
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2166 - 2172

July 10-15, 2022 ©2022 Association for Computational Linguistics

Word Tour: One-dimensional Word Embeddings via
the Traveling Salesman Problem

Ryoma Sato
Kyoto University / RIKEN AIP

r.sato@ml.ist.i.kyoto-u.ac.jp

Abstract
Word embeddings are one of the most fun-
damental technologies used in natural lan-
guage processing. Existing word embeddings
are high-dimensional and consume consider-
able computational resources. In this study,
we propose WORDTOUR, unsupervised one-
dimensional word embeddings. To achieve
the challenging goal, we propose a decompo-
sition of the desiderata of word embeddings
into two parts, completeness and soundness,
and focus on soundness in this paper. Ow-
ing to the single dimensionality, WORDTOUR
is extremely efficient and provides a minimal
means to handle word embeddings. We ex-
perimentally confirmed the effectiveness of the
proposed method via user study and document
classification.

1 Introduction

Word embeddings are one of the most thriving tech-
niques in natural language processing and are used
in various tasks, including word analogy (Mikolov
et al., 2013; Pennington et al., 2014), text classifi-
cation (Kim, 2014; Kusner et al., 2015; Shen et al.,
2018), and text similarity (Arora et al., 2017; Yokoi
et al., 2020). Existing word embeddings are in high-
dimensional spaces. Although high dimensionality
offers representational power to word embeddings,
it also has the following drawbacks: (1) Memory
inefficiency. High-dimensional word embeddings
require the storage of many floating-point values,
and they consume considerable memory space. For
instance, the 300-dimensional GloVe with 400k
words consumes 1 GB of memory. This hinders the
application of word embeddings in edge devices
(Raunak et al., 2019; Jurgovsky et al., 2016; Joulin
et al., 2016). (2) Time inefficiency. The high di-
mensionality also increases the time consumption
owing to many floating-point arithmetic operations.
(3) Uninterpretability. It is not straightforward
to visualize high-dimensional embeddings. Pro-
jections to low dimensional spaces, e.g., by t-SNE

and PCA, lose some information, and it is difficult
to control and interpret the aspects that these pro-
jections preserve. Besides, word embeddings are
sparse in high-dimensional space, and for a small
perturbation ε ∈ Rd, it is not clear what xcat + ε
represents, e.g., when creating adversarial exam-
ples (Lei et al., 2019) and data augmentation (Qu
et al., 2021).

In this study, we propose WORDTOUR, unsu-
pervised one dimensional word embeddings. In
contrast to high-dimensional embeddings, WORD-
TOUR is memory efficient. It does not require
storing even a single floating-point value; instead,
it stores only the order of words. WORDTOUR with
40k words consumes only 300 KB memory, which
is the same space as the space for storing a list
of the words. Memory efficiency enables applica-
tions in low-resource environments. WORDTOUR

is time efficient as well. It can compare words in
a single operation whereas traditional embeddings
require hundreds of floating-point operations for a
single comparison. In addition, it can retrieve sim-
ilar words by simply looking up the surrounding
words in a constant time and can efficiently com-
pare documents using a blurred bag of words, as we
will show in the experiments. These features are
also advantageous in low resource environments.
In addition, WORDTOUR is interpretable owing
to its single dimensionality. It is straightforward to
visualize the one dimentional embeddings without
any information loss. Besides, we can always inter-
pret the perturbed word embedding as we can inter-
pret the perturbed image pixels. In brief, WORD-
TOUR provides a minimal means to handle word
embeddings.

However, words are inherently high-
dimensional, and it is impossible to capture
all semantics in one dimension. To tackle this
challenge, we propose to decompose the desiderata
of word embeddings into two components: sound-
ness and completeness. WORDTOUR gives up

2166

completeness, focuses on soundness, and thereby
realizes meaningful one dimensional embeddings
for some, if not all, applications. We formulate
the optimization of sound word embeddings as
the traveling salesman problem and solve it using
a highly efficient solver. In the experiments, we
confirm that WORDTOUR provides high-quality
embeddings via qualitative comparison, user
studies, and document classification.

Reproducibility: Our code and obtained
embeddings are available at https://
github.com/joisino/wordtour.

2 Backgrounds

2.1 Notations

Let V be the set of words in a vocabulary, and
n = |V| be the number of words. Let [n] =
{1, 2, · · · , n} and let P([n]) be the set of permuta-
tions of [n].

2.2 Problem Definition

We are given off-the-shelf word embeddings X =
[x1, · · · ,xn]> ∈ Rn×d, such as word2vec and
GloVe. We assume that the embeddings completely
represent the semantics of the words, but they are
high-dimensional, e.g., d = 300. We aim to create
an ordering of V such that the order preserves the
structure of the given embeddings. The problem is
defined as follows:

Problem Definition.
Given: Word embedddings X ∈ Rn×d.
Output: Word ordering σ∗ ∈ P([n]).

In full generality, it may be possible to model
the real-value positions. However, in this paper, we
solely consider the order of the words. That is, the
words are equally spaced in the one-dimensional
space. This formulation makes the embedding sim-
pler and lighter, while still being sufficiently pow-
erful.

3 Word Tour

In this section, we introduce our proposed method,
WORDTOUR. Ideally, we would like to preserve
all the semantics in our one-dimensional embed-
dings. However, such ideal embeddings are un-
likely to exist because the relations between words
are inherently high-dimensional. Indeed, although

pet
cat

cats

x Word Tour
Word Embeddings

Figure 1: Illustration of WORDTOUR. Each dot rep-
resents a word with its coordinates as the embedding
vector.

existing studies have attempted to reduce the di-
mensionality of word embeddings, they require
at least tens of dimensions (Raunak et al., 2019;
Acharya et al., 2019) and several dimensions even
in non-Euclidean spaces (Nickel and Kiela, 2017;
Tifrea et al., 2019). These results indicate that
ideal 1D embeddings do not exist. Therefore, we
make a compromise. We decompose the desiderata
of word embeddings into the following two cate-
gories:

Soundness Close embeddings should have seman-
tically similar meanings.

Completeness Semantically similar words should
be embedded closely.

In WORDTOUR, we give up the latter condition and
focus on the former condition. For instance, the
two red stars in Figure 1 are distant in the order, al-
though they are semantically similar. WORDTOUR

accepts such inconsistency. Owing to the incom-
pleteness, WORDTOUR may fail some applications
of word embeddings, such as word analogy and re-
lation extraction. Nevertheless, WORDTOUR still
has some other applications, such as word replace-
ment and document retrieval. Indeed, WORDTOUR

may overlook some relevant documents because
they may embed relevant words far apart. However,
the close documents found by WORDTOUR are in-
deed close owing to soundness. These insights in-
dicate that there exist one-dimensional embeddings
that are useful for some, if not all, applications.

A natural criterion for soundness is that consec-
utive words in the ordering should be close to one
another in the original embedding space. We for-
mulate the problem as follows:

minimize
σ∈P([n])

‖xσ1 − xσn‖+
n−1∑

i=1

‖xσi − xσi+1‖.

(1)

2167

https://github.com/joisino/wordtour
https://github.com/joisino/wordtour

Table 1: Examples of segments. Each row represents a segment. (a–d) Segments around “cat.” (e–h) Segments
around “concept.” (i–o) Random segments of WORDTOUR. WORDTOUR provides smooth orderings.

Methods Segments

(a) WORDTOUR sniff sniffing sniffer dogs dog cat cats pets pet stray errant
(b) RandProj loire sayings nn trooper referendum cat exceeded traces freestyle mirrored bloomberg
(c) PCA1 mm asylum kohl presents expressed cat sichuan denmark counted corporations hewitt
(d) PCA4 1.46 puzzles 940 coexist locations cat att winners perth colgate sohail

(e) WORDTOUR assumption assumptions notions notion idea concept concepts ideas thoughts feelings emotions
(f) RandProj entertaining 42,000 kursk embarrassment ingrained concept berezovsky cg guillen excerpts roofs
(g) PCA1 neighboring branches argued manhattan 1998 concept share pending response airlines fort
(h) PCA4 2:00 hksar hashim provider straining concept inducing fightback unsettled bavaria sign

(i) WORDTOUR wireless broadband 3g cdma gsm handset handsets smartphones smartphone blackberry tablet
(j) WORDTOUR gun weapon weapons arms arm leg legs limbs limb prosthetic make-up
(k) WORDTOUR federalist libertarian progressive liberal conservative conservatives liberals democrats republicans gop republican
(l) WORDTOUR cordial amicable agreeable mutually beneficial detrimental harmful destructive disruptive behaviour behavior
(m) WORDTOUR 15th 14th 13th 12th 10th 11th 9th 8th 7th 6th 5th
(n) WORDTOUR suspicions doubts doubt doubted doubting doubters skeptics skeptic believer believers adherents
(o) WORDTOUR molten magma lava basalt sandstone limestone granite marble slab slabs prefabricated

We treat the ordering as a cycle, not a path, by
adding term ‖xσ1 − xσn‖. The rationale behind
this design is that we would like to treat all words
symmetrically and would like the boundary words
to have the same number of neighbors as the non-
boundary words.

In formulation (1), we adopt the L2 norm for
simplicity. However, our formulation is agnostic
to the distance function. When a corpus is at hand,
we can also use the number of co-occurrences,
i.e.,

∑
i#co-occurrences of (σi, σi+1) , as the cost

function. We leave investigating other modelings
as future work and focus on the L2 cost in this
paper.

The optimization problem (1) is an instance of
the traveling salesman problem (TSP), which is NP-
hard. As the problem size is relatively large in our
case, for instance, n = 40 000, it may seem impos-
sible to solve the problem. However, in practice,
highly efficient TSP solvers have been developed.
Among others, we employ the LKH solver (Hels-
gaun, 2018), which implements the Lin Kernighan
algorithm (Lin and Kernighan, 1973; Helsgaun,
2000) in a highly efficient and effective manner.
The LKH solver performs a restricted local search
based on a guide graph constructed using the dual
problem. Helsgaun (2018) reported that the LKH
solver exactly solved an instance with as many as
109 399 cities. In addition, several effective algo-
rithms for computing lower bounds provide theo-
retical guarantees for the quality of a solution. We
employ the one-tree lower bound (Helsgaun, 2000)
implemented in the LKH solver to compute the
lower bounds of the optimum value. As a tour is a
special case of a one-tree, the minimum cost one-
tree is a provable lower bound of the TSP problem.
The algorithm searches for a potential vector for a
tight lower bound by gradient ascent. WORDTOUR

computes a near-optimal solution of Problem (1) by

the LKH solver and uses the solution as the word
order, i.e., the word embeddings.

4 Experiments

We experimentally validated the effectiveness of
WORDTOUR. We used a Linux server with Intel
Xeon E7-4830 v4 CPUs in the experiments.

4.1 Computing Embeddings

We used 300-dimensional GloVe embedding with
the first 40 000 words as the input embeddings
{xv}. The objective value of the solution obtained
by LKH was 236882.314, and the lower bound
proved by LKH was 236300.947. Therefore, the
cost of the obtained tour is guaranteed to be at most
1.003 of the optimum. The resulting embedding
file is 312 KB, which is sufficiently light to be
deployed in low-resource environments.

4.2 Qualitative Comparison

We use the following baselines: (1) RandProj ran-
domly samples a direction d ∈ Rd and orders the
embeddings in ascending order of d>xi. This
method extracts a specific aspect d of the input
embeddings. (2) PCA-1 orders in ascending order
of the top PCA component. (3) Mu and Viswanath
(2018) reported that a few leading PCA compo-
nents were not informative. Therefore, PCA-4 or-
ders words by the fourth PCA component.

As we cannot show the entire tour owing to space
constraints, we sample and list some random seg-
ments in Table 1. It is observed that WORDTOUR

provides the most natural ordering, and the con-
secutive words are semantically similar in WORD-
TOUR. Notably, WORDTOUR almost recovers the
order of ordinals without explicit supervision (Ta-
ble 1 (m)).

2168

0

20

40

60

80

W
or

d
To

ur

W
or

d
To

ur

W
or

d
To

ur

PC
A1

PC
A4

Ra
nd

Pr
oj

88

11

79

21

80

20

Figure 2: Results of the user study. Each bar repre-
sents the number of times each method was selected
within 100 trials. One trial was not completed in
WORDTOUR vs. RandProj, which led to 99 trials in
the first comparison.

4.3 Assesment via Crowdsourcing

We conducted a user study at Amazon Mechanical
Turk to confirm the effectiveness of WORDTOUR.
Specifically, to compare two word ordering σ, τ ∈
P([n]), we randomly sample a reference word v ∈
V , retrieve the next words of v in σ and τ , and ask
a crowdworker which word is more similar to the
reference word v. We repeated this process 100
times for each pair of embeddings. Figure 2 shows
the number of times each embedding was selected.
This clearly shows that WORDTOUR aligns with
human judgment.

4.4 Document Retrieval

In this section, we evaluate the effectiveness of
word embeddings in document classification. The
most straightforward approach to compare two
documents is the bag of words (BoW), which
counts common and uncommon words in docu-
ments. However, this approach cannot capture the
similarities of the words. In 1D embeddings, neigh-
boring words are similar, although they are not
exactly matched in BoW. To utilize this knowledge,
we use blurred BoW, as shown in Figure 3. Specif-
ically, we put some mass around the words in a
document to construct the blurred BoW vector. We
employ a Gaussian kernel for the mass amount and
use WORDTOUR, RandProj, PCA1, and PCA4 for
the orderings. We normalize the BoW and blurred
BoW vectors with the L1 norm and compute the
distance between two documents using the L1 dis-
tance of the vectors. The blurred BoW can be com-
puted in O(wn) time, where n denotes the number
of words in a document and w is the width of the
filter. We used w = 10 in the experiments. We
also use word mover’s distance (WMD) (Kus-
ner et al., 2015) as a baseline, which is one of
the most popular word-embedding-based distances.

cat
cats

cat

pets
pet

dog
dogs
sniffer

cat
cats
pets

dog
dogs
sniffer
sniffing
sniff

dogs

Ba
g

of
 W

or
ds

 (B
oW

s)
W

or
d

To
ur

+
 B

lu
rr

ed
 B

oW
s

{cat} {dogs} distance

2.0

1.2

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0) (0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

(0, 0, 0.03, 0.2, 0.7, 1, 0.7, 0.2, 0.03, 0) (0.03, 0.2, 0.7, 1, 0.7, 0.2, 0.03, 0, 0, 0)

Figure 3: Document comparison by WORDTOUR. This
figure illustrates the case in which a document is com-
posed of a single word. When more than one word is
in a document, the blurred BoW will be multimodal.

Table 2: Document classification errors. Lower is bet-
ter. The time row reports the average time to compare
the two documents. WORDTOUR performs the best in
the blurred BoW family.

ohsumed reuter 20news amazon classic

BoW 48.1 5.6 35.4 11.4 ± 0.4 5.1 ± 0.3
Time 39 ns 23 ns 35 ns 21 ns 23 ns

WORDTOUR 47.2 4.6 34.1 10.1 ± 0.3 4.6 ± 0.1
RandProj 47.9 5.4 35.4 11.3 ± 0.3 5.1 ± 0.3
PCA1 47.8 5.7 35.5 11.4 ± 0.6 5.1 ± 0.3
PCA4 48.1 5.6 35.4 11.6 ± 0.5 5.1 ± 0.4
Time 206 ns 142 ns 312 ns 185 ns 150 ns

WMD 47.5 4.5 30.7 7.6 ± 0.3 4.2 ± 0.3
Time 3.5 ×106 ns 2.2 ×106 ns 5.1 ×106 ns 1.2 ×107 ns 1.9 ×106 ns

We used 300-dimensional GloVe for WMD. WMD
requires O(n3 + n2d) computation because of the
optimal transport formulation, where n denotes
the number of words in a document and d is the
number of dimensions of word embeddings. The
performance of WMD can be seen as an expensive
upper bound of BoW and blurred BoW. We used
five datasets: ohsumed (Joachims, 1998), reuter
(Sebastiani, 2002), 20news (Lang, 1995), Ama-
zon (Blitzer et al., 2007), and classic (SMART).
We remove the duplicated documents following
(Sato et al., 2021). The details of the datasets are
provided in the Appendix. We evaluated the per-
formance using the k-nearest neighbor error. We
used the standard test dataset if it existed (for in-
stance, based on timestamps) and used five random
train/test splits for the other datasets1. We report
the standard deviations for five-fold datasets.

The results are shown in Table 2. Although
WORDTOUR is less effective than WMD, it is much
faster than WMD and more effective than other 1D
embeddings. Recall that the 1D embeddings are
designed for low-resource environments, where

1The seeds are fixed and reported in the GitHub repository.

2169

WMD may be infeasible. WORDTOUR offers an
efficient approach while integrating the similarities
of the words.

5 Related Work

Raunak et al. (2019) and Jurgovsky et al. (2016)
proposed a postprocessing method to reduce the
number of dimensions of the off-the-shelf word
embeddings. However, existing methods require
at least five to tens of dimensions. To the best
of our knowledge, this study is the first to ob-
tain large-scale 1D word embeddings. Nickel and
Kiela (2017) proposed to embed words into hyper-
bolic spaces and drastically reduce the number of
required dimensions. FastText.zip (Joulin et al.,
2016) quantizes and prunes word embeddings for
memory-efficient text classification. Although Fast-
Text.zip saves considerable memory consumption
without harming downstream tasks, it prunes words
that are irrelevant to text classification, whereas we
aim to retain the original vocabulary in this work.
Ling et al. (2016) and Tissier et al. (2019) proposed
to quantize general word embeddings. Although
they save considerable memory and time complex-
ity with no considerable performance degradation,
they still consume a few orders of magnitude more
memory than 1D embeddings, and they are sparse
in the embedding space and require more time than
WORDTOUR to compare documents and search
similar words.

6 Conclusion

In this study, we proposed WORDTOUR, a 1D word
embedding method. To realize 1D embedding, we
decompose the requirement of word embeddings
into two parts and impose only one constraint in
which the consecutive words should be semanti-
cally similar. We formulate this problem using the
TSP and solve it with a state-of-the-art solver. Al-
though the TSP is NP-hard, the effective solver
solves the optimization almost optimally and pro-
vides effective 1D embeddings. We confirmed its
effectiveness via crowdsourcing and document clas-
sification.

Acknowledgements

This work was supported by JSPS KAKENHI
GrantNumber 21J22490.

References
Anish Acharya, Rahul Goel, Angeliki Metallinou, and

Inderjit S. Dhillon. 2019. Online embedding com-
pression for text classification using low rank matrix
factorization. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI, pages 6196–6203.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In 5th International Conference on Learn-
ing Representations, ICLR.

John Blitzer, Mark Dredze, and Fernando Pereira. 2007.
Biographies, Bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification. In
Proceedings of the 45th Annual Meeting of the As-
sociation of Computational Linguistics, pages 440–
447.

Keld Helsgaun. 2000. An effective implementation of
the lin-kernighan traveling salesman heuristic. Eur.
J. Oper. Res., 126(1):106–130.

Keld Helsgaun. 2018. LKH (Keld Helsgaun).

Thorsten Joachims. 1998. Text categorization with sup-
port vector machines: Learning with many relevant
features. In Proceedings of the 10th European Con-
ference on Machine Learning, ECML, volume 1398
of Lecture Notes in Computer Science, pages 137–
142.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hervé Jégou, and Tomás Mikolov.
2016. Fasttext.zip: Compressing text classification
models. arXiv.

Johannes Jurgovsky, Michael Granitzer, and Christin
Seifert. 2016. Evaluating memory efficiency and ro-
bustness of word embeddings. In Advances in Infor-
mation Retrieval - 38th European Conference on IR
Research, ECIR, volume 9626 of Lecture Notes in
Computer Science, pages 200–211.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751.

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and
Kilian Q. Weinberger. 2015. From word embed-
dings to document distances. In Proceedings of the
32nd International Conference on Machine Learn-
ing, ICML, volume 37, pages 957–966.

Ken Lang. 1995. NewsWeeder: Learning to filter net-
news. In Proceedings of the 12th International Con-
ference on Machine Learning, ICML, pages 331–
339.

Qi Lei, Lingfei Wu, Pin-Yu Chen, Alex Dimakis, Inder-
jit S. Dhillon, and Michael J. Witbrock. 2019. Dis-
crete adversarial attacks and submodular optimiza-
tion with applications to text classification. In Pro-
ceedings of Machine Learning and Systems 2019,
MLSys.

2170

https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/10.1609/aaai.v33i01.33016196
https://doi.org/10.1609/aaai.v33i01.33016196
https://openreview.net/forum?id=SyK00v5xx
https://openreview.net/forum?id=SyK00v5xx
https://aclanthology.org/P07-1056
https://aclanthology.org/P07-1056
http://webhotel4.ruc.dk/~keld/research/LKH/
http://arxiv.org/abs/1612.03651
http://arxiv.org/abs/1612.03651
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
http://proceedings.mlr.press/v37/kusnerb15.html
http://proceedings.mlr.press/v37/kusnerb15.html
https://proceedings.mlsys.org/book/284.pdf
https://proceedings.mlsys.org/book/284.pdf
https://proceedings.mlsys.org/book/284.pdf

Shen Lin and Brian W. Kernighan. 1973. An effective
heuristic algorithm for the traveling-salesman prob-
lem. Oper. Res., 21(2):498–516.

Shaoshi Ling, Yangqiu Song, and Dan Roth. 2016.
Word embeddings with limited memory. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 387–392.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-
top: Simple and effective postprocessing for word
representations. In 6th International Conference on
Learning Representations, ICLR.

Maximilian Nickel and Douwe Kiela. 2017. Poincaré
embeddings for learning hierarchical representa-
tions. In Advances in Neural Information Process-
ing Systems 30: Annual Conference on Neural Infor-
mation Processing Systems 2017, pages 6338–6347.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543.

Yanru Qu, Dinghan Shen, Yelong Shen, Sandra
Sajeev, Weizhu Chen, and Jiawei Han. 2021.
Coda: Contrast-enhanced and diversity-promoting
data augmentation for natural language understand-
ing. In 9th International Conference on Learning
Representations, ICLR.

Vikas Raunak, Vivek Gupta, and Florian Metze. 2019.
Effective dimensionality reduction for word embed-
dings. In Proceedings of the 4th Workshop on Rep-
resentation Learning for NLP (RepL4NLP-2019),
pages 235–243.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima.
2021. Re-evaluating word mover’s distance. arXiv,
abs/2105.14403.

Fabrizio Sebastiani. 2002. Machine learning in au-
tomated text categorization. ACM Comput. Surv.,
34(1):1–47.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Mar-
tin Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin.
2018. Baseline needs more love: On simple word-
embedding-based models and associated pooling
mechanisms. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 440–450.

SMART. Cornell’s smart repository.

Alexandru Tifrea, Gary Bécigneul, and Octavian-
Eugen Ganea. 2019. Poincare glove: Hyperbolic
word embeddings. In 7th International Conference
on Learning Representations, ICLR.

Julien Tissier, Christophe Gravier, and Amaury
Habrard. 2019. Near-lossless binarization of word
embeddings. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI, pages 7104–7111.

Sho Yokoi, Ryo Takahashi, Reina Akama, Jun Suzuki,
and Kentaro Inui. 2020. Word rotator’s distance. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2944–2960.

2171

https://doi.org/10.18653/v1/P16-2063
https://aclanthology.org/N13-1090
https://aclanthology.org/N13-1090
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://proceedings.neurips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://openreview.net/forum?id=Ozk9MrX1hvA
https://openreview.net/forum?id=Ozk9MrX1hvA
https://openreview.net/forum?id=Ozk9MrX1hvA
https://doi.org/10.18653/v1/W19-4328
https://doi.org/10.18653/v1/W19-4328
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
https://doi.org/10.18653/v1/P18-1041
ftp://ftp.cs.cornell.edu/pub/smart/
https://openreview.net/forum?id=Ske5r3AqK7
https://openreview.net/forum?id=Ske5r3AqK7
https://doi.org/10.18653/v1/2020.emnlp-main.236

Table 3: Dataset statistics.

ohsumed reuter 20news amazon classic

Number of documents 7497 7585 18776 7854 6778
Number of training documents 3268 5413 11265 5497 4744

Number of test documents 4229 2172 7511 2357 2034
Size of the vocabulary 12144 13761 28825 21816 12904

Unique words in a document 94.5 63.0 137.1 201.8 60.8
Number of classes 10 8 20 4 4

Split type one-fold one-fold one-fold five-fold five-fold

A Datasets

Table 3 summarizes the statistics of the datasets
after preprocessing. Ohsumed (Joachims, 1998)
consists of medical abstracts. Reuter (Sebastiani,
2002) and 20news (Lang, 1995) are news datasets.
Amazon (Blitzer et al., 2007) consists of reviews in
amazon.com. Classic (SMART) consists of aca-
demic papers. The datasets are retrieved from
https://github.com/mkusner/wmd.

B Usage of LKH

We used LKH version 3.0.6, with parameter
PATCHING_C = 3,PATCHING_A = 2, which
are the default parameters. As the LKH solver ac-
cepts only integral values, we multiply the actual
distance by 103 and round down the values before
we feed them into the LKH solver. The difference
caused by this rounding process is negligibly small.

C Hyperparameters

The number k of neighbors in the kNN classifica-
tion is selected from {1, 2, · · · , 19}. The variance
of the Gaussian filter in a blurred bag of words is
selected from {0.01, 0.1, · · · , 1000}. We selected
the hyperparameters using a 5-fold cross-validation
and retrained the kNN model using the chosen hy-
perparameters and entire training dataset.

2172

https://github.com/mkusner/wmd

