challenging for the QAE, while those
with high loss usually contain noise (e.g., contain-
ing grammatical errors or asking about incorrect
answers). If we train the answering model with all
questions, the training signal would be very noisy
due to the high-loss questions. If we only reward
questions that are correctly answered, the generator
will converge to a trivial local optima. Thus, we
train the QG and QAE model with the low- and
medium- loss questions, namely simple and chal-
lenging questions. For the entire pipeline to be
fully-automatic, we classify a given QA pair into
one of the three types described above. Note that
simply setting the thresholds as hyper-parameters
is difficult since the loss decreases as the QAE
model varies with different passages and domains.
In order to find the thresholds adaptively, we apply
an expectation-maximization (EM) algorithm to
bucket synthetic QA pairs for each passage.

We finetune both QG and QAE models with the
selected simple and challenging QA pairs. After
the training, re-running the RGX pipeline with the
finetuned question generation model leads to im-
proved data synthesis. Training the QAE model on
the updated synthetic dataset can significant outper-
form the previous finetuned QAE model.

3.2.2 Maximum Mutual Information QA

Li and Jurafsky (2016) proposed a maximum mu-
tual information (MMI) decoding method for ma-
chine translation, and Tang et al. (2017) proposed
a MMI method for jointly learning question gener-
ation and answering models. There is no previous
study to our knowledge that applies MMI inference
in test time of question answering that improves the
final performance, because (1) modeling P (q|p, a)
for all possible answers (spans) a is too inefficient,
and (2) Unlike the QAE model that receives loss
signals from all words in a given passage, the QG
model does not receive loss signal from the pas-
sage directly, so Pqg(q|p, a) it is less accurate for
ranking answer spans.

However, the AER and self-training strategy en-
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able efficient MMI inference for QA,

a = argmax
a

[α logPqg(q|p, a)+β logPqa(a|p, q)]

In test time, we run the RGX pipeline for each pas-
sage without additional training to get fine-grained
AEs and corresponding questions. On the other
hand, we take the top span predicted by the QAE
model, and the top-k answer entities spans recog-
nized by the RGX pipeline. In practice, we fix
β = 1. We used an adaptive α value by comparing
the synthetic question generated by the QG model
and the input question. For each answer entity a,
we calculate

α = max(1− abs(
qinput
qgen

− 1), 0.1)

This value normalizes the question probability
p(q|p, a) estimated by the QG model, since gener-
ated questions from some answer entities is easier
than other spans in the same passage, which makes
the QG model assign all natural questions a relative
low perplexity.

4 Experiments

In this work, we train three modules for building
the cooperative self-training environment RGX,
i.e., the answer entity recognizer (AER), the ques-
tion generator (QG), and the question-answering
extractor (QAE). We used a BERT (Devlin et al.,
2018) model for AER, a BART (Lewis et al., 2019a)
model for QG, and an ELECTRA (Clark et al.,
2020) model for AER and QAE. To compare with
the results reported in Shakeri et al. (2020) and
Bartolo et al. (2021), we (1) pretrain question gen-
eration and answering models on the seed corpora,
(2) generate synthetic QA data on the target do-
mains, (3) finetune QA models with synthetic data,
and (4) evaluate the finetuned QA model on human-
labeled evaluation sets. The source code and demo
are publicly available2.

4.1 Data
In our experiment work, we leveraged Natural
Questions (Kwiatkowski et al., 2019) and SQuAD
v1.1 (Rajpurkar et al., 2016) as the seed corpora for
pretraining all modules introduced above. To evalu-
ate the performance of the proposed RGX on ques-
tion answering tasks with different difficulty levels,
we conduct experiments on both SQuAD v1.1 (Ra-
jpurkar et al., 2016) and MRQA (Fisch et al., 2019)

2https://github.com/luohongyin/RGX

out-of-domains (BioASQ, TextbookQA, RACE,
RelationExtraction, DuoRC, and DROP). In the
following sections, we use the term SQuAD to rep-
resent the SQuAD v1.1 corpus. For self-training,
we sample 3000 passages from the training set of
each corpus for data synthesis. More details about
the data are provided in Appendix B

4.2 Implementation Details
Pretraining. We pretrain the AER, QG, and QAE
models on NaturalQuestions and SQuAD (i.e., the
seed) corpora. For NaturalQuestions, we only use
the data points containing a short answer. For Co-
operative training, we follow the steps described in
Section 3.2 for the cooperative training phase.
Self-training. We apply self-training for QG and
QAE by finetuning the models on selected syn-
thetic QA pairs using the same method as pretrain-
ing. The AER model is fixed after pretraining. The
QAE model is finetuned using the official Hugging-
face (Wolf et al., 2019) training scripts for question
answering. We will open-source the RGX frame-
work if the submission is accepted.
Hyperparameters. There are three phases of
model training in this work: pretraining on the
seed corpora, cooperative adaptation with self-
training on the target corpora, and final fine-
tuning on the synthetic data. We adopt most
of the hyper-parameters reported in the original
BERT (Devlin et al., 2018), BART (Lewis et al.,
2019a), and ELECTRA (Clark et al., 2020) pa-
pers. We select the final finetuning learning rates
from {3e− 5, 4e− 5, 5e− 5} and report the high-
est performance. All the other hyper-parameters
are the same as reported in the corresponding pa-
pers. For all the phases, we fix eps = 1e− 6 and
sw = 2000, where sw is the number of warm-up
steps, and we apply no weight decays. We use
BART-large (406M parameters) and ELECTRA-
large (335M parameters) models for our experi-
ments. We run our experiments on 2 Tesla V100
GPUs. Training the QAE models on augmented
data takes about 4 hours.

4.3 Experiment Results
We assess the performance of RGX with both semi-
annotated and zero-annotated evaluation on unseen
domains using exact match (EM) and F1 scores.
The exact match metric assesses the percentage of
predicted spans that are exactly the same as labeled
answers, while the F1 score measure the overall
token-level overlap between predicted and labeled
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answers. In our semi-annotated setting, we use
the annotated answer entities in the target corpora
but utilize QG to generate questions for obtaining
the training question-answer pairs. The labeled
questions are not used. We employ no annotation
from the target corpora for the out-of-domain task
but automatically construct the question-answer
training pairs with entities and questions inferred
by AER and QG on the corpora.

4.3.1 Semi-annotated Evaluation
The model performance with the pretrained
QA model, RGX, and SOTA trained with full-
supervision is shown in Table 1.

Models EM F1

Source domain: NQ, Target domain: SQuAD
ELECTRA-large (NaturalQuestions) 67.8 80.3
RGX 83.1 90.7

–w/o Coop. ST 81.2 89.1
ELECTRA-large (SQuAD) 89.7 94.9

Table 1: The performance of the question answering
models in the semi-annotated setting. RGX stands for
our cooperative training approach, and Coop. ST stands
for cooperative self-training.

Table 1 shows that RGX yields improvement
over the pretrained model, approaching the SOTA
performance of the fully trained ELECTRA-large-
discriminator model. The experiment result sug-
gests that the cooperative learning strategy im-
proves the question generation model with human-
annotated answer entities.

4.3.2 Out-of-domain Evaluation
We also evaluate the models in unseen domains,
where we do not use any annotated QA for finetun-
ing. We train the QAE models based on the syn-
thetic training data and evaluate the models on the
target domains. We compare RGX with latest self-
training QA methods, QAGen2S (Shakeri et al.,
2020) and SynQA (Bartolo et al., 2021). Since
QAGen2S did not report full MRQA results, we
implemented our own version. We first present
the RGX performance and the results reported by
the authors QAGen2S and SynQA, and then con-
duct ablation study by training different language
models on RGX synthetic QA data.

The full evaluation results on MRQA out-of-
domains are shown in Table 2, and the experiment
setting comparison is shown in table 3. The re-
sults show that the models trained with the RGX
framework achieve significantly higher EM and F1

scores on most domains, comparing to both pre-
trained QA models and self-training baselines. The
results showed that the RGX model achieves 7.7
and 3.0 average F1 improvement over ELECTRA,
the SOTA pretrained language model for QA, by
pretraining on NQ and SQuAD respectively. The
improvement over previous SOTA self-training QA
methods, QAGen2S and SynQA, is also significant
on both pretraining corpora, although SynQA ap-
plies complicated adversarial QA annotation. The
largest gain we got is adapting NQ model to Text-
bookQA domain, increasing 18.0 EM and 19.4
F1 scores. Note that our model still outperforms
all baselines without MMI. The performance on
the DROP benchmark drops since DROP requires
multi-step reasoning, but the synthetic generation
model tends to generate safe question-answer pairs.
We also found that without selecting harder ques-
tions with SEM in RGX, the performance is sig-
nificantly lower. These facts indicate that the QA
model needs hard training examples for better per-
formance, and explains the good performance of
SynQA on DROP. For the same reason, the per-
formance drop led by removing EM from RGX
is significantly larger when the QG model is pre-
trained on SQuAD, since SQuAD questions are
more coherent with the context than NQ, and se-
lecting simple questions for RGX training will en-
courage the model to generate trivial questions,
which is harmful for the QA training.

4.4 Analysis

4.4.1 Answer Entity Recognition

We first compare the performance of different AER
models and strategies by setting NQ as the source
domain and SQuAD 1.1 as the target domain in
Table 4. The results showed that the choice of
AER model and strategy significantly influences
the final QA performance. The low performance
of the NER model trained on CONLL shared task
suggests the importance of our AER module. We
notice that the improvement from the cooperative
learning over the pretrained models is higher in
the zero-annotation setting than the semi-annotated
task. The observation indicates that the model
trained with RGX is more robust against the auto-
matically recognized answer entities. More details
about the AER methods are shown in Appendix C.

The AER method also enables and improves the
maximum mutual information (MMI) inference in
test time. Table 2 shows that MMI achieves the
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Model
Domain

BioASQ
Bio

TextbookQA
Book

RACE
Exam

RelExt.
Wiki

DuoRC
Movie

DROP
Wiki

Avg

EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1
Source Domain: NaturalQuestionswiki, Method: Extraction

ELECTRA 41.9 59.0 31.9 41.5 32.4 43.4 67.7 81.8 40.0 48.5 39.3 51.1 42.2 54.2
QAGen2S 43.2 64.1 39.9 51.7 33.7 45.5 71.6 84.4 43.8 53.2 24.2 37.1 42.7 56.0
RGX (Ours) 50.3 70.1 49.9 60.9 40.3 52.4 76.1 87.2 47.8 58.4 27.6 42.1 48.7 61.9

– w/o MMI 49.7 69.1 49.4 60.6 39.7 51.5 75.4 86.7 46.9 57.5 27.1 41.7 46.8 61.2
– w/o EM 48.2 67.9 47.4 59.8 38.3 50.5 74.1 86.2 46.6 56.9 26.1 40.9 46.8 60.4
– w/o CST 45.4 66.4 41.9 53.8 35.1 47.2 72.7 85.4 45.5 54.9 24.6 37.9 44.2 57.6

Source Domain: SQuADwiki (SQuAD+AQA+Wiki for SynQA), Method: Extraction
ELECTRA 58.7 73.1 43.0 53.6 38.3 52.5 79.0 88.4 53.1 64.2 48.3 60.8 53.4 65.4
QAGen2S 56.8 71.7 48.0 56.5 43.4 54.9 73.4 84.8 53.3 64.6 42.2 54.5 52.8 64.5
SynQA 55.1 68.7 41.4 50.2 40.2 54.2 78.9 88.6 51.7 62.1 64.9 73.0 55.3 66.1
RGX (Ours) 60.3 74.8 51.2 61.2 44.9 58.7 79.2 88.6 57.4 66.2 47.6 60.9 56.8 68.4

– w/o MMI 59.2 73.6 50.1 60.4 46.3 57.6 78.9 88.5 56.2 65.7 46.9 60.6 56.3 67.7
– w/o EM 52.1 64.0 50.6 58.9 35.4 48.3 75.6 85.9 55.6 64.9 40.7 53.2 51.7 62.5
– w/o CST 57.5 72.1 48.6 57.0 43.8 55.2 74.3 85.3 53.9 65.3 43.0 55.1 53.5 65.0

Source Domain: SQuADwiki, Method: Prompt Tuning + Seq2seq Generation
T5 54.6 71.1 37.9 61.9 15.0 53.1 74.5 86.5 48.2 65.2 40.4 51.9 45.1 64.9
T5 + RGX 55.1 71.6 41.1 64.2 15.5 55.1 75.9 87.1 49.5 66.2 42.9 53.8 46.7 66.3

Table 2: The QA performance evaluation on the out-of-domains of the MRQA benchmark. All models used are
pretrained on the human-labeled training set from the source domains, and the QA models are finetuned on synthetic
data generated based on the unannotated passages of the target domains. The finetuned QA models are evaluated on
human-generated evaluation data for each target domains with the exact match (EM) and F1 scores. MMI stands for
maximum mutual information inference, EM stands for involving difficult questions with EM selection, and CST
stands for cooperative self-training.

QAGen2S SynQA RGX

Pretraining XQ SQ+AQA XQ
Synthesis Target Wikipedia Target
Finetuning XQ+Syn SQ+AQA+Syn XQ+Syn
AER Model None None ELECTRA
Coop. ST No No Yes
QA Num. 1M 1.5M 0.3M

Table 3: Comparison of different self-training meth-
ods. XQ stands for “NaturalQuestions (NQ) or SQuAD
(SQ)”. QA Num. stands for the number of synthetic QA
pairs used for self-training.

best performance, and we also show that the MMI
accuracy is hurt without AER. Table 5 shows that
MMI grounded on AER constantly outperform the
ELECTRA model, but grounding on top-k seri-
ously hurts the EM scores. Some invalid answer
predictions leads to low question generation per-
plexities, which makes MMI inference noisy. Table
6 shows that the QG model generated more diverse
questions based on the AER outputs.

4.4.2 Synthetic QA Selection with EM
Previous experiments showed that selecting non-
trivial synthetic QA pairs is essential for RGX to
achieve high performance. Table 2 shows that the
performance of cooperative self-trained RGX is
much lower than the pretrained baseline without

Models EM F1

Source domain: NQ, Target domain: SQuAD
Pretrained NQ 67.8 80.3
RGX + NER 27.4 35.4
RGX + AER-Tag 71.4 82.4
RGX + AER-LM 72.7 85.9
RGX + AER-EM 79.2 89.4
Supervised ELECTRA-large 89.7 94.9

Table 4: Comparison of different AER strategies. NER
stands for the BERT named entity recognition model
trained on the CONLL 2003 shared task. AER-Tag
stands for a BIO-based tagging strategy, AER-LM
means selecting synthetic QA pairs with lowest QAE
losses. AER-EM is the EM-based QA selection strategy
applied in our full model.

EM. If selecting QA pairs with low perplexities
instead of EM, the QA diversity is significantly
lower as shown in Table 6, thus makes the QAE
model overfit to simple training cases and hurts
the QA accuracy. We show questions about the
same answer entity being classified into simple,
challenging, and difficult types by EM in figure
3. The data points in the plot represents the losses
of synthetic QA pairs and the predicted QA type.
Based on the highlighted answer entity, question
1 and 2 are predicted as correct questions, while
question 3, which has a relatively high QAE loss,
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ELECTRA Top-k+MMI AER+MMI

EM F1 EM F1 EM F1
BioASQ 58.7 73.1 57.8 72.9 59.9 74.0
TextbookQA 43.0 54.6 44.6 54.9 45.3 55.4
RACE 38.3 52.5 38.1 52.4 39.7 54.1
RelExt 79.0 88.4 78.6 88.3 79.2 88.6
DuoRC 53.1 64.2 52.6 64.3 53.8 65.1
DROP 48.3 60.8 46.7 60.8 49.7 61.5

Table 5: Comparison between maximum mutual infor-
mation inference performance grounded on AER results
and top-k (k = 20) predictions of the QA model.

Models Mean Len. Std Len. Vocab

Ground-truth 11.29 3.72 988703
Semi-anno. RGX 10.54 1.91 923191

–w/o Coop. ST 10.49 2.48 919105
Zero-anno. RGX 10.53 1.94 873300

–w/o Coop. ST 10.57 2.63 789924
–w/o AER 10.60 1.87 743454
–w/o EM 10.18 1.62 692301

Table 6: The vocabulary sizes and lengths of Annotated
and generated questions on SQuAD under both semi-
and zero-annotated settings in unseen domains

is regarded as a wrong question. Note that we only
generate one question for each span recognized by
the AER model, but different questions might be
re-directed to the same AE after QAE fine-graining.

4.4.3 Cooperative Self-training

We found that the cooperative self-training method
improves domain adaptation ability of self-trained
QA models by increasing both accuracy and diver-
sity of QA synthesis.
Accuracy. We also evaluate the quality of the gen-
erated QA pairs without a downstream task by as-
sessing the answer entity hit rate and the BLEU
scores of generated questions using the evaluation
sets of each domain. The results are shown in

Domain RGX w/o Coop. ST RGX

Hit BLEU Hit BLEU
BioASQ 68.1 5.9 75.8 12.7
TextbookQA 43.7 7.5 58.2 13.2
RACE 8.3 5.2 12.3 6.8
RelExt. 47.4 2.8 54.2 3.3
DuoRC 53.5 6.7 60.0 7.5
DROP 73.5 12.3 75.3 9.3

Table 7: Evaluation of the answer hit rates and question
BLEU scores of the synthetic data. Hit rate stands for
the percentage of human-labeled answer entities in the
evaluation passages that are successfully covered by the
selected synthetic data generated by RGX.

Context: Despite differences in the spectrum of mutations in CN or CyN,
type or localization of mutation only partially determine the clinical phenotype.

Q1: What determines the clinical phenotype of a person with a mutation?
Q2: What determines the clinical phenotype of a mutation?
Q3: What is the only way to determine the clinical phenotype of a mutation?

Q1_loss = 1.37

Q2_loss = 4.38

Q3_loss = 10.72

Figure 3: Generated questions about the same answer
entity classified into different types by EM. Questions
Q1 is answered by the QAE model confidently, while
the Q2 is considered more challenging than Q1 since
less information is provided. Q3 is an unanswerable
questions given the context passage.

Table 7, indicating that RGX find mores human-
annotated answer entities, and the generated ques-
tions have higher BLEU scores on all domains. The
evaluation results show that the synthetic QA pars
generated by RGX covers more human annotated
answer entities, and the generated questions are
more similar to human annotations than the pre-
trained question generation model. We also found
that tuning the generation model for more than 1
iterations does not result in further improvement,
since keeping training language models with their
own outputs leads to difficult optimization.
Diversity. We compare the lengths and vocabulary
sizes of the questions and summarize the statistics
in Table 6, which shows that the ground-truth ques-
tions are longer and more diverse in vocabulary
than the generated ones. However, the cooperative
self-training, together with AER and EM, improves
the vocabulary diversity. We observe a correlation
between the vocabulary size and the QA perfor-
mance reported in Table 1 and 4, presumably be-
cause the QAE model requires diverse knowledge
for training. Thus, we believe generating more di-
verse QA pairs with good quality will be a critical
next step to improve RGX.
Case Study. An example of a SQuAD passage is
shown in Table 8. We list the annotated and gen-
erated question-answer pairs by different models.
The table shows that the models can recognize rea-
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Architecturally, the school has a Catholic character. Atop the Main Building’s gold dome is a golden statue of the Virgin
Mary. Immediately in front of the Main Building and facing it, is a copper statue of Christ with arms upraised with the
legend ”Venite Ad Me Omnes”. Next to the Main Building is the Basilica of the Sacred Heart. Immediately behind the
basilica is the Grotto, a Marian place of prayer and reflection. It is a replica of the grotto at Lourdes, France where the
Virgin Mary reputedly appeared to Saint Bernadette Soubirous in 1858. At the end of the main drive (and in a direct line
that connects through 3 statues and the Gold Dome), is a simple, modern stone statue of Mary.

Annotated Pretrained RGX

Saint Bernadette Soubirous a Marian place of
prayer and reflection

a Marian place of
prayer and reflection

To whom did the Virgin Mary allegedly
appear in 1858 in Lourdes France? what is the grotto at st bernadette’s? what is the grotto in st bernadette

school?

a copper statue of Christ the grotto at Lourdes,
France Venite Ad Me Omnes

What is in front of the Notre Dame
Main Building?

where is the grotto located at st
bernadette school?

what is the message on the statue in
front of st bernadette school?

the Main Building Immediately behind the
basilica is the Grotto 1858

The Basilica of the Sacred heart at
Notre Dame is beside to which structure? what is the grotto in st peter’s school? when was the grotto at lourdes built?

a Marian place of
prayer and reflection

copper statue of Christ
with arms upraised

a simple, modern
stone statue of Mary

What is the Grotto at Notre Dame? what is it a statue of christ? what is the statue at st bernadette
school?

a golden statue of
the Virgin Mary a replica the grotto at Lourdes,

France

What sits on top of the Main
Building at Notre Dame?

is the grotto at st bernadette school
in paris a replica of which European
landmark?

what is the replica of st bernadette’s
school in paris?

Table 8: An example of a passage in the training set of the SQuAD corpus. We list the annotated question-answer
pairs, and the question-answer pairs generated by the models pretrained on NQ and finetuned by RGX. The bold
texts are annotated or recognized answer entities. Adapting from NQ is difficult since the questions in NQ do not
strictly coherent with a given context. More generation examples are shown in Appendix D.

sonable answer entities other than the annotated
ones, and RGX generates more natural QAs.

5 Conclusion

We propose a cooperative self-training frame-
work, RGX, consisting of an answer entity Rec-
ognizer, a question Generator, and an answer eX-
tractor, for question generation and answering. We
also introduce in the framework an expectation-
maximization method that measures the quality of
generated questions for reinforced finetuning of
the question generation models. Experiments show
that RGX significantly outperforms pretrained and
self-trained model baselines while adapted to un-
seen domains, suggesting that RGX is a promising
framework for making extractive question answer-
ing methods more scalable and less dependent on
human annotation.
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A More Related Work

Representation learning has been an important
topic in NLP area since neural language models
were proposed (Bengio et al., 2003). Based on
word co-occurrence, Mikolov et al. (2013) and Pen-
nington et al. (2014) proposed language embedding
algorithms to model word-level semantics. Recent
studies have focused on pretraining contextualized
word representations with large-scaled corpora (Pe-
ters et al., 2018). State-of-the-art representation
models are pretrained with the masked language
modeling task (Devlin et al., 2018; Liu et al., 2019;
Clark et al., 2020) using the Transformer architec-
ture (Vaswani et al., 2017).

Different variants of masked language models
have been investigated to improve performance in
downstream tasks. Joshi et al. (2020) leveraged a
masked span generation task instead of word pre-
diction. Fei et al. (2020) and Shen et al. (2020)
proposed models that learns better syntax knowl-
edge with syntactic distances (Shen et al., 2018)
and heights (Luo et al., 2019). Henderson et al.
(2019) and Humeau et al. (2019) showed that pre-
training language models on dialog corpora per-
form better on dialog-related downstream tasks, as
compared to pretraining on Wikipedia. A span se-
lection pretraining objective is proposed in Glass
et al. (2019) to reduce the gap between the pre-
training and downstream finetuning stages and to
improve the performance on the QA task. Some
applications of generated questions are shown in
(Lewis et al., 2021; Jia et al., 2021).

In contrast to self-training methods that usually
adopt a teacher-student learning strategy, coopera-
tive learning pipelines contain several agents work-
ing together to learn as much knowledge as pos-
sible. A typical cooperative learning framework
is generative adversarial networks (GAN) (Good-
fellow, 2016; Goodfellow et al., 2014), where a
generator is optimized to confuse a discriminator,
and a discriminator is trained to distinguish real
examples from generated ones. Sequence GAN
is further designed for learning diverse text gen-
eration (Yu et al., 2017). Unlike the adversarial
learning method where two networks work for
opposite goals, other studies proposed learning
environments in which different agents learn the
same objective functions for language emergence
(Lazaridou et al., 2016; Mordatch and Abbeel,
2018; Havrylov and Titov, 2017), including sim-
ple natural language, compositional language, and

Dataset Num. Synthetic QA

BioASQ 123121
TextbookQA 133773
RACE 115847
RelExt. 52142
DuoRC 250698
DROP 100394

Table 9: Number of synthetic QA of each MRQA do-
main.

symbolic language.

B Data

The SQuAD v1.1 is the easiest QA corpus used in
this paper. The dataset contains 107, 785 question-
answer pairs on 536 articles, which are split into
passages. Each question is labeled with an answer
that can be extracted from the given passage.

The Natural Questions dataset is a large-scale
corpus designed for open-domain question answer-
ing. The dataset is more challenging than SQuAD.
All questions are collected from human search
queries and are annotated with long and abstractive
answers. Some of the questions are also labeled
with a short answer for learning answer-span ex-
traction or reading comprehension. Focusing on
the machine reading comprehension task, we select
106, 926 questions labeled with both long and short
answers from the dataset for experiments.

For each target domain in MRQA, we collect the
corresponding training data and sample 3000 pas-
sages for QA synthesis. The number of synthetic
QAs varies based on the length of input passages,
and is shown in Table 9.

C Answer Entity Recognition Details

In this section, we describe details of the AER
methods, which are not covered in detail in previ-
ous sections. All AER models are pretrained on
the Natural Questions corpus. To solve the sparsity
problem, in other words, the passages are long but
not all potential question-answer pairs are anno-
tated, we train all following AER models by using
the sentence containing the annotated answer en-
tities as inputs, instead of the whole passage. If a
sentence in the passage does not contain an anno-
tated answer entity, we do not use it for training.

In this work, we introduce two types of AER
methods, tagging based AER (AER-tag) and extrac-
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tion based AER (AER-Search and AER-Coop). We
describe their training and how we use the trained
model to recognize answer entities in our experi-
ments.

C.1 AER-Tag
C.1.1 Training
We apply a BIO tagging model for answer entity
recognition in the AER-Tab method. We train the
model to classify all tokens in the input sentence
into three classes,

• B(egin) - the first token of the annotated an-
swer entity

• I(nsize) - other tokens of the annotated answer
entity

• O(utside) - tokens that are not a part of the
annotated answer entity

C.1.2 Evaluation
Given an input passage, we run the trained BIO
tagging model on each of its sentences and greed-
ily predict answer entities. There might be more
than one answer entities predicted in each sentence,
and we only use the answer entities start with a
predicted B tag.

C.2 AER-LM
C.2.1 Training
For AER-LM method, we need to pretrain an
extraction-based AER model. We also take a sen-
tence of L tokens containing an annotated answer
entity as an example. Using an extraction model,
which is similar as our question answering model,
we train the model to predict the start and end loca-
tion of the annotated answer entity. The model out-
puts a start score and an end score for each token,
and predicts the start/end locations by selecting the
tokens that are assigned with highest scores. The
model is trained with cross-entropy loss, by regard-
ing the extraction task as two L-class classification
tasks.

C.2.2 Evaluation
In evaluation, we first run the model on each sen-
tence of the input passages and calculate the start
and end scores for each token. For each span
(xi, xi+1, . . . , xj) that is not longer than Lspan to-
kens, we calculate the span score with

sij = sist + sjed (2)

where sist is the start score of the first token of span
(i, j), and sjed is the end score of the last token of
the span. In practice, we set Lspan = 10.

To re-rank all possible answer entities, we select
top N0 = 40 spans according to sij for each pas-
sage. For all selected answer entities, we generated
questions with a pretrained question generator and
collect the generation perplexity of the questions.
We select Nsearch = 5 question-answer pairs with
lowest perplexities for the final question-answering
finetuning.

C.3 AER-Coop
In AER-Coop, we use the same extraction training
method applied in AER-Search, and we also use
the sij scores to select the top N0 = 40 preliminary
answer entities for further search. The difference
is that we search for final answer entities cooper-
atively with the pretrained question generator and
question answering extractor.

With the question generator and question answer-
ing extractor, we re-rank the recognized answer
entities with the following score

scij = γ · Ic − p (3)

where γ is a large, positive coefficient, p is the per-
plexity of generated question based on span (i, j),
and Ic = 1 if the generated question is correctly
answered, and otherwise Ic = 0.

C.4 Answer Entity Overlapping
We found the extraction-based AER model leads
to overlapping problems, since a large start or end
score assigned to a token leads to many candidate
answer entities start or end at the token. In practice,
if an answer entity is selected by the AER-Search
and AER-Coop method, we no longer consider any
other answer entities that overlap with the selected
ones.

D RGX Examples

In this section, we show some examples of our full
model. The examples are contained in Table 10.
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The National History Museum of Montevideo is located in the historical residence of General Fructuoso Rivera. It exhi-
bits artifacts related to the history of Uruguay. In a process begun in 1998, the National Museum of Natural History (1837)
and the National Museum of Anthropology (1981), merged in 2001, becoming the National Museum of Natural History
and Anthropology. In July 2009, the two institutions again became independent. The Historical Museum has annexed eight
historical houses in the city, five of which are located in the Ciudad Vieja. One of them, on the same block with the main
building, is the historic residence of Antonio Montero, which houses the Museo Romantico.
When was the national history museum of montevideo founded?

In the 1920s, John Maynard Keynes prompted a division between microeconomics and macroeconomics. Under Keynesian
economics macroeconomic trends can overwhelm economic choices made by individuals. Governments should promote
aggregate demand for goods as a means to encourage economic expansion. Following World War II, Milton Friedman
created the concept of monetarism. Monetarism focuses on using the supply and demand of money as a method for con-
trolling economic activity. In the 1970s, monetarism has adapted into supply-side economics which advocates reducing
taxes as a means to increase the amount of money available for economic expansion.
Monarism focuses on the relationship between the?

Starting in 2006, Apple’s industrial design shifted to favor aluminum, which was used in the construction of the first Mac-
Book Pro. Glass was added in 2008 with the introduction of the unibody MacBook Pro. These materials are billed as env-
ironmentally friendly. The iMac, MacBook Pro, MacBook Air, and Mac Mini lines currently all use aluminum enclosures,
and are now made of a single unibody. Chief designer Jonathan Ive continues to guide products towards a minimalist and
simple feel, including eliminating of replaceable batteries in notebooks. Multi-touch gestures from the iPhone’s interface
have been applied to the Mac line in the form of touch pads on notebooks and the Magic Mouse and Magic Trackpad for
desktops.
Who is the designer of the macbook pro?

The city’s total area is 468.9 square miles (1,214 km2). 164.1 sq mi (425 km2) of this is water and 304.8 sq mi (789 km2) is
land. The highest point in the city is Todt Hill on Staten Island, which, at 409.8 feet (124.9 m) above sea level, is the
highest point on the Eastern Seaboard south of Maine. The summit of the ridge is mostly covered in woodlands as part
of the Staten Island Greenbelt.
Where is the highest point in new york city?

In 1922, the number of supporters had surpassed 20,000 and by lending money to the club, Barça was able to build the
larger Camp de Les Corts, which had an initial capacity of 20,000 spectators. After the Spanish Civil War the club started
attracting more members and a larger number of spectators at matches. This led to several expansion projects: the
grandstand in 1944, the southern stand in 1946, and finally the northern stand in 1950. After the last expansion, Les Corts
could hold 60,000 spectators.
What is the capacity of barcelona’s stadium?

On 1 November 2013, international postal services for Somalia officially resumed. The Universal Postal Union is now
assisting the Somali Postal Service to develop its capacity, including providing technical assistance and basic mail
processing equipment.
Who is responsible for supporting the somali postal service?

In addition to membership, as of 2010[update] there are 1,335 officially registered fan clubs, called penyes, around the
world. The fan clubs promote Barcelona in their locality and receive beneficial offers when visiting Barcelona. Among
the best supported teams globally, Barcelona has the highest social media following in the world among sports teams,
with over 90 million Facebook fans as of February 2016. The club has had many prominent people among its support-
ers, including Pope John Paul II, who was an honorary member, and former prime minister of Spain José Luis
Rodrı́guez Zapatero. FC Barcelona has the second highest average attendance of European football clubs only behind
Borussia Dortmund.
Who was an honorary member of barcelona football club?

In April 1758, the British concluded the Anglo-Prussian Convention with Frederick in which they committed to pay him
an annual subsidy of £670,000. Britain also dispatched 9,000 troops to reinforce Ferdinand’s Hanoverian army, the first
British troop commitment on the continent and a reversal in the policy of Pitt. Ferdinand had succeeded in driving the
French from Hanover and Westphalia and re-captured the port of Emden in March 1758 before crossing the Rhine with
his own forces, which caused alarm in France. Despite Ferdinand’s victory over the French at the Battle of Krefeld and
the brief occupation of Düsseldorf, he was compelled by the successful manoeuvering of larger French forces to with-
draw across the Rhine.
What did france pay to the prussian monarchy?

Executives at Trump Entertainment Resorts, whose sole remaining property will be the Trump Taj Mahal, said in 2013
that they were considering the option of selling the Taj and winding down and exiting the gaming and hotel business.
What is the future of the trump taj mahal?

Vehicles typically include headlamps and tail lights. Headlamps are white or selective yellow lights placed in the front of
the vehicle, designed to illuminate the upcoming road and to make the vehicle more visible. Many manufactures are turn-
ing to LED headlights as an energy-efficient alternative to traditional headlamps. Tail and brake lights are red and emit
light to the rear so as to reveal the vehicle’s direction of travel to following drivers. White rear-facing reversing lamps in-
dicate that the vehicle’s transmission has been placed in the reverse gear, warning anyone behind the vehicle that it is
moving backwards, or about to do so. Flashing turn signals on the front, side, and rear of the vehicle indicate an intended
change of position or direction. In the late 1950s, some automakers began to use electroluminescent technology to back-
light their cars’ speedometers and other gauges or to draw attention to logos or other decorative elements.
When did they start putting back up lights in cars?
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